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Abstract

In models of a quantum harmonic oscillator coupled to a quantum field with a quad-
ratic interaction, embedded eigenvalues of the unperturbed system may be unstable
under the perturbation given by the interaction of the oscillator with the quantum
field. A general mathematical structure underlying this phenomenon is clarified in
terms of a class of Fock space representations of the ∗-algebra of the canonical commu-
tation relations over a Hilbert space. It is also shown that each of the representations
is given as a composition of a proper Bogolyubov (canonical) transformation and a
partial isometry on the Fock space of the representation.

1 Introduction

In the spectral analysis of models of an atom coupled to the quantized radiation field,
one meets a difficult problem, i.e., a perturbation problem of embedded eigenvalues [1],
to which the standard regular perturbation theory cannot be applied. To solve this prob-
lem with mathematical rigor is very important for a complete understanding of physical
phenomena of atoms such as the Lamb shift and emission and absorption of light as well
as for establishing a mathematically rigorous foundation of quantum electrodynamics. A
traditional and informal picture is that the embedded eigenvalues of an atomic Hamilto-
nian except the lowest one (the ground state energy) should be unstable, i.e., they should
disappear under the perturbation given by the interaction with the quantized radiation
field, each forming a resonance pole whose real and imaginary parts explain, respectively,
the Lamb shift and decay rate of the corresponding excited state. Partial solutions to the
problem have been given so far [2, 3, 4, 18, 5, 6, 7, 8, 14, 15, 16, 9, 11, 17, 12, 10, 23],
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establishing a firm mathematical basis and a mathematically deeper understanding for the
traditional picture.

In a series of papers [2, 3, 4, 5, 6], we considered models of a quantum harmonic
oscillator coupled to a quantum scalar field or a quantized radiation field with a quadratic
interaction, which may serve as simplified models of an atom coupled to the quantized
radiation field, and showed that the instability phenomenon of embedded eigenvalues as
described above occurs in those models, although it may depend on the size of parameters
contained in their Hamiltonians. In [7], a general structure underlying the instability
phenomenon of embedded eigenvalues in a class of models, which include the ones in
[2, 3, 4, 5, 6], was analyzed in terms of the notion of noninvertible Bogolyubov (canonical)
transformation (NIBT). The purpose of the present paper is to clarify the nature of the
NIBT, which is not discussed in [7]. We show that the NIBT is a composition of a proper
Bogolyubov transformation and a partial isometry on the relevant Fock space.

In Section 2, we review the NIBT from a representation theoretic viewpoint. We
consider it as a representation, on the symmetric Fock space Fs(H) over a Hilbert space
H, of the ∗-algebra of the canonical commutation relations (CCR) over another Hilbert
space K. In Section 3, we describe a connection of the representation of the ∗-algebra
of the CCR introduced in Section 2 with the embedded eigenvalue problem in a class
of quantum field models with quadratic interactions. The characterization of the NIBT
mentioned above is given in Section 4.

2 A class of representations of the ∗-algebra of the CCR
over a Hilbert space

For a densely defined linear operator T on a Hilbert space, we denote by D(T ) and T ∗

the domain and adjoint of T , respectively. Let a separable complex Hilbert space H be
given. A triple {F ,D, {a(f)|f ∈ H}} consisting of a complex Hilbert space F , a dense
subspace D of F and an antilinear mapping a : f → a(f) from H to the set of closed
linear operators on F is called a representation of the ∗-algebra of the CCR over H if the
following (i) and (ii) hold: (i) D ⊂ ∩f∈HD(a(f))∩D(a(f)∗), a(f)D ⊂ D, a(f)∗D ⊂ D for
all f ∈ H; (ii) {a(f)|f ∈ H} fulfil the CCR over H

[a(f), a(g)∗] = (f, g)H, [a(f), a(g)] = 0, f, g ∈ H, (2.1)

on D, where ( · , · )H denotes the inner product of H.
Let

Fs(H) =
∞⊕

n=0

⊗n
sH (2.2)

be the symmetric (boson) Fock space over H, where ⊗n
sH denotes the n-fold symmetric

tensor product Hilbert space of H with convention ⊗0
sH = C. We denote by ΩH the Fock

vacuum in Fs(H) and by aH(f), f ∈ H, the annihilation operators on Fs(H) (antilinear in
f), which are closed linear operators. We introduce a dense subspace

Ffin(H) := L
{
ΩH, aH(f1)∗ · · · aH(fn)∗ΩH| n ≥ 1, fj ∈ H, j = 1, . . . , n

}
, (2.3)
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where L{· · ·} denotes the subspace algebraically spanned by vectors in the set {· · ·}. Then
{Fs(H),Ffin(H), {aH(f)|f ∈ H}} is a representation of the ∗-algebra of the CCR over H,
which is called the Fock representation of the ∗-algebra of the CCR over H.

We denote by Nb the number operator on Fs(H). It is well known that, for all f ∈ H,
D(N1/2

b ) ⊂ D(aH(f)) ∩D(aH(f)∗) and, for all f ∈ H and Ψ ∈ D(N1/2
b ),

‖aH(f)#Ψ‖Fs(H) ≤ ‖f‖H‖(Nb + 1)1/2Ψ‖Fs(H), (2.4)

where aH(·)# denotes either aH(·) or aH(·)∗.
In what follows we consider the case where H is given by the direct sum of two Hilbert

spaces K and M with K 6= {0} and M 6= {0} :

H = K ⊕M =
{
(u, v)|u ∈ K, v ∈M

}
. (2.5)

Then we have the natural identification

Fs(H) = Fs(K)⊗Fs(M). (2.6)

Remark 2.1 In applications to models of a quantum harmonic oscillator coupled to a
quantum field, the Hilbert sapces K and M are taken as K = ⊕mL2(Rd), M = CN , with
d, m, N ∈ N. Then we have

Fs(H) = Fs(⊕mL2(Rd))⊗Fs(CN ) = Fs(⊕mL2(Rd))⊗ L2(RN ).

Let JK and JM be conjugations on K and M, respectively, and define

JH := JK ⊕ JM, (2.7)

which is a conjugation on H. For a linear operator T on H and f ∈ H, we set

Tc := JHTJH, f̄ := JHf. (2.8)

For two Hilbert spaces H1,H2, we denote by B(H1,H2) the space of bounded linear
operators from H1 to H2 and set B(H1) = B(H1,H1).

Let S and T be elements in B(K,H) which satisfy

S∗S − T ∗T = IK, S∗Tc − T ∗Sc = 0, (2.9)

where IK denotes the identity operator on K. For each u ∈ K, we define an operator b(u)
acting in Fs(H) by

b(u) = aH(Su) + aH(Tcū)∗. (2.10)

with D(b(u)) = D(N1/2
b ). It follows that D(N1/2

b ) ⊂ D(b(u)∗) for all u ∈ K. Hence b(u)
is closable. We denote its closure by the same symbol b(u), so that D(N1/2

b ) ⊂ D(b(u)).
We have

b(u)∗ = aH(Su)∗ + aH(Tcū) (2.11)

on D(N1/2
b ).
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Proposition 2.1 The triple {Fs(H),Ffin(H), {b(u)|u ∈ K}} is a representation of the
∗-algebra of the CCR over K.

The triple {Fs(H),Ffin(H), {a(u, 0)|u ∈ K}} is a representation of the ∗-algebra of the
CCR over K. But, as the following proposition shows, this representation is not equivalent
in general to the representation {Fs(H),Ffin(H), {b(u)|u ∈ K}}.

Proposition 2.2 [7, Proposition 3.1] Suppose that dim∩u∈K ker b(u) < ∞ and there exist
bounded linear operators U, V on Fs(H) such that, for all u ∈ K, b(u) = Ua(u, 0)V . Then
V is not invertible.

Remark 2.2 The mapping a(·, 0) → b(·) may be regarded as a Bogolyubov transforma-
tion in the Fock space Fs(H). From this point of view, under the assumption of Proposition
2.2, the Bogolyubov transformation is noninvertible. This is a different type of Bogolyubov
transformations from the usual ones as discussed in, e.g., [13], [21, 22].

Remark 2.3 Under identification (2.6), we have

aH(f)# = aK(u)# ⊗ IFs(M) + IFs(K) ⊗ aM(v)#, f = (u, v) ∈ H, (2.12)

on D(N1/2
b ). There exist operators W,V ∈ B(K) and P,Q ∈ B(K,M) such that

Su = (Wu,Qu), Tu = (V u, Pu), u ∈ K, (2.13)

where W and Q (resp., V and P ) are uniquely determined by S (resp. T ). Hence, we
have

b(u) = aK(Wu)⊗ IFs(M) + IFs(K) ⊗ aM(Qu)

+ aK(Vcū)∗ ⊗ IFs(M) + IFs(K) ⊗ aM(Pcū)∗
(2.14)

on D(N1/2
b ). This is the original form of the NIBT discussed in [7]1.

Under additional conditions, one can express aH(·) in terms of b(·) and b(·)∗:

Proposition 2.3 Suppose that S and T satisfy, in addition to (2.9),

SS∗ − TcT
∗
c = IH, TcS

∗
c − ST ∗ = 0. (2.15)

Then, for all f ∈ H,

aH(f) = b(S∗f)− b(T ∗f̄)∗, aH(f)∗ = b(S∗f)∗ − b(T ∗f̄). (2.16)

on D(N1/2
b ).

The Segal field operators

φH(f) :=
1√
2
(aH(f) + aH(f)∗), f ∈ H, (2.17)

1In the paper [7], b(·), aH(·), aM(·) are denoted B(·), b(·), a(·), respectively.
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are essentially self-adjoint on Ffin(H)[20, Theorem X.41]. We denote the closure of
φH(f) by φH(f). An analogue of the Segal field operator is defined in the representa-
tion {Fs(H),Ffin(H), {b(u)|u ∈ K} :

Φ(u) :=
1√
2
(b(u) + b(u)∗), u ∈ K. (2.18)

By (2.10) and (2.11), we have Φ(u) = φH(Su + Tcū) on D(N1/2
b ). Hence, for all u ∈ K,

Φ(u) is essentially self-adjoint on Ffin(H) and

Φ(u) = φH(Su + Tcū), u ∈ K. (2.19)

For all f ∈ H, aH(f)# leaves the dense subspace

C∞(Nb) :=
∞
∩

k=1
D(Nk

b ) (2.20)

invariant and so does b(u)#for all u ∈ K.
We denote by I2(K,H) the space of Hilbert-Schmidt operators from K to H.

Definition 2.4 Let S, T ∈ B(K,H). We say that the pair 〈S, T 〉 is in the set S(K,H) if
S and T satisfy (2.9), (2.15) and T ∈ I2(K,H).

Fundamental properties of the representation {Fs(H),Ffin(H), {b(u)|u ∈ K}} are sum-
marized in the following theorem.

Theorem 2.5 Let 〈S, T 〉 ∈ S(K,H). Then there exist a unit vector Ψ0 ∈ Fs(H) and a
unitary transformation U : Fs(H) → Fs(K) such that the following (a)–(d) hold:

(a) Ψ0 ∈ C∞(Nb) and, for all u ∈ K, b(u)Ψ0 = 0.

(b) The subspace L{Ψ0, b(u1)∗ · · · b(un)∗Ψ0|n ≥ 1, uj ∈ K, j = 1, · · · , n} is dense in
Fs(H).

(c) UΨ0 = ΩK and Ub(u1)∗ · · · b(un)∗Ψ0 = aK(u1)∗ · · · aK(un)∗ΩK for all n ≥ 1, uj ∈
K, j = 1, · · · , n.

(d) For all u ∈ K, UΦ(u)U−1 = φK(u), Ub(u)U−1 = aK(u).

Moreover, Ψ0 is the only one (up to scalar multipliers) of vectors Ψ such that b(u)Ψ = 0
for all u ∈ K.

Proof. Similar to the proof of [7, Theorem 3.4]. 2

3 Hamiltonians

By using the representation {Fs(H),Ffin(H), {b(u)|u ∈ K}}, we can construct a self-adjoint
Hamiltonian acting in Fs(H) whose spectrum can be exactly identified. In application to
the embedded eigenvalue problem mentioned in the Introduction, this class of Hamilto-
nians gives a class of exactly soluble models [6, 7]. In this section we briefly review this
aspect [7].
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For every K ∈ I2(H,H), there exists a unique closed linear operator 〈aH|K|aH〉 acting
in Fs(H) such that Ffin(H) is a core of it, 〈aH|K|aH〉ΩH = 0, 〈aH|K|aH〉a(f)∗ΩH = 0, f ∈
H, and, for all n ≥ 2, fj ∈ H, j = 1, · · · , n,

〈aH|K|aH〉aH(f1)∗ · · · aH(fn)∗ΩH

=
n∑

i6=j

(f̄i,Kfj)HaH(f1)∗ · · · ̂aH(fi)∗ · · · ̂aH(fj)∗ · · · aH(fn)∗ΩH,

where ̂a(fi)∗ indicates the omission of ̂a(fi)∗. Also one can define a closed linear operator
〈a∗H|K|a∗H〉 acting in Fs(H) such that Ffin(H) is a core of it and 〈aH|K|aH〉∗ = 〈a∗H|K∗|a∗H〉
on Ffin(H) (for details, see [7, §II]).

For a self-adjoint operator A on H, we denote by dΓH(A) the second quantization
operator on Fs(H) [19, p.302, Example 2].

We say that a densely defined linear operator on a Hilbert space W is Hilbert-Schmidt
if it is uniquely extended to a Hilbert-Schmidt operator on W. Let 〈S, T 〉 ∈ S(K,H) and h
be a nonnegative self-adjoint operator on K such that h = hc and the following (h.1)–(h.3)
hold:

(h.1) The subspace H0 := {f ∈ H|S∗f, T ∗c f ∈ D(h)} is dense in H.

(h.2) The densely defined operators ThS∗ and Th1/2 are Hilbert-Schmidt on H.

(h.3) The subspace DS(h) := {u ∈ D(h)|S∗Su ∈ D(h)} is a core of h.

It follows that ShS∗ + TchT ∗c is densely defined, hence, it is a symmetric operator on H
and ShT ∗ is Hilbert-Schmidt.

We define

H := dΓH(ShS∗ + TchT ∗c ) + 〈aH|ThS∗|aH〉+ 〈aH|ThS∗|aH〉∗, (3.1)

and

E := −‖Th1/2‖2
HS < 0, (3.2)

where ‖ · ‖HS denotes the Hilbert-Schmidt norm. The operator H gives an abstract form
unifying Hamiltonians of models of a quantum harmonic oscillator coupled to a quantized
field [2, 3, 4, 5, 6, 7, 8]. We can prove the following fact.

Theorem 3.1 [7, Theorem 4.2]2 The operator H is essentially self-adjoint on the subspace

Ffin(H0) := L{ΩH, aH(f1)∗ · · · aH(fn)∗ΩH|n ≥ 1, fj ∈ H0, j = 1, · · · , n} (3.3)

and its closure H̄ is unitarily equivalent to dΓK(h) + E under the unitary transformation
U given in Theorem 2.5: UH̄U−1 = dΓK(h) + E. In particular, H̄ has a unique ground
state given by the vector Ψ0 (up to constant multipliers) with the ground state energy E.

2We would like to make a correction to the paper [7]: in the definition of the operator H in §IV of
[7], the condition that {u ∈ D(h)|(W ∗W + Q∗Q)u ∈ D(h)} is a core of h also should be assumed, which
corresponds to (h.3) in the present context, since we need this property for the proof of [7, Lemma 4.4].
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In concrete models, the unperturbed Hamiltonian H0 is of the form

H0 = dΓH(h⊕ ω) = dΓK(h)⊗ IFs(M) + IFs(K) ⊗ dΓM(ω), (3.4)

where ω is a nonnegative self-adjoint operator on M. We write

H = H0 + HI (3.5)

with

HI = dΓH(ShS∗ + TchT ∗c )− dΓH(h⊕ ω) + 〈aH|ThS∗|aH〉+ 〈aH|ThS∗|aH〉∗. (3.6)

For this form of H, Theorem 3.1 implies the following. For a self-adjoint operator T , we
denote by σ(T ) (resp., σp(T )) the spectrum (resp., the point spectrum) of T . Consider the
case where σ(h) is purely continuous with σ(h) = [m,∞) (m ≥ 0: a constant), σp(h) = ∅,
and σ(ω) is purely discrete with σ(ω) = {ωn}∞n=1 such that 0 ≤ ω1 < ω2 < · · · < ωn →
∞ (n →∞). Then we have

σ(dΓK(h)) = {0} ∪ [m,∞), σp(dΓK(h)) = {0}, (3.7)
σ(dΓM(ω)) = σp(dΓM(ω)) = {En}∞n=0 (3.8)

with E0 = 0 and En > 0, n ≥ 1, where each En with n ≥ 1 is determined by ωj , j ≥ 1.
Hence,

σ(H0) = {En}∞n=0 ∪ [m,∞), σp(H0) = {En}∞n=0, (3.9)

which mean that each En is an eigenvalue of H0 and the eigenvalues En ≥ m are embedded
in the continuous spectrum of H0. On the other hand, Theorem 3.1 implies that

σ(H̄) = {E} ∪ [E + m,∞), σp(H̄) = {E}. (3.10)

Hence, all the embedded eigenvalues En ≥ m turn out to disappear under the pertur-
bation HI , i.e., they are unstable under the perturbation HI (we may regard En < m
as eigenvalues changing to E or E + m under the perturbation HI). Thus, H̄ gives, in
an abstract form, a class of self-adjoint operators acting in the Fock space Fs(H), which
describe the instability phenomenon of embedded eigenvalues.

Remark 3.1 In concrete realizations of H̄, the operators S and T contain a parameter
λ ∈ R, which physically denotes a coupling constant, where λ = 0 corresponds to the case
of no interaction. Write S = S(λ), T = T (λ) and let H(λ) be the operator H with S and
T replaced by S(λ) and T (λ), respectively. In the examples we know, we have

lim
λ→0

[S(λ)hS∗(λ) + Tc(λ)hTc(λ)∗] = h⊕ ω, lim
λ→0

T (λ)hS∗(λ) = 0

strongly on a suitable dense domain, so that lim
λ→0

(Ψ,H(λ)Φ) = (Ψ,H0Φ) for all Ψ,Φ in a

suitable dense subspace of Fs(H). In this sense, writing H as (3.5) is not artificial.
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Remark 3.2 In concrete models, their Hamiltonians are given first. Hence, the following
inverse problem may be interesting and important: Let a nonnegative self-adjoint operator
A on H and K1,K2 ∈ I2(H,H) be given such that

H ′ := dΓH(A) + dΓH(K1) + 〈aH|K2|aH〉+ 〈aH|K2|aH〉∗

is the Hamiltonian of a model. Then, find a general solution {h, S, T} to the operator
equations

ShS∗ + TchT ∗c = A + K1, ThS∗ = K2,

such that 〈S, T 〉 ∈ S(K,H) and h is a nonnegative self-adjoint operator on K. If this
problem is solved with full generality, then one has a complete solution to embedded
eigenvalue problems arising in Hamiltonians of quantum mechanical particles and quantum
fields with quadratic interactions.

4 A characterization

In this section we give a characterization of the representation {b(u)|u ∈ K} as stated in
the Introduction. This is a new result.

We write each vector f ∈ H as f = (fK, fM) with fK ∈ K and fM ∈ M. For each
A ∈ B(K,H), we can define an operator Ã ∈ B(H) by

Ãf = AfK, f ∈ H. (4.1)

Then it is easy to see that, for all f ∈ H,

Ã∗f = (A∗f, 0) (4.2)

and, for all A,B ∈ B(K,H),

ÃB̃∗ = AB∗, (4.3)
B̃∗Ãf = (B∗AfK, 0), f ∈ H. (4.4)

Let 〈S, T 〉 ∈ S(K,H) and PK be the orthogonal projection from H onto K. Then,
by direct computations, using (4.3), (4.4), (2.9) and (2.15), we can prove the following
relations:

S̃∗S̃ − T̃ ∗T̃ = PK, S̃∗T̃c − T̃ ∗S̃c = 0, (4.5)
S̃S̃∗ − T̃cT̃

∗
c = IH, T̃cS̃

∗
c − S̃T̃ ∗ = 0. (4.6)

Let L ∈ B(H) be such that

L∗L = PK, LL∗ = IH, (4.7)

i.e., L is a partial isometry on H with the initial space K and final space H. We define
X, Y ∈ B(H) by

X = S̃L∗, Y = T̃L∗. (4.8)
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Lemma 4.1 The following relations hold:

X∗X − Y ∗Y = IH, X∗Yc − Y ∗Xc = 0, (4.9)
XX∗ − YcY

∗
c = IH, YcX

∗
c −XY ∗ = 0. (4.10)

Moreover, Y ∈ I2(H).

Proof. For all A ∈ B(K,H), PKÃ∗ = Ã∗. Using this fact together with (4.5), (4.6),
(4.7), and (4.8), one can prove (4.9) and (4.10). Let {fn}∞n=1 be a complete orthonormal
system (CONS) of H. Then {L∗fn}∞n=1 is a CONS of K as a closed subspace of H. Since
the range of L∗ is equal to K ⊕ {0}, we can write L∗fn = (un, 0) with un ∈ K. Then

{un}∞n=1 is a CONS of K. We have
∞∑

n=1
‖Y fn‖2

H =
∞∑

n=1
‖Tun‖2

H < ∞, since T ∈ I2(K,H).

Hence, Y ∈ I2(H). 2

Remark 4.1 Let X, Y ∈ B(H). We say that the pair 〈X, Y 〉 is in the set S(H) if X and
Y have the properties stated in Lemma 4.1. Let L ∈ B(H) satisfying (4.7) be fixed. Define
a mapping F : S(K,H) → S(H) by

F 〈S, T 〉 = 〈X, Y 〉 (4.11)

with X and Y given by (4.8). Then it is easy to see that F is bijective with F−1〈X, Y 〉 =
〈S′, T ′〉, where S′, T ′ ∈ B(K,H) are defined by S′u = XL(u, 0), T ′u = Y L(u, 0), u ∈ K.

For each f ∈ H, we define an operator c(f) by

c(f) = aH(Xf) + aH(Ycf̄)∗, (4.12)

with D(c(f)) = D(N1/2
b ), which is closable. We denote its closure by the same symbol.

We have

c(f)∗ = aH(Ycf̄) + aH(Xf)∗, f ∈ H, (4.13)

on D(N1/2
b ).

Theorem 4.2 The mapping {aH, a∗H} → {c, c∗} is a proper Bogolyubov transformation
on Fs(H). In particular, there exists a unitary operator UH on Fs(H) such that, for all
f ∈ H,

c(f) = UHaH(f)U−1
H , c(f)∗ = UHaH(f)∗U−1

H , (4.14)

Proof. This follows from Lemma 4.1 and a well-known fact (cf. [13, Chapter 2, §4,
Theorem 4.1]). 2

Remark 4.2 It is possible to represent UH in an explicit form (cf. [13, Chapter 2, §4,
Theorem 4.3]).
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Corollary 4.3 For all u ∈ K,

b(u) = UHaH(L(u, 0))U−1
H , b(u)∗ = UHaH(L(u, 0))∗U−1

H . (4.15)

Proof. By (2.10) and (4.12), we have

b(u) = c(L(u, 0)), u ∈ K. (4.16)

which, together with (4.14), implies (4.15). 2

To express aH(L( · , 0)) as a transformation of aH( · , 0), we recall a general notion. Let
H1,H2 be Hilbert spaces and C ∈ B(H1,H2) be a contraction operator. Then we define a
contraction linear opeartor ΓH1,H2(C) : Fs(H1) → Fs(H2) by

ΓH1,H2(C) = ⊕∞n=0(⊗nC) (4.17)

with convention ⊗0C = 1, where ⊗nC denotes the n-fold tensor product of C. In the case
where C is a contraction operator on a single Hilbert space H1, we set

ΓH1(C) = ΓH1,H1(C). (4.18)

Lemma 4.4 Let C ∈ B(H1,H2) and B ∈ B(H2,H1) be contraction operators such that
CB = IH2. Then, for all f ∈ H1,

ΓH1,H2(C)aH1(f)∗ΓH2,H1(B) = aH2(Cf)∗, (4.19)
ΓH1,H2(B

∗)aH1(f)ΓH2,H1(C
∗) = aH2(Cf). (4.20)

Proof. By direct computations, one first proves (4.19) and (4.20) on Ffin(H2) and then
uses a limiting argument to obtain (4.19) and (4.20) as operator equalities. 2

By (4.7), we have

ΓH(L)ΓH(L)∗ = IFs(H), ΓH(L)∗ΓH(L) = ΓH(PK). (4.21)

Note that ΓH(PK) is the orthogonal projection onto the closed subspace Fs(K ⊕ {0}) =
Fs(K)⊗C. Hence, ΓH(L) is a partial isometry on Fs(H).

Let

VH = UHΓH(L). (4.22)

Then, by (4.21), we can show that

VHV ∗H = IFs(H), V ∗HVH = ΓH(PK). (4.23)

Hence, VH is a partial isometry on Fs(H) with the initial space Fs(K)⊗C and final space
Fs(H).

Corollary 4.5 For all u ∈ K,

b(u) = VHaH(u, 0)V ∗H, b(u)∗ = VHaH(u, 0)∗V ∗H. (4.24)
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Proof. Applying Lemma 4.4 to the case C = L and B = L∗, we obtain

ΓH(L)aH(f)∗ΓH(L∗) = aH(Lf)∗, ΓH(L)aH(f)ΓH(L∗) = aH(Lf), (4.25)

which, together with Corollary 4.3 and (4.22), imply (4.24). 2

Corollary 4.5 clarifies the structure of the NIBT {a(·, 0), a(·, 0)∗} → {b(·), b(·)∗}: it is
implementable by the partial isometry VH, which is a composition of the partial isometry
ΓH(L) and the proper Bogolyubov transformation UH. Taking Remark 4.1 into account,
this gives a complete characterization of the representation {b(u)|u ∈ K} of the CCR over
K.

The unitary transformation U given in Theorem 2.5 can be expressed in terms of UH
and operators Γ#(·). To see this, let iK be the embedding operator of K into H:

iKu := (u, 0), u ∈ K. (4.26)

It is obvious that

i∗KiK = IK, iKi∗K = PK. (4.27)

In the same way as in the proof of Lemma 4.4, we can show that

ΓK,H(iK)aK(u)∗ΓK,H(iK)∗ = aH(u, 0)∗ΓH(PK) (4.28)

on Ffin(H). Since ΓH(PK)ΓH(L)∗ = ΓH(L)∗ by (4.21), it follows that

b(u)∗ = VHΓK,H(iK)aK(u)∗ΓK,H(iK)∗V ∗H, u ∈ K. (4.29)

Thus, by Theorem 2.5, there exists a constant α ∈ C such that |α| = 1 and

U = αΓK,H(iK)∗V ∗H = αΓH,K(i∗KL∗)U−1
H . (4.30)
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[16] Jakšić V. and Pillet C.A., On a model for quantum friction. I. Fermi’s golden rule and dynamics at
zero temperature, Ann. Inst. H. Poincaré, 1995, V.62, 47-68.
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