Representations of the Q-deformed Euclidean Algebra $U_q(iso_3)$ and Spectra of their Operators

I.I. KACHURIK

Khmelnytsky Technological University, Khmelnytsky, Ukraine

Abstract

Representations of the q-deformed Euclidean algebra $U_q(\text{iso}_3)$, which at $q \to 1$ gives the universal enveloping algebra $U(\text{iso}_3)$ of the Lie algebra iso₃ of the Euclidean Lie group ISO(3), are studied. Explicit formulas for operators of irreducible *-representations defined by two parameters $\rho \in \mathbb{R}$ and $s \in \frac{1}{2}\mathbb{Z}$ are given. At $q \to 1$, these representations exhaust all irreducible infinite-dimensional *-representations of $U(\text{iso}_3)$. The spectrum of the operator $T_{\rho,s}(I_3)$ corresponding to a q-analogue of the infinitesimal operator of shifts along the third axis is given. Contrary to the case of the classical Euclidean algebra iso₃, this spectrum is discrete and has one point of accumulation.

1. Introduction

The aim of this paper is to study irreducible representations of the q-deformed Euclidean algebra $U_q(\text{iso}_3)$ defined on the base of the algebra $U_q(\text{so}_3)$ given in [1] (see also [2]). The classical Lie algebras so₃ and sl₂ are isomorphic. The algebra $U_q(\text{so}_3)$ from [1] differs from the quantum algebra $U_q(\text{sl}_2)$ defined by Drinfeld [3] and Jimbo [4]. Namely, $U_q(\text{sl}_2)$ is defined by means of the Cartan subalgebra and root subspaces of the Lie algebra sl₂. The q-deformed algebra $U_q(\text{so}_3)$ is a q-deformation of the defining relations $[J_1, J_2] = J_3$, $[J_2, J_3] = J_1$, $[J_3, J_1] = J_2$.

Adding to $U_q(so_3)$ the generator I_3 corresponding to infinitesimal shifts along the third axis and postulating commutation relations of I_3 with other generators, we obtain the q-deformed algebra $U_q(iso_3)$. This algebra is a q-deformation of the Lie algebra iso_3 of the Euclidean group ISO(3) which is the semidirect product of the rotation group SO(3) and the translation group of a 3-dimensional Euclidean space. There are difficulties with definition of the Hopf algebra structure in this algebra. We do not consider this problem here and only note that our algebra $U_q(iso_3)$ can be embedded into the quantum algebra $U_q(iu_3)$ (the q-deformation of the Lie algebra of the inhomogeneous unitary group). The last quantum algebra is equipped with the structure of a Hopf algebra.

We construct infinite-dimensional irreducible representations of the algebra $U_q(iso_3)$. They are given by two numbers $\rho \in \mathbb{R}$ and $s \in \frac{1}{2}\mathbb{Z}$. Unfortunately, we cannot state that they exhaust all irreducible *-representations of $U_q(iso_3)$. But at $q \to 1$, they give all irreducible *-representations of the Lie algebra iso₃. Thus, we can state that we constructed

q-deformations of all irreducible *-representations of iso₃. Remark that irreducible *-representations of $U_q(iso_3)$ of class 1 with respect to the subalgebra $U_q(so_3)$ (that is, in the spaces of these representations, there exist vectors invariant with respect to this subalgebra) were constructed in [5].

We find the spectrum and spectral measure of the representation operator corresponding to the generator I_3 of $U_q(iso_3)$. This operator is bounded and has a discrete spectrum. It is interesting that in the classical case (i. e., when q = 1) this operator is bounded and has a continuous spectrum. We could find this spectrum and the spectral measure by means of involving into consideration the theory of q-orthogonal polynomials [6, 7]. The operators $T_{\rho,s}(I_3)$ are representable by Jacobi matrices. Thus, we can employ the theory of such operators [8] and this leads to the theory of q-orthogonal polynomials.

Everywhere below we assume that the deformation parameter q lies in the finite interval 0 < q < 1.

2. The q-deformed algebra $U_q(so_3)$ and its representations

The algebra $U_q(so_3)$ is a q-deformation of the universal enveloping algebra of the Lie algebra so(3) of the rotation group SO(3). It is generated by three elements I_{21} , I_{32} and I_{31} satisfying the relations

$$[I_{21}, I_{32}]_{q^{1/4}} \equiv q^{1/4} I_{21} I_{32} - q^{-1/4} I_{32} I_{21} = I_{31}, \tag{1}$$

$$[I_{32}, I_{31}]_{q^{1/4}} = I_{21}, [I_{31}, I_{21}]_{q^{1/4}} = I_{32}.$$
 (2)

Unfortunately, a Hopf algebra structure is not known on $U_q(so_3)$. Nevertheless, it is shown [9] that we can consider tensor products of irreducible finite dimensional representations which are q-deformations of irreducible representations of the Lie algebra so_3 .

Let us remark that according to (1), the element I_{31} is determined by I_{21} and I_{32} . Thus, the algebra $U_q(so_3)$ can be defined by I_{21} and I_{32} , but now, instead of the quadratic relations (1) and (2), we must take the cubic relations [10]

$$I_{21}I_{32}^2 - (q^{1/2} + q^{-1/2})I_{32}I_{21}I_{32} + I_{32}^2I_{21} = -I_{21},$$

$$I_{21}^2I_{32} - (q^{1/2} + q^{-1/2})I_{21}I_{32}I_{21} + I_{32}I_{21}^2 = -I_{32}$$

which can be written down in the form

$$[[I_{21},I_{32}]_{q^{1/4}},I_{32}]_{q^{-1/4}}=-I_{21},\quad [[I_{32},I_{21}]_{q^{1/4}},I_{21}]_{q^{-1/4}}=-I_{32}.$$

The formulas $I_{21}^* = -I_{21}$ and $I_{32}^* = -I_{32}$ determine the *-algebra structure on $U_q(so_3)$. The formulas $I_{21}^* = -I_{21}$ and $I_{32}^* = I_{32}$ determine on $U_q(so_3)$ the *-structure defining the q-deformed algebra $U_q(so_{2,1})$.

We need below only those irreducible representations of $U_q(so_3)$ which are q-deformations of irreducible representations of the Lie algebra so_3 . These representations are given by nonnegative integers or half-integers l. The representation T_l , labeled by a number l, acts on the linear space V_l with the orthonormal basis

$$|m\rangle, \quad m = -l, -l+1, \dots, l,$$
 (3)

and is given in terms of q-numbers $[a] = (q^{a/2} - q^{-a/2})/(q^{1/2} - q^{-1/2})$ by the formulas

$$T_l(I_{21})|m\rangle = i[m]|m\rangle,\tag{4}$$

$$T_l(I_{32})|m\rangle = d(m)([l-m][l+m+1])^{1/2}|m+1\rangle - d(m-1)([l-m+1][l+m])^{1/2}|m-1\rangle, (5)$$

$$T_{l}(I_{31})|m\rangle = iq^{1/2} \{q^{m}d(m)([l-m][l+m+1])^{1/2}|m+1\rangle + q^{-m}d(m-1)([l-m+1][l+m])^{1/2}|m-1\rangle\},$$
(6)

where $i = \sqrt{-1}$ and

$$d(m) = \left(\frac{[m][m+1]}{[2m][2m+2]}\right)^{1/2} = \left(\frac{1}{(q^m + q^{-m})(q^{m+1} + q^{-m-1})}\right)^{1/2}.$$

Let us note that the operators $T_l(I_{21})$ and $T_l(I_{32})$ are anti-Hermitian. The operator $T_l(I_{31})$ is not anti-Hermitian. Relations (1) and (2) do not allow us to make both operators $T_l(I_{32})$ and $T_l(I_{31})$ anti-Hermitian since the element I_{31} is not invariant under the *-operation.

Note that T_l , $l = 0, \frac{1}{2}, 1, \ldots$, do not exhaust all irreducible representations of $U_q(so_3)$. The classification of irreducible *-representations of $U_q(so_3)$ is given in [11].

3. The q-deformed algebra $U_q(iso_3)$

In order to construct the q-deformed algebra $U_q(iso_3)$, we add to the generating elements I_{21} and I_{32} of the algebra $U_q(so_3)$ the element I_3 which satisfies the relations

$$[I_3, I_{21}] \equiv I_3 I_{21} - I_{21} I_3 = 0, \tag{7}$$

$$I_{32}^2 I_3 - (q^{1/2} + q^{-1/2}) I_{32} I_3 I_{32} + I_3 I_{32}^2 = -I_3,$$
(8)

$$I_3^2 I_{32} - (q^{1/2} + q^{-1/2}) I_3 I_{32} I_3 + I_{32} I_3^2 = 0. (9)$$

The associative algebra generated by the elements $I_{i,i-1}$, i=2,3, and I_3 obeying relations (1), (2) and (7)–(9) is denoted by $U_q(iso(3, \mathbf{C}))$. Introducing the involution (antilinear antiautomorphism)

$$I_{i,i-1}^* = -I_{i,i-1}, \quad I_3^* = -I_3$$
 (10)

into $U_q(iso(3, \mathbf{C}))$, we obtain the algebra $U_q(iso_3)$. The involution

$$I_{21}^* = -I_{21}, \quad I_{32}^* = I_{32}, \quad I_3^* = -I_3$$
 (11)

determines the algebra $U_q(iso_{2,1})$.

If $q \to 1$, then the algebra $U_q(iso_3)$ tends to the universal enveloping algebra of the Lie algebra of the Euclidean group ISO(3) (the group of motions of a 3-dimensional Euclidean space).

The element I_3 is a q-analogue of the infinitesimal operator for shifts along to the third axis. We may determine the elements in $U_q(iso_3)$ which are q-analogues of infinitesimal operators for shifts along the first and second axes. They are given by

$$I_2 = q^{1/4}I_{32}I_3 - q^{-1/4}I_3I_{32}, \qquad I_1 = q^{1/4}I_{31}I_3 - q^{-1/4}I_3I_{31} \equiv q^{1/4}I_{21}I_2 - q^{-1/4}I_2I_{21}.$$

However, the elements I_1 and I_2 are not invariant under the *-operation.

The algebra $U_q(iso_3)$ can be obtained by means of the contraction from the algebra $U_q(so_4)$. The last algebra is a generalization of the algebra $U_q(so_3)$ and is generated by the elements $I_{i,i-1}$, i = 1, 2, 3, satisfying the defining relations

$$\begin{split} [I_{43},I_{21}] &\equiv I_{43}I_{21} - I_{21}I_{43} = 0, \\ I_{i,i-1}^2I_{i+1,i} - (q^{1/2} + q^{-1/2})I_{i,i-1}I_{i+1,i}I_{i,i-1} + I_{i+1,i}I_{i,i-1}^2 = -I_{i+1,i}, \\ I_{i+1,i}^2I_{i,i-1} - (q^{1/2} + q^{-1/2})I_{i+1,i}I_{i,i-1}I_{i+1,i} + I_{i,i-1}I_{i+1,i}^2 = -I_{i,i-1}, \end{split}$$

where i = 2, 3. Replacing I_{43} by RI_3 in the last two relations taken for i = 3 and tending R to infinity, we obtain the defining relations for the algebra $U_q(iso_3)$.

4. Representations of $U_q(iso_3)$

We describe those irreducible infinite-dimensional *-representations of $U_q(\text{iso}_3)$ which are q-deformation of irreducible infinite-dimensional *-representations of the Lie algebra iso₃ (they are infinitesimal forms of irreducible unitary representations of the group ISO(3)). The last representations $T'_{\rho,s}$ of iso₃ are given by two numbers $\rho \in \mathbb{R}$ and $s \in \frac{1}{2}\mathbb{Z}$. They act in the Hilbert space V_s with the orthonormal basis

$$|l, m\rangle$$
, $l = |s|, |s| + 1, |s| + 2, \dots$, $m = -l, -l + 1, \dots, l$.

In fact, this basis is the set of bases $|l,m\rangle$, $m=-l,-l+1,\ldots,l$, of irreducible representations of the subalgebra so(3) and the restriction of $T'_{\rho,s}$ onto the subalgebra so₃ decomposes into the sum of the irreducible representations T_l of this subalgebra, for which $l=|s|,|s|+1,\ldots,\infty$.

The corresponding irreducible representations of $U_q(\text{iso}_3)$ are denoted by $T_{\rho,s}$, where ρ and s take the same values. The representation $T_{\rho,s}$ acts in the space V_s described above and is given in the basis $\{|l,m\rangle\}$ by (4) and (5) for the operators $T_{\rho,s}(I_{21})$ and $T_{\rho,s}(I_{32})$ and by the formula

$$T_{\rho,s}(I_3)|l,m\rangle = i\rho \frac{[s][m]}{[l][l+1]}|l,m\rangle - \rho \left(\frac{[l+s][l-s][l+m][l-m]}{[l]^2[2l-1][2l+1]}\right)^{1/2}|l-1,m\rangle + \rho \left(\frac{[l+s+1][l-s+1][l+m+1][l-m+1]}{[l+1]^2[2l+1][2l+3]}\right)^{1/2}|l+1,m\rangle,$$
(12)

where numbers in the square brackets are q-numbers.

It is proved by direct (but awkward) calculation that the operators $T_{\rho,s}(I_{21})$, $T_{\rho,s}(I_{32})$ and $T_{\rho,s}(I_3)$ satisfy the defining relations of the algebra $U_q(iso_3)$. We omit this calculation.

Theorem 1 The representations $T_{\rho,s}$, $\rho \neq 0$, are *-representations for $U_q(iso_3)$. They are irreducible and pairwise nonequivalent.

Proof. It is checked by direct calculation that the operators $T_{\rho,s}(I_{21})$, $T_{\rho,s}(I_{32})$ and $T_{\rho,s}(I_3)$ satisfy the conditions defining *-representations of $U_q(iso_3)$. Irreducibility of $T_{\rho,s}$, $\rho \neq 0$, is proved by the standard method. Pairwise nonequivalence of these representations follows from the fact that the operator $T_{\rho,s}(I_3)$ has different spectra for different values of the pair (ρ, s) . The spectrum of $T_{\rho,s}(I_3)$ will be found in the next section.

5. Spectrum of the operator $T_{\rho,s}(I_3)$

Let us find the spectrum of the operator $L_{\rho} = iT_{\rho,s}(I_3)$, $i = \sqrt{-1}$. The carrier space V_s of the representation $T_{\rho,s}$ can be represented as the direct sum $V_s = \sum_m \otimes V_{sm}$, $m = 0, 1, 2, \ldots$, where

$$V_{sm} = \sum_{l=\max\{s,m\}}^{\infty} \otimes \mathbf{C}|l,m\rangle.$$

The subspaces V_{sm} are invariant with respect to the operator L_{ρ} . We shall find spectra of L_{ρ} on each of these subspaces. The spectrum of L_{ρ} on V_s is obtained by uniting these spectra.

Further we consider the vectors $(-i)^{-l}|l,m\rangle$ instead of the vectors $|l,m\rangle$. In this case, the third summand in (12) must be multiplied by -i and the second one by i.

If $|x,m\rangle$ is an eigenvector of the operator L_{ρ} : $L_{\rho}|x,m\rangle = x|x,m\rangle$, then

$$|x,m\rangle = \sum_{l=k}^{\infty} P_{l-k}(x)|l,m\rangle, \quad k = \max(|m|, |s|).$$
(13)

Formula (12) is symmetric with respect to permutation of s and m and to change of signs at m and s. Therefore, we may assume, without loss of generality, that s and m are positive and that $s \ge m$.

Substituting expression (13) for $|x,m\rangle$ into the relation $L_{\rho}|x,m\rangle = x|x,m\rangle$ and acting by L_{ρ} upon $|l,m\rangle$, we easily find that the vector $|x,m\rangle$ is an eigenvector of L_{ρ} with the eigenvalue x if P_{l-k} satisfy the recurrence relation

$$\left(\frac{[n+2s+1][n+1][n+s+m+1][n+s-m+1]}{[n+s+1]^2[2n+2s+1][2n+2s+3]}\right)^{1/2} P_{n+1}(x)
+ \left(\frac{[n+2s][n][n+s+m][n+s-m]}{[n+s]^2[2n+2s-1][2n+2s+1]}\right)^{1/2} P_{n-1}(x)
- \frac{[s][m]}{[n+s][n+s+1]} P_n(x) = \frac{x}{\rho} P_n(x)$$
(14)

(here n = l - k) and the initial conditions $P_0(x) = 1$, $P_{-1}(x) = 0$. Making in (14) the substitution

$$P_n(x) = q^{-n(n+2s+1)/4} \left(\frac{[n+2s]![n+s+m]![2n+2s+1]}{[n]![n+s-m]![s+m]![2s+1]!} \right)^{1/2} P'_n(x),$$

where [n]! = [n][n-1]...[1], we reduce (22) to the recurrence relation

$$\frac{(1-q^{n+2s+1})(1-q^{n+s+m+1})(1+q^{n+s+1})}{(1-q^{2n+2s+1})(1-q^{2n+2s+2})}P'_{n+1}(x)
+ \frac{q^{n+2s+m+1}(1-q^n)(1+q^{n+s})(1-q^{n+s-m})}{(1-q^{2n+2s+1})(1-q^{2n+2s})}P'_{n-1}(x)
- \frac{q^{n+s+1}(1-q^m)(1-q^s)}{(1-q^{n+s+1})}P'_n(x) = q^{(s+m+1)/2}\frac{x}{\rho}P'_n(x).$$
(15)

To solve this recurrence relation, we use the following recurrence relation

$$A_n p_{n+1}(y) - C_n p_{n-1}(y) - (A_n - C_n - 1) p_n(y) = y p_n(y)$$
(16)

for big q-Jacobi polynomials [6]

$$p_n(y) \equiv p_n(y; a, b, c|q) = {}_{3}\varphi_2\left(\begin{matrix} q^{-n}, & abq^{n+1}, & y \\ aq, & cq \end{matrix}; q, q\right),$$

where $_{3}\varphi_{2}$ is the q-hypergeometric function and

$$A_n = \frac{(1 - aq^{n+1})(1 - cq^{n+1})(1 - acq^{n+1})}{(1 - abq^{2n+1})(1 - abq^{2n+2})}, \quad C_n = \frac{(1 - q^n)(1 - bq^n)(1 - abc^{-1}q^n)acq^{n+1}}{(1 - abq^{2n})(1 - abq^{2n+1})}.$$

Setting into (16)

$$a = q^{s+m}, \quad b = q^{s-m}, \quad c = -q^s, \quad y = \frac{x}{\rho} q^{(m+s+1)/2},$$
 (17)

after some calculation, we reduce (16) to (15). This means that the solution of the recurrence relations (14), normed by the condition $P_0(x) = 1$, is the polynomial

$$P_n(x) = N_n^{1/2} p_n(y; q^{s+m}, q^{s-m}, -q^s \mid q), \tag{18}$$

where

$$N_n = q^{-n(n+2s+1)/2} \frac{[n+2s]![n+s+m]![s-m]![2n+2s+1]}{[n]![n+s-m]![s+m]![2s+1]!}.$$
(19)

Note that the same result is obtained by setting $a = b = -q^s$, $c = q^{s+m}$ in (16) and retaining y from (17).

The big q-Jacobi polynomials in a general case satisfy the orthogonality relation, which can be given by formulas (7.3.12-14) from [6] (the formula (7.3.13) is corrected):

$$\int_{ca}^{aq} p_n(y; a, b, c|q) p_m(y; a, b, c|q) \mu(y) d_q y = \delta_{nm} / h_\infty \cdot h_n, \tag{20}$$

where

$$\mu(y) = (y/a; q)_{\infty}(y/c; q)_{\infty}/(y; q)_{\infty}(by/c; q)_{\infty},$$

$$h_{\infty} = \frac{(aq;q)_{\infty}(bq;q)_{\infty}(cq;q)_{\infty}(abq/c;q)_{\infty}}{aq(1-q)(c/a;q)_{\infty}(aq/c;q)_{\infty}(q;q)_{\infty}(abq^2;q)_{\infty}}$$

and

$$h_n = \frac{(1 - abq^{2n+1})(abq;q)_n(aq;q)_n(cq;q)_n}{(1 - abq)(q;q)_n(abq/c;q)_n(bq;q)_n}(-ac)^{-n}q^{-n(n+3)/2}.$$

Here $(a;q)_{\infty} = \prod_{i=0}^{\infty} (1 - aq^i)$, $(a;q)_n = (a;q)_{\infty}/(aq^n;q)_{\infty}$. The integral on the left-hand side of (19) is understood as a q-integral, see [6]:

$$\int_{a}^{b} f(t)d_{q}t = \int_{0}^{b} f(t)d_{q}t - \int_{0}^{a} f(t)d_{q}t, \quad \int_{0}^{a} f(t)d_{q}t = a(1-q)\sum_{n=0}^{\infty} f(aq^{n})q^{n}.$$

Let us express $\mu(y)$, h_{∞} , and h_n through the parameters a, b, c, and y from (17). Taking into account that $(aq^{-n};q)_n = (-a)^n q^{-n(n+1)/2} (qa^{-1};q)_n$, we have

$$\mu(y) = (yq^{-s-m}; q)_{s+m}(-yq^{-s}; q)_s/(-yq^{-m}; q)_m.$$

With formulas

$$(-q^{n+1};q)_{\infty}/(-q^{m+1};q)_{\infty} = q^{-\alpha}[n]![2m]!!/[m]![2n]!!,$$

$$(-q^{n+1};q)_{\infty}/(-q^{-m};q)_{\infty} = q^{-\alpha}[n]![m]!/2[2m]!![2n]!!$$

and

$$(-q;q)_n = q^{n/2}[2n](-1;q)_n/2[n] = q^{n(n+1)/4}[2n]!!/[n]!,$$

where $\alpha = (n-m)(n+m+1)/4$, $(q;q)_n = q^{n(n-1)/4}(1-q)^n[n]!$, $(q^2;q^2)_n = q^{n^2/2}(1-q)^n[2n]!!$, $[n]!! = [n][n-2]\cdots[1]$ or [2], the expression for h_{∞} can be transformed into the following:

$$h_{\infty} = \frac{1}{2} q^{-(s+m+2)/2} \left(\frac{[s]!}{[2s]!!} \right)^2 \frac{[2s+1]}{[s-m]![s+m]!}.$$

For $a = b = q^{-s}$, $c = q^{s+m}$, the quantity h_{∞} is negative.

The expression for h_n coincides with that for N_n in (18), as it should be. This can be easily verified with the help of

$$(q^{m+1};q)_n = q^{n(n+2m-1)/4}(1-q)^n[m+n]!/[m]!.$$
(21)

The facts mentioned above imply that the polynomials $P_n(x)$ in (18) satisfy the orthogonality relation

$$\int_{-q^{s+1}}^{q^{s+m+1}} P_n(x) P_m(x) w(y) d_q(y) = \delta_{mn}, \tag{22}$$

where

$$w(y) = \frac{1}{2}q^{-(s+m+2)/2} \left(\frac{[s]!}{[2s]!!}\right)^2 \frac{[2s+1]!}{[s-m]![s+m]!} \frac{(-yq^{-s};q)_s(yq^{-s-m};q)_{s+m}}{(-yq^{-m};q)_m},$$

 $y = xq^{(s+m+1)/2}/\rho$. In more explicit form,

$$\sum_{k=0}^{\infty} P_n(z_k) P_m(z_k) W(r_k) + \sum_{k=0}^{\infty} P_n(z_k') P_m(z_k') W'(r_k) = \delta_{mn},$$
(23)

where $z_k = \rho q^{k+(s+m+1)/2}$, $z_k' = -q^{-m}z_k$, $r_k = q^{k+s+m+1}$ and $W(r_k) = (1-q)r_kw(r_k)$, $W'(r_k) = -W(-q^{-m}r_k)$. Straightforward calculation with (20) and

$$(-q^{m+1};q)_n = q^{n(n+2m+1)/4}[m]![2m+2n]!!/[m+n]![2m]!!$$

leads to

$$\begin{split} W(r_k) &= \frac{1}{2} q^{s(s+m+1)/2 + k(s+1)} (1-q)^{s+m+1} \left(\frac{[s]!}{[2s]!!} \right)^2 \frac{[2s+1]!}{[s-m]![s+m]!} \\ &\times \frac{[k+s+m]![k+m]![2k+2s]!!}{[k]![k+s]![2k+2m]!!}, \end{split}$$

and
$$W'(r_k) = W(r_k)_{m \to -m}$$
.

Formula (22) demonstrates that the spectrum of the operator L_{ρ} on the subspace V_{sm} is a discrete set of points $-\rho q^{k+(s-m+1)/2}$ and $\rho q^{k+(s+m+1)/2}$, $k=0,1,2,\cdots$. Since 0 < q < 1, the accumulation point of the spectrum is zero. Joining spectra for all subspaces V_{sm} , we obtain the spectrum of the operator $T_{\rho s}(I_3)$ on V_s .

6. Case q = 1

Let $|x,m\rangle$ at q=1 be an eigenvector of the operator L_{ρ} with an eigenvalue $x, L_{\rho}|x,m\rangle = x|x,m\rangle$ and

$$|x,m\rangle = \sum_{l=s}^{\infty} \tilde{P}_{l-s}(x)|x,m\rangle.$$
 (24)

The formula of action of the operator L_{ρ} upon the basis vectors $(-i)^{-l}|l,m\rangle$ at q=1 is obtained from (12) by the substitution $[r] \to r$ for any c-number r. Then, repeating the procedure of the preceding section, we find that the functions $\tilde{P}_n(x)$ in (23) take the form

$$\tilde{P}_n(x) = \left(\frac{(s-m)!(s+m)!n!(n+2s)!(2n+2s+1)}{(2s+1)!(n+s-m)!(n+s+m)!}\right)^{1/2} P_n^{s+m,s-m}(x/\rho), \tag{25}$$

where $P_n^{(\alpha,\beta)}(x)$ is an ordinary Jacobi polynomial. With use of the orthogonality relation for these polynomials (see, e.g., [12]), we obtain

$$\int_{-1}^{1} \tilde{P}_n(x)\tilde{P}_m(x)\tilde{w}(y)dy = \delta_{mn}.$$
(26)

Here $y = x/\rho$ and

$$\tilde{w}(y) = 2^{-(2s+1)} \frac{(2s+1)!}{(s-m)!(s+m)!} (1-y)^{s+m} (1+y)^{s-m}.$$

We see that the spectrum of the operator L_{ρ} on the subspace V_{sm} is continuous at q=1 and consists of points in the interval $[-\rho, \rho]$.

Remark that big q-Jacobi polynomials have the property

$$\lim_{\alpha \to 1} p_n(x; q^{\alpha}, q^{\beta}, -q^{\lambda}|q) = P_n^{(\alpha, \beta)}(x) / P_n^{(\alpha, \beta)}(1).$$

In this limit, $P_n(x) \to \tilde{P}_n(x)$ (see formulas (18) and (24)) and $w(y) \to \tilde{w}(y)$ (see (21) and (25)). If, in additions, to use the property

$$\lim_{q \to 1} \int_0^a f(t) d_q(t) = \int_0^a f(t) d(t),$$

where f is a continuous function on [0, a], one easily verifies that the orthogonality relation (21) for the polynomials $P_n(x)$ at $q \to 1$ goes to the orthogonality relation (25) for the polynomials $\tilde{P}_n(x)$.

References

- [1] Fairlie D.B., Quantum deformations of SU(2), J. Phys. A, 1990, V.23, L183-L187.
- [2] Odesskii A.V., An analogue of the Sklyanin algebra, Funkt. Anal. Appl., 1986, V.20, 152-154.
- [3] Drinfeld V.G., Hopf algebras and Yang-Baxter equations, Sov. Math. Dokl., 1985, V.32, 254-258.
- [4] Jimbo M., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 1985, V.10, 63-69.
- [5] Groza V.A., Kachurik I.I. and Klimyk A.U., q-Deformed Euclidean algebras and their representations, Teoret. Matem. Fiz., 1995, V.103, 467-475.
- [6] Gasper G. and Rahman M., Basic Hypergeometric Functions, Cambridge Univ. Press, 1990.
- [7] Vilenkin N.Ja. and Klimyk A.U., Representations of Lie Groups and Special Functions, vol.3: Classical and Quantum Groups and Special Functions, Kluwer, Dordrecht, 1992.
- [8] Berezansky Yu.M., Expansions in Eigenfunctions of Self-Adjoint Operators, Amer. Math. Soc., Providence, R. I., 1968.
- [9] Havlíček M., Klimyk A.U. and Pelantova E., Fairlie algebra $U_q(so_3)$: tensor products, oscillator realisations, root of unity, Zeit. Phys. C (in press).
- [10] Gavrilik A.M. and Klimyk A.U., Representations of the q-deformed algebras $U_q(so_{2,1})$ and $U_q(so_{3,1})$, J. Math. Phys., 1994, V.35, 3670-3686.
- [11] Samoilenko Yu.S. and Turovskaya L.V., Semilinear relations and *-representations of deformations of SO(3), Rep. Math. Phys. (in press).
- [12] Nikiforov A.F. and Uvarov V.B., Special Functions of Mathematical Physics, Nauka, Moscow, 1984 (in Russian).