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Abstract

Representations of the q-deformed Euclidean algebra Uq(iso3), which at q → 1 gives the
universal enveloping algebra U(iso3) of the Lie algebra iso3 of the Euclidean Lie group
ISO(3), are studied. Explicit formulas for operators of irreducible ∗-representations
defined by two parameters ρ ∈ R and s ∈ 1

2Z are given. At q → 1, these representations
exhaust all irreducible infinite-dimensional ∗-representations of U(iso3). The spectrum
of the operator Tρ,s(I3) corresponding to a q-analogue of the infinitesimal operator of
shifts along the third axis is given. Contrary to the case of the classical Euclidean
algebra iso3, this spectrum is discrete and has one point of accumulation.

1. Introduction

The aim of this paper is to study irreducible representations of the q-deformed Euclidean
algebra Uq(iso3) defined on the base of the algebra Uq(so3) given in [1] (see also [2]). The
classical Lie algebras so3 and sl2 are isomorphic. The algebra Uq(so3) from [1] differs
from the quantum algebra Uq(sl2) defined by Drinfeld [3] and Jimbo [4]. Namely, Uq(sl2)
is defined by means of the Cartan subalgebra and root subspaces of the Lie algebra sl2.
The q-deformed algebra Uq(so3) is a q-deformation of the defining relations [J1, J2] = J3,
[J2, J3] = J1, [J3, J1] = J2.

Adding to Uq(so3) the generator I3 corresponding to infinitesimal shifts along the third
axis and postulating commutation relations of I3 with other generators, we obtain the
q-deformed algebra Uq(iso3). This algebra is a q-deformation of the Lie algebra iso3 of
the Euclidean group ISO(3) which is the semidirect product of the rotation group SO(3)
and the translation group of a 3-dimensional Euclidean space. There are difficulties with
definition of the Hopf algebra structure in this algebra. We do not consider this problem
here and only note that our algebra Uq(iso3) can be embedded into the quantum algebra
Uq(iu3) (the q-deformation of the Lie algebra of the inhomogeneous unitary group). The
last quantum algebra is equipped with the structure of a Hopf algebra.

We construct infinite-dimensional irreducible representations of the algebra Uq(iso3).
They are given by two numbers ρ ∈ R and s ∈ 1

2Z. Unfortunately, we cannot state that
they exhaust all irreducible ∗-representations of Uq(iso3). But at q → 1, they give all irre-
ducible ∗-representations of the Lie algebra iso3. Thus, we can state that we constructed
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q-deformations of all irreducible ∗-representations of iso3. Remark that irreducible ∗-
representations of Uq(iso3) of class 1 with respect to the subalgebra Uq(so3) (that is, in
the spaces of these representations, there exist vectors invariant with respect to this sub-
algebra) were constructed in [5].

We find the spectrum and spectral measure of the representation operator correspond-
ing to the generator I3 of Uq(iso3). This operator is bounded and has a discrete spectrum.
It is interesting that in the classical case (i. e., when q = 1) this operator is bounded
and has a continuous spectrum. We could find this spectrum and the spectral measure by
means of involving into consideration the theory of q-orthogonal polynomials [6, 7]. The
operators Tρ,s(I3) are representable by Jacobi matrices. Thus, we can employ the theory
of such operators [8] and this leads to the theory of q-orthogonal polynomials.

Everywhere below we assume that the deformation parameter q lies in the finite interval
0 < q < 1.

2. The q-deformed algebra Uq(so3) and its representations

The algebra Uq(so3) is a q-deformation of the universal enveloping algebra of the Lie
algebra so(3) of the rotation group SO(3). It is generated by three elements I21, I32 and
I31 satisfying the relations

[I21, I32]q1/4 ≡ q1/4I21I32 − q−1/4I32I21 = I31, (1)

[I32, I31]q1/4 = I21, [I31, I21]q1/4 = I32. (2)

Unfortunately, a Hopf algebra structure is not known on Uq(so3). Nevertheless, it is shown
[9] that we can consider tensor products of irreducible finite dimensional representations
which are q-deformations of irreducible representations of the Lie algebra so3.

Let us remark that according to (1), the element I31 is determined by I21 and I32.
Thus, the algebra Uq(so3) can be defined by I21 and I32, but now, instead of the quadratic
relations (1) and (2), we must take the cubic relations [10]

I21I
2
32 − (q1/2 + q−1/2)I32I21I32 + I2

32I21 = −I21,

I2
21I32 − (q1/2 + q−1/2)I21I32I21 + I32I

2
21 = −I32

which can be written down in the form

[[I21, I32]q1/4 , I32]q−1/4 = −I21, [[I32, I21]q1/4 , I21]q−1/4 = −I32.

The formulas I∗21 = −I21 and I∗32 = −I32 determine the ∗-algebra structure on Uq(so3).
The formulas I∗21 = −I21 and I∗32 = I32 determine on Uq(so3) the ∗-structure defining the
q-deformed algebra Uq(so2,1).

We need below only those irreducible representations of Uq(so3) which are q-deforma-
tions of irreducible representations of the Lie algebra so3. These representations are given
by nonnegative integers or half-integers l. The representation Tl, labeled by a number l,
acts on the linear space Vl with the orthonormal basis

|m〉, m = −l,−l + 1, . . . , l, (3)
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and is given in terms of q-numbers [a] = (qa/2 − q−a/2)/(q1/2 − q−1/2) by the formulas

Tl(I21)|m〉 = i[m]|m〉, (4)

Tl(I32)|m〉 = d(m)([l−m][l+m+1])1/2|m+1〉−d(m−1)([l−m+1][l+m])1/2|m−1〉,(5)

Tl(I31)|m〉 = iq1/2{qmd(m)([l −m][l + m + 1])1/2|m + 1〉

+q−md(m− 1)([l −m + 1][l + m])1/2|m− 1〉},
(6)

where i =
√
−1 and

d(m) =
(

[m][m + 1]
[2m][2m + 2]

)1/2

=
(

1
(qm + q−m)(qm+1 + q−m−1)

)1/2

.

Let us note that the operators Tl(I21) and Tl(I32) are anti-Hermitian. The operator
Tl(I31) is not anti-Hermitian. Relations (1) and (2) do not allow us to make both operators
Tl(I32) and Tl(I31) anti-Hermitian since the element I31 is not invariant under the ∗-
operation.

Note that Tl, l = 0, 1
2 , 1, . . ., do not exhaust all irreducible representations of Uq(so3).

The classification of irreducible ∗-representations of Uq(so3) is given in [11].

3. The q-deformed algebra Uq(iso3)

In order to construct the q-deformed algebra Uq(iso3), we add to the generating elements
I21 and I32 of the algebra Uq(so3) the element I3 which satisfies the relations

[I3, I21] ≡ I3I21 − I21I3 = 0, (7)

I2
32I3 − (q1/2 + q−1/2)I32I3I32 + I3I

2
32 = −I3, (8)

I2
3I32 − (q1/2 + q−1/2)I3I32I3 + I32I

2
3 = 0. (9)

The associative algebra generated by the elements Ii,i−1, i = 2, 3, and I3 obeying relations
(1), (2) and (7)–(9) is denoted by Uq(iso(3,C)). Introducing the involution (antilinear
antiautomorphism)

I∗i,i−1 = −Ii,i−1, I∗3 = −I3 (10)

into Uq(iso(3,C)), we obtain the algebra Uq(iso3). The involution

I∗21 = −I21, I∗32 = I32, I∗3 = −I3 (11)

determines the algebra Uq(iso2,1).
If q → 1, then the algebra Uq(iso3) tends to the universal enveloping algebra of the Lie

algebra of the Euclidean group ISO(3) (the group of motions of a 3-dimensional Euclidean
space).

The element I3 is a q-analogue of the infinitesimal operator for shifts along to the third
axis. We may determine the elements in Uq(iso3) which are q-analogues of infinitesimal
operators for shifts along the first and second axes. They are given by

I2 = q1/4I32I3 − q−1/4I3I32, I1 = q1/4I31I3 − q−1/4I3I31 ≡ q1/4I21I2 − q−1/4I2I21.
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However, the elements I1 and I2 are not invariant under the ∗-operation.
The algebra Uq(iso3) can be obtained by means of the contraction from the algebra

Uq(so4). The last algebra is a generalization of the algebra Uq(so3) and is generated by
the elements Ii,i−1, i = 1, 2, 3, satisfying the defining relations

[I43, I21] ≡ I43I21 − I21I43 = 0,

I2
i,i−1Ii+1,i − (q1/2 + q−1/2)Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 = −Ii+1,i,

I2
i+1,iIi,i−1 − (q1/2 + q−1/2)Ii+1,iIi,i−1Ii+1,i + Ii,i−1I

2
i+1,i = −Ii,i−1,

where i = 2, 3. Replacing I43 by RI3 in the last two relations taken for i = 3 and tending
R to infinity, we obtain the defining relations for the algebra Uq(iso3).

4. Representations of Uq(iso3)

We describe those irreducible infinite-dimensional ∗-representations of Uq(iso3) which are
q-deformation of irreducible infinite-dimensional ∗-representations of the Lie algebra iso3

(they are infinitesimal forms of irreducible unitary representations of the group ISO(3)).
The last representations T ′

ρ,s of iso3 are given by two numbers ρ ∈ R and s ∈ 1
2Z. They

act in the Hilbert space Vs with the orthonormal basis

|l, m〉, l = |s|, |s|+ 1, |s|+ 2, . . . , m = −l,−l + 1, . . . , l.

In fact, this basis is the set of bases |l,m〉, m = −l,−l + 1, . . . , l, of irreducible rep-
resentations of the subalgebra so(3) and the restriction of T ′

ρ,s onto the subalgebra so3

decomposes into the sum of the irreducible representations Tl of this subalgebra, for which
l = |s|, |s|+ 1, . . . ,∞.

The corresponding irreducible representations of Uq(iso3) are denoted by Tρ,s, where ρ
and s take the same values. The representation Tρ,s acts in the space Vs described above
and is given in the basis {|l, m〉} by (4) and (5) for the operators Tρ,s(I21) and Tρ,s(I32)
and by the formula

Tρ,s(I3)|l, m〉 = iρ
[s][m]

[l][l + 1]
|l,m〉 − ρ

(
[l + s][l − s][l + m][l −m]

[l]2[2l − 1][2l + 1]

)1/2

|l − 1,m〉

+ρ

(
[l + s + 1][l − s + 1][l + m + 1][l −m + 1]

[l + 1]2[2l + 1][2l + 3]

)1/2

|l + 1,m〉,
(12)

where numbers in the square brackets are q-numbers.
It is proved by direct (but awkward) calculation that the operators Tρ,s(I21), Tρ,s(I32)

and Tρ,s(I3) satisfy the defining relations of the algebra Uq(iso3). We omit this calculation.

Theorem 1 The representations Tρ,s, ρ 6= 0, are ∗-representations for Uq(iso3). They are
irreducible and pairwise nonequivalent.

Proof. It is checked by direct calculation that the operators Tρ,s(I21), Tρ,s(I32) and
Tρ,s(I3) satisfy the conditions defining ∗-representations of Uq(iso3). Irreducibility of Tρ,s,
ρ 6= 0, is proved by the standard method. Pairwise nonequivalence of these representations
follows from the fact that the operator Tρ,s(I3) has different spectra for different values of
the pair (ρ, s). The spectrum of Tρ,s(I3) will be found in the next section.
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5. Spectrum of the operator Tρ,s(I3)

Let us find the spectrum of the operator Lρ = iTρ,s(I3), i =
√
−1. The carrier space

Vs of the representation Tρ,s can be represented as the direct sum Vs =
∑

m⊗Vsm, m =
0, 1, 2, . . ., where

Vsm =
∞∑

l=max {s,m}
⊗C|l, m〉.

The subspaces Vsm are invariant with respect to the operator Lρ. We shall find spectra
of Lρ on each of these subspaces. The spectrum of Lρ on Vs is obtained by uniting these
spectra.

Further we consider the vectors (−i)−l|l,m〉 instead of the vectors |l, m〉. In this case,
the third summand in (12) must be multiplied by −i and the second one by i.

If |x,m〉 is an eigenvector of the operator Lρ: Lρ|x,m〉 = x|x,m〉, then

|x,m〉 =
∞∑

l=k

Pl−k(x)|l, m〉, k = max (|m|, |s|). (13)

Formula (12) is symmetric with respect to permutation of s and m and to change of signs
at m and s. Therefore, we may assume, without loss of generality, that s and m are
positive and that s ≥ m.

Substituting expression (13) for |x,m〉 into the relation Lρ|x, m〉 = x|x,m〉 and acting
by Lρ upon |l, m〉, we easily find that the vector |x,m〉 is an eigenvector of Lρ with the
eigenvalue x if Pl−k satisfy the recurrence relation(

[n + 2s + 1][n + 1][n + s + m + 1][n + s−m + 1]
[n + s + 1]2[2n + 2s + 1][2n + 2s + 3]

)1/2

Pn+1(x)

+
(

[n + 2s][n][n + s + m][n + s−m]
[n + s]2[2n + 2s− 1][2n + 2s + 1]

)1/2

Pn−1(x)

− [s][m]
[n + s][n + s + 1]

Pn(x) =
x

ρ
Pn(x)

(14)

(here n = l − k) and the initial conditions P0(x) = 1, P−1(x) = 0.
Making in (14) the substitution

Pn(x) = q−n(n+2s+1)/4
(

[n + 2s]![n + s + m]![2n + 2s + 1]
[n]![n + s−m]![s + m]![2s + 1]!

)1/2

P ′
n(x),

where [n]! = [n][n− 1] . . . [1], we reduce (22) to the recurrence relation

(1− qn+2s+1)(1− qn+s+m+1)(1 + qn+s+1)
(1− q2n+2s+1)(1− q2n+2s+2)

P ′
n+1(x)

+
qn+2s+m+1(1− qn)(1 + qn+s)(1− qn+s−m)

(1− q2n+2s+1)(1− q2n+2s)
P ′

n−1(x)

−qn+s+1(1− qm)(1− qs)
(1− qn+s)(1− qn+s+1)

P ′
n(x) = q(s+m+1)/2 x

ρ
P ′

n(x).

(15)
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To solve this recurrence relation, we use the following recurrence relation

Anpn+1(y)− Cnpn−1(y)− (An − Cn − 1)pn(y) = ypn(y) (16)

for big q-Jacobi polynomials [6]

pn(y) ≡ pn(y; a, b, c|q) = 3ϕ2

(
q−n, abqn+1, y

aq, cq
; q, q

)
,

where 3ϕ2 is the q-hypergeometric function and

An =
(1− aqn+1)(1− cqn+1)(1− acqn+1)

(1− abq2n+1)(1− abq2n+2)
, Cn =

(1− qn)(1− bqn)(1− abc−1qn)acqn+1

(1− abq2n)(1− abq2n+1)
.

Setting into (16)

a = qs+m, b = qs−m, c = −qs, y =
x

ρ
q(m+s+1)/2, (17)

after some calculation, we reduce (16) to (15). This means that the solution of the recur-
rence relations (14), normed by the condition P0(x) = 1, is the polynomial

Pn(x) = N1/2
n pn(y; qs+m, qs−m, −qs | q), (18)

where

Nn = q−n(n+2s+1)/2 [n + 2s]![n + s + m]![s−m]![2n + 2s + 1]
[n]![n + s−m]![s + m]![2s + 1]!

. (19)

Note that the same result is obtained by setting a = b = −qs, c = qs+m in (16) and
retaining y from (17).

The big q-Jacobi polynomials in a general case satisfy the orthogonality relation, which
can be given by formulas (7.3.12-14) from [6] (the formula (7.3.13) is corrected):∫ aq

cq
pn(y; a, b, c|q)pm(y; a, b, c|q)µ(y)dqy = δnm/h∞ · hn, (20)

where

µ(y) = (y/a; q)∞(y/c; q)∞/(y; q)∞(by/c; q)∞,

h∞ =
(aq; q)∞(bq; q)∞(cq; q)∞(abq/c; q)∞

aq(1− q)(c/a; q)∞(aq/c; q)∞(q; q)∞(abq2; q)∞

and

hn =
(1− abq2n+1)(abq; q)n(aq; q)n(cq; q)n

(1− abq)(q; q)n(abq/c; q)n(bq; q)n
(−ac)−nq−n(n+3)/2.

Here (a; q)∞ =
∏∞

i=0(1 − aqi), (a; q)n = (a; q)∞/(aqn; q)∞. The integral on the left-hand
side of (19) is understood as a q-integral, see [6]:∫ b

a
f(t)dqt =

∫ b

0
f(t)dqt−

∫ a

0
f(t)dqt,

∫ a

0
f(t)dqt = a(1− q)

∞∑
n=0

f(aqn)qn.
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Let us express µ(y), h∞, and hn through the parameters a, b, c, and y from (17). Taking
into account that (aq−n; q)n = (−a)nq−n(n+1)/2(qa−1; q)n, we have

µ(y) = (yq−s−m; q)s+m(−yq−s; q)s/(−yq−m; q)m.

With formulas

(−qn+1; q)∞/(−qm+1; q)∞ = q−α[n]![2m]!!/[m]![2n]!!,

(−qn+1; q)∞/(−q−m; q)∞ = q−α[n]![m]!/2[2m]!![2n]!!

and

(−q; q)n = qn/2[2n](−1; q)n/2[n] = qn(n+1)/4[2n]!!/[n]!,

where α = (n − m)(n + m + 1)/4, (q; q)n = qn(n−1)/4(1 − q)n[n]!, (q2; q2)n = qn2/2(1 −
q)n[2n]!!, [n]!! = [n][n− 2] · · · [1] or [2], the expression for h∞ can be transformed into the
following:

h∞ =
1
2
q−(s+m+2)/2

(
[s]!

[2s]!!

)2 [2s + 1]
[s−m]![s + m]!

.

For a = b = q−s, c = qs+m, the quantity h∞ is negative.
The expression for hn coincides with that for Nn in (18), as it should be. This can be

easily verified with the help of

(qm+1; q)n = qn(n+2m−1)/4(1− q)n[m + n]!/[m]!. (21)

The facts mentioned above imply that the polynomials Pn(x) in (18) satisfy the or-
thogonality relation∫ qs+m+1

−qs+1
Pn(x)Pm(x)w(y)dq(y) = δmn, (22)

where

w(y) =
1
2
q−(s+m+2)/2

(
[s]!

[2s]!!

)2 [2s + 1]!
[s−m]![s + m]!

(−yq−s; q)s(yq−s−m; q)s+m

(−yq−m; q)m
,

y = xq(s+m+1)/2/ρ. In more explicit form,
∞∑

k=0

Pn(zk)Pm(zk)W (rk) +
∞∑

k=0

Pn(z′k)Pm(z′k)W
′(rk) = δmn, (23)

where zk = ρqk+(s+m+1)/2, z′k = −q−mzk, rk = qk+s+m+1 and W (rk) = (1 − q)rkw(rk),
W ′(rk) = −W (−q−mrk). Straightforward calculation with (20) and

(−qm+1; q)n = qn(n+2m+1)/4[m]![2m + 2n]!!/[m + n]![2m]!!

leads to

W (rk) =
1
2
qs(s+m+1)/2+k(s+1)(1− q)s+m+1

(
[s]!

[2s]!!

)2 [2s + 1]!
[s−m]![s + m]!

× [k + s + m]![k + m]![2k + 2s]!!
[k]![k + s]![2k + 2m]!!

,
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and W ′(rk) = W (rk)m→−m.
Formula (22) demonstrates that the spectrum of the operator Lρ on the subspace Vsm is

a discrete set of points −ρqk+(s−m+1)/2 and ρqk+(s+m+1)/2, k = 0, 1, 2, · · ·. Since 0 < q < 1,
the accumulation point of the spectrum is zero. Joining spectra for all subspaces Vsm, we
obtain the spectrum of the operator Tρs(I3) on Vs.

6. Case q = 1

Let |x,m〉 at q = 1 be an eigenvector of the operator Lρ with an eigenvalue x, Lρ|x, m〉 =
x|x,m〉 and

|x,m〉 =
∞∑
l=s

P̃l−s(x)|x,m〉. (24)

The formula of action of the operator Lρ upon the basis vectors (−i)−l|l,m〉 at q = 1 is
obtained from (12) by the substitution [r] → r for any c-number r. Then, repeating the
procedure of the preceding section, we find that the functions P̃n(x) in (23) take the form

P̃n(x) =
(

(s−m)!(s + m)!n!(n + 2s)!(2n + 2s + 1)
(2s + 1)!(n + s−m)!(n + s + m)!

)1/2

P s+m,s−m
n (x/ρ), (25)

where P
(α,β)
n (x) is an ordinary Jacobi polynomial. With use of the orthogonality relation

for these polynomials (see, e.g., [12]), we obtain∫ 1

−1
P̃n(x)P̃m(x)w̃(y)dy = δmn. (26)

Here y = x/ρ and

w̃(y) = 2−(2s+1) (2s + 1)!
(s−m)!(s + m)!

(1− y)s+m(1 + y)s−m.

We see that the spectrum of the operator Lρ on the subspace Vsm is continuous at q = 1
and consists of points in the interval [−ρ, ρ].

Remark that big q-Jacobi polynomials have the property

lim
q→1

pn(x; qα, qβ ,−qλ|q) = P (α,β)
n (x)/P (α,β)

n (1).

In this limit, Pn(x) → P̃n(x) (see formulas (18) and (24)) and w(y) → w̃(y) (see (21) and
(25)). If, in additions, to use the property

lim
q→1

∫ a

0
f(t)dq(t) =

∫ a

0
f(t)d(t),

where f is a continuous function on [0, a], one easily verifies that the orthogonality relation
(21) for the polynomials Pn(x) at q → 1 goes to the orthogonality relation (25) for the
polynomials P̃n(x).
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