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Abstract

A general procedure for construction of conformally invariant Ansätze for the Maxwell

field is suggested. Ansätze invariant with respect to inequivalent three-parameter

subgroups of the conformal group are constructed.

1 Introduction

Since early seventies when W.I. Fushchych suggested a principally new (non-Lie) approach

to study symmetry properties of the Maxwell equations [1]–[4], these equations are in the

focus of his research activity. A number of fundamental results were obtained, such as the

determination of Lie and non-Lie symmetries of the Maxwell equations [1]–[4], classification

of equations of nonlinear electrodynamics and nonlinear representations of the Poincaré

and Galilei algebras for the Maxwell field [5, 6], construction of invariant solutions of the

Maxwell equations [7, 8] to mention only some of them. A complete review on this subject

can be found in the monographs [9, 10, 11] which are recognized as the standard source

of references in the field of symmetry analysis of equations of quantum mechanics.

The present paper is a continuation of our papers [7, 8]. Here we consider the problem

of construction of conformally-invariant Ansätze for the vacuum Maxwell equations

rot ~E = −∂ ~H
∂x0

, rot ~H = ∂ ~E
∂x0

,

div ~E = 0, div ~H = 0,

(1)

which reduce system (1) to ordinary differential equations (ODE). It is well known that the

above equations admit the conformal group C(1, 3) with the following basis generators [9]:
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Pµ = ∂xµ , J0a = x0∂xa + xa∂x0 + εabc(Eb∂Hc −Hb∂Ec),

Jab = xb∂xa − xa∂xb + Eb∂Ea − Ea∂Eb
+ Hb∂Ha −Ha∂Hb

,

D = xµ∂µ − 2(Ea∂Ea + Ha∂Ha),

K0 = 2x0D − xµxµ∂x0 + 2xaεabc(Eb∂Hc −Hb∂Ec),

Ka = −2xaD − xµxµ∂x0 − 2x0εabc(Eb∂Hc −Hb∂Ec)−

−2Ha(xb∂Hb
)− 2Ea(xb∂Eb

) + 2(xbHb)∂Ha + 2(xbEb)∂Ea .

(2)

Here µ, ν = 0, 1, 2, 3; a, b, c = 1, 2, 3. Henceforth we use the summation convention over

repeated indices, those denoted by Greek letters are ranging from 0 to 3 and by Latin

letters from 1 to 3. Lowering or rising indices is carried out by the metric tensor of the

Minkowski space gµν : g00 = −g11 = −g22 = −g33 = 1, gµν = 0, µ 6= ν; εabc is the

antisymmetric tensor of the third order; ∂xµ =
∂

∂xµ
, ∂Ea =

∂

∂Ea
, ∂Ha =

∂

∂Ha
.

Using the fact that operators (2) realize a linear representation of the conformal algebra,

we suggest a direct method for construction of the invariant Ansätze making it possible

to avoid the awkward procedure of finding a basis of functional invariants of subalgebras

of the algebra AC(1, 3).

2 Linear representation of the conformally invariant An-

sätze

Let L be a nonzero subalgebra of the algebra AC(1, 3) with basis elements (2). An invariant

linear in E1, E2, E3,H1,H2,H3 is called as a linear invariant of a subalgebra L. Suppose

that L has six linear invariants

fma(x)Ea + fm3+a(x)Ha, a = 1, 2, 3; m = 1, 2, . . . , 6;

which are functionally independent. They can be considered as components of the vector

F ~A, where F = (fmn(x)), m, n = 1, 2, . . . , 6 and ~A is a vector-column with components

Am, where Ak = Ek (k = 1, 2, 3) and Ak = Hk−3 (k = 4, 5, 6) Furthermore, we suppose

that the matrix F is nonsingular in some domain of R1,3 = {(x0, x1, x2, x3) : xµ ∈ R}.
Providing the rank r of the subalgebra L is less or equal 3, there are additional s = 4− r

invariants independent of components of ~A. We denote these as ω1, . . . , ωs.

According to the results of [12], the Ansatz F ~A = ~B(ω1, . . . , ωs) reduces the system of

equations (1) to a system of differential equations which contains the independent variables
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ω1, . . . , ωs, dependent variables B1, B2, . . . , B6, and their first derivatives. This Ansatz can

be written in the form

~A = Q(x) ~B(ω1, . . . , ωs), Q(x) = F−1(x), (3)

where x = (x0, x1, x2, x3). If s = 1, then the reduced system is equivalent to a system

of ODEs. Let us note that it was W.I. Fushchych who have noticed for the first time a

possibility to look for solutions of differential equations of the form (3) [14, 15].

Let L = 〈X1, . . . , Xc〉, where

Xa = ξaµ(x)
∂

∂xµ
+ ρamn(x)An

∂

∂Am
(a = 1, 2, . . . , c).

Hereafter m, n, k, l = 1, 2, . . . , 6. The function fmn(x)An is an invariant of the operator

Xa if and only if

ξaµ(x)
∂fmn(x)

∂xµ
Am + ρakl(x)Alfmk(x) = 0

or

ξaµ(x)
∂fmn(x)

∂xµ
+ fmk(x)ρakm(x) = 0 (4)

for all n [13].

Let F (x) = (fmn(x)), Γa(x) = (ρakl(x)) be 6× 6 matrices. Then the second term on

the left-hand side of (4) is the entry (m,n) of the matrix F (x)Γa(x). Whence, we get the

following assertion.

Theorem 1. The system of functions fmn(x)An is a system of functionally independent

invariants if and only if the matrix F = (fmn(x)) is nonsingular in some domain of the

space R1,3 and satisfies the system of partial differential equations

ξaµ(x)
∂F (x)
∂xµ

+ F (x)Γa(x) = 0, a = 1, . . . , c.

In what follows we call an Ansatz of the form (3) linear.

3 Conformally invariant Ansätze for the Maxwell field

To construct conformally invariant Ansätze reducing (1) to systems of ODEs, one has to

use three-dimensional subalgebras of the algebra AC(1, 3) having the basis elements (2).

The complete list of nonequivalent subalgebras of the conformal algebra is known (see,

e.g., [16]). Note that a similar problem for the spinor field is completely solved in [17].
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As Ansätze for the Maxwell field corresponding to three-dimensional subalgebras of the

extended Poincaré algebra AP̃ (1, 3) = 〈Pµ, Jµν , D|µ, ν = 0, 1, 2, 3;µ 6= ν〉 were found in

[7, 8, 18], it is sufficient to consider only subalgebras nonconjugated to subalgebras of the

algebra AP̃ (1, 3).

We restrict our considerations to three-dimensional subalgebras of the algebra AC(1, 3)

which belong to the third class according to notations of [16]

L1 = 〈S + T + J12, G1 + P2,M〉,

L2 = 〈S + T + J12 + G1 + P2, G2 − P1,M〉,

L3 = 〈J12, S + T,M〉, L4 = 〈S + T,Z,M〉,

L5 = 〈S + T + αJ12, Z,M〉 (α > 0),

L6 = 〈S + T + J12 + αZ,G1 + P2,M〉 (α 6= 0),

L7 = 〈S + T + J12, Z, G1 + P2〉,

L8 = 〈S + T + βZ, J12 + αZ,M〉 (α ≤ 0, β ∈ R,α + β2 6= 0),

L9 = 〈J12, S + T,Z〉, L10 = 〈R,S, T 〉,

where M = P0 + P3, Ga = J0a − Ja3, R = D − J03, Z = J03 + D, S = 1
2(K0 + K3),

T = 1
2(P0 − P3).

To construct invariant Ansätze, we make use of Theorem 1 and relate to each generator

of the algebra Lj (j = 1, . . . , 10) some matrix Γ (see below).

As the operator Pµ is independent of ∂
∂An

(n = 1, 2, . . . , 6), the corresponding matrix

Γ is equal to zero.

Let (−Sµν) be the matrix Γ corresponding to Jµν . It is not diffucult to verify that

S01 =

(
0 −S̃23

S̃23 0

)
, S02 =

(
0 S̃13

−S̃13 0

)
, S03 =

(
0 −S̃12

S̃12 0

)
,

S12 =

(
S̃12 0

0 S̃12

)
, S13 =

(
S̃13 0

0 S̃13

)
, S23 =

(
S̃23 0

0 S̃23

)
,

(5)

where 0 is the 3× 3 zero matrix and

S12 =

 0 −1 0

1 0 0

0 0 0

 , S13 =

 0 0 −1

0 0 0

1 0 0

 , S23 =

 0 0 0

0 0 −1

0 1 0

 .

The matrix (−2E), where E is the unit 6 × 6 matrix, corresponds to the operator D.

Then, the matrices (−4x0E − 2xaS0a) and (4xaE + 2x0S0a − 2xbSab) correspond to the

operators K0 and Ka, reprectively.
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The matrices Sµν , E realize a representation of the algebra AÕ(1, 3) = AO(1, 3)
⊕⊕

〈D〉 inasmuch as

[Sµν , Sγβ ] = gµβDνγ + gνγSµβ − gµγSνβ − gνβSµγ , [E,Sµν ] = 0,

where µ, ν, γ, β = 0, 1, 2, 3; gµν is the metric tensor of the Minkowski space R1,3.

The algebra AO(1, 3) having the generators Sµν (µ, ν = 0, 1, 2, 3) contains as a subal-

gebra the algebra AẼ(2) generated by Ha = S0a − Sa3 (a = 1, 2), S12, and S03. Basis

elements of AẼ(2) fulfill the following commutation relations:

[H1, S12] = −H2, [H2, S12] = H1, [H1,H2] = 0,

[Ha, S03] = Ha (a = 1, 2), [S03, S12] = 0.

Lemma 1. Let

Λ = exp(ln θE) exp(θ0S03) exp(−θ3S12) exp(−2θ1H1) exp(−2θ2H2), (6)

where θ, θµ (µ = 0, 1, 2, 3) are functions of x = (x0, x1, x2, x3). Then

ξµ
∂Λ
∂xµ

= Λξµ

{
∂(ln θ)
∂xµ

E +
∂θ0

∂xµ
(S03 + 2θ1H1 + 2θ2H2)

− ∂θ3

∂xµ
(S12 − 2θ1H2 + 2θ2H1)− 2

∂θ1

∂xµ
H1 − 2

∂θ2

∂xµ
H2

}
.

The proof of the lemma is carried out by the Campbell-Hausdorff formula.

Theorem 2. For each subagebra Lj = 〈Xa|a = 1, 2, 3〉 (j = (1, . . . , 10), there exists a

linear Ansatz (3) with ω being a solution of the system

ξaµ(x)
∂ω

∂xµ
= 0, a = 1, 2, 3; (7)

Q(x) = Λ−1, where Λ has the form (6). Furthermore, the functions θ, θ0, θ1, θ2, θ3, ω can

be represented in the form

L1 : θ = (1 + (x0 − x3)2), θ0 = −1
2

ln(1 + (x0 − x3)2),

θ1 = −1
2
(x2 + (x0 − x3)x1)(1 + (x0 − x3)2)−1,

θ2 =
1
2
(x1 − (x0 − x3)x2)(1 + (x0 − x3)2)−1,

θ3 = − arctan(x0 − x3), ω = (x1 − x2(x0 − x3))(1 + (x0 − x3)2)−1;

L2 : θ = [1 + (x0 − x3)2], θ0 = −1
2

ln(1 + (x0 − x3)2),

θ1 = −1
2
(x2 + (x0 − x3)x1)(1 + (x0 − x3)2)−1,
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θ2 =
1
2
(x1 − (x0 − x3)x2)(1 + (x0 − x3)2)−1, θ3 = − arctan(x0 − x3),

ω = [(x2 + (x0 − x3)x1](1 + (x0 − x3)2)−1]− arctan(x0 − x3);

L3 : θ = 1 + (x0 − x3)2, θ0 = −1
2

ln[1 + (x0 − x3)2],

θ1 = −1
2
x1(x0 − x3)[1 + (x0 − x3)2]−1,

θ2 = −1
2
x2(x0 − x3)[1 + (x0 − x3)2]−1,

θ3 = arctan
x1

x2
, ω = [1 + (x0 − x3)2](x2

1 + x2
2)
−1;

L4 : θ1 = x2
1, θ0 = ln |x1| − ln[1 + (x0 − x3)2],

θ1 = −1
2
x1(x0 − x3)[1 + (x0 − x3)2]−1,

θ2 = −1
2
x2(x0 − x3)[1 + (x0 − x3)2]−1, θ3 = 0, ω =

x1

x2
;

L5 : θ = (x2
1 + x2

2)(1 + (x0 − x3)2), θ0 =
1
2

ln[(x2
1 + x2

2)(1 + (x0 − x3)2)−1];

θ1 = −1
2
x1(x0 − x3)[1 + (x0 − x3)2]−1,

θ2 = −1
2
x2(x0 − x3)[1 + (x0 − x3)2]−1,

θ3 = arctan
x2

x1
, ω = arctan

x2

x1
+ α arctan(x0 − x3);

L6 : θ = (x1 − (x0 − x3)x2)2(1 + (x0 − x3)2)−1,

θ0 =
1
2

ln[(x1 − (x0 − x3)x2)2(1 + (x0 − x3)2)−3],

θ1 = −1
2
(x2 + (x0 − x3)x1)(1 + (x0 − x3)2)−1,

θ2 =
1
2
(x1 − (x0 − x3)x2)(1 + (x0 − x3)2)−1, θ3 = − arctan(x0 − x3),

ω = α arctan(x0 − x3)− ln[(x1 − (x0 − x3)x2)(1 + (x0 − x3)2)−1];

L7 : θ = (x1 − (x0 − x3)x2)2(1 + (x0 − x3)2)−1,

θ0 =
1
2

ln[(x1 − (x0 − x3)x2)2(1 + (x0 − x3)2)−3],

θ1 = −1
2
(x2 + (x0 − x3)x1)(1 + (x0 − x3)2)−1,

θ2 =
1
2
(x1 − (x0 − x3)x2)(1 + (x0 − x3)2)−1, θ3 = − arctan(x0 − x3),

ω = [(x0 + x3)(1 + (x0 − x3)2)2 − 2x1(x2 + (x0 − x3)x1) +

+(x0 − x3)(x2
1(x0 − x3)2 − x2

2)](x1 − (x0 − x3)x2)−2 − x0 + x3;

L8 : θ = x2
1 + x2

2, θ0 =
1
2

ln[(x2
1 + x2

2)(1 + (x0 − x3)2)−2],

θ1 = −1
2
x1(x0 − x3)[1 + (x0 − x3)2]−1,
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θ2 = −1
2
x2(x0 − x3)[1 + (x0 − x3)2]−1, θ3 = arctan

x2

x1
,

ω = ln(x2
1 + x2

2)(1 + (x0 − x3)2)−1 + 2α arctan
x2

x1
− 2β arctan(x0 − x3);

L9 : θ = x2
1 + x2

2, θ0 =
1
2

ln(x2
1 + x2

2)− ln[1 + (x0 − x3)2],

θ1 = −1
2
x1(x0 − x3)[1 + (x0 − x3)2]−1,

θ2 = −1
2
x2(x0 − x3)[1 + (x0 − x3)2]−1,

θ3 = arctan
x2

x1
, ω = (x0 + x3)[1 + (x0 − x3)2](x2

1 + x2
2)
−1 − x0 + x3;

L10 : θ = x2
1 + x2

2, θ0 = −1
2

ln(x2
1 + x2

2),

θ1 = −1
2
x1(x0 + x3)(x2

1 + x2
2)
−1, θ2 = −1

2
x2(x0 + x3)(x2

1 + x2
2)
−1,

θ3 = 0, ω =
x2

x1
;

To prove the assertion, we have to check that the functions θ, θµ (µ = 0, 1, 2, 3), ω satisfy

the system of equations (4), (7) for each subalgebra Lj . Consider in detail the case of the

subalgebra L4. System (7) has the form

(∂x0 − ∂x3)ω = 0, (x0∂x3 + x3∂x0 + xµ∂xµ)ω = 0,[
(x0 − x3)xµ∂xµ − 1

2
xµxµ(∂x0 + ∂x3) +

1
2
(∂x0 − ∂x3)

]
ω = 0.

It is not difficult to verify that the rank of this system is equal 3 and its solution is the

function ω = x2
x1

.

To obtain the matrix Λ = F (x), we have to construct solutions of system (4). As the

algebra L4 contains the operator M = P0 + P3, it follows from the equation

(∂x0 + ∂x3)Λ = 0

that Λ = Λ(ξ, x1, x2) where ξ = x0 − x3. Taking into account the structure of the algebra

L4, we choose Λ in the form (6), where θ3 = 0. According to Lemma 1, we get the following

system for the functions θ = θ(x1, x2), θν = θν(ξ, x1, x2), ν = 0, 1, 2:

xaQa − S03 − 2E = 0,

2ξxaQa + 2(1 + ξ2)Qξ + 2ξ(S03 − 2E)− 2x1H1 − 2x2H2 = 0,

where Qa = ∂ ln θ
∂xa

E + ∂ θ
∂x0

(S03 + 2θ1H1 + 2θ2H2)− 2∂ θ1
∂xa

H1 − 2∂ θ2
∂xa

H2, a = 1, 2.

Having split the system by the matrices E,S03,H1,H2, we come to a system of partial

differential equations whose solutions can be represented in the form given above.
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Thus, conformally invariant Ansätze corresponding to the algebras Lj (j = 1, . . . , 10)

can be written in the linear form (3), where Q(x) = Λ−1(x), Λ(x) is matrix (6) and the

functions θ, θµ (µ = 0, 1, 2, 3), ω are given in Theorem 2.

As we have a specific representation of the matrices Sµν , E, we can calculate the matrix

exponentials and represent the matrix Λ−1(x) as follows

Λ−1 = θ

∥∥∥∥∥ Λ1 Λ2

−Λ2 Λ1

∥∥∥∥∥ ,

where

Λ1 =

∥∥∥∥∥∥∥
cos θ3 cosh θ0 − σ1 − sin θ3 cosh θ0 + σ2 2θ1

sin θ3 cosh θ0 + σ2 cos θ3 cosh θ0 + σ1 2θ2

σ3 σ4 1

∥∥∥∥∥∥∥ ,

Λ2 =

∥∥∥∥∥∥∥
− sin θ3 sinh θ0 − σ2 − cos θ3 sinh θ0 − σ1 −2θ2

cos θ3 sinh θ0 − σ1 − sin θ3 sinh θ0 + σ2 2θ1

−σ4 σ3 0

∥∥∥∥∥∥∥ ,

σ1 = 2[(θ2
1 − θ2

2) cos θ3 + 2θ1θ2 sin θ3]e−θ0 ,

σ1 = 2[(θ2
1 − θ2

2) sin θ3 − 2θ1θ2 cos θ3]e−θ0 ,

σ3 = −2[θ1 cos θ3 + θ2 sin θ3]e−θ0 ,

σ4 = 2[θ1 sin θ3 − θ2 cos θ3]e−θ0 .
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