Nonlinear Mathematical Physics 1997, V.4, N 3—4, 492-502.

A Dynamical Mapping Method in Nonrelativistic
Models of Quantum Field Theory

A.N. VALL, S.E. KORENBLIT, V.M. LEVIANT, A.B. TANAEYV.

Irkutsk State University, 664003, Gagarin blrd, 20, Irkutsk, Russia.
E-mail: VALL@physdep.irkutsk.su, KORENB@math.isu.runnet.ru

Abstract

Exact solutions of Heisenberg equations and two-particle eigenvalue problems for the
nonrelativistic four-fermion interaction and N, © model are obtained in the framework
of a dynamical mapping method. Equivalence of different dynamical mappings is
shown.

1. General consideration

The main problem of QFT follows from the fact that any solutions of Heisenberg equations
(HE) are operator distributions which products, always appearing in those equations, are
ill-defined [1].

(0 — E(P)) Wa(%,t) = [Wa(%,1) H{W}] =7 for H{W} = Ho{T} + H{T}. (1)

So, the correct definition of field equations (and Hamiltonian itself) implies some knowl-
edge about qualitative properties of their solutions which, in turn, depend on the form
of these equations in a very singular manner. The usual way to go out from this closed
circle is connected with perturbation theory. It is based on the assumption that a product
of Heisenberg fields (HF) may be defined like for the free ones and a solution of HE may
be obtained by perturbation in the Fock space of renormalized free fields. However, it is
impossible in such a way to treat a nonrenormalizable theory and to understand the origin
of bound states. We consider another possibility which is based on the idea of dynamical
mapping and reduce the product of HF to the normal ordering of the product of physical
fields. The idea originates from the works of R. Haag [2], O. Greenberg [3], H. Umezawa
[4], and L.D. Faddeev, M.I. Shirokov [5] (see also [6]). In this approach, the problem to
make formal expression of HF

U (R, t) = M0 (R, tg) e M) — F[W(R, 1)), (2)

for the Hamiltonian given as a functional H = H [¥ (X, ¢)], be meaningful, is divided into
two parts. The first one is to construct such an operator realization of the initial fields
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W(X, 1) = W] via physical fields ¥(%,t) = ¢ {AQ(E)}, which, on the one hand, must be
consistent with CCR (CAR) (o = 1,2)
{Ta(X1), Us(7,t)} = 0= {va(Xt), ¥s(7. 1)},
[Ua(®), L(F 0} = 8% — 7) bap = (1), v}(F D}, (3)
{Aa(k), A5(@)} = 0; {Aa(k), AL(@)} = d3(k — §) ug,

and, on the other hand, leads to the unique stable vacuum | 0) and one-particle state
| 1k, o) with a definite spectrum FE/(k):

H|0)=Vuw|0); Aq(K) | 0) = 0; V is space volume; (4)
[H, AL(K)] | 0) = E(k)ALK) | 0) = E(k) | 1K, a) = (H = Vwo) | 1k, ). (5)

Moreover, let us suppose that for this operator realization the reduced (time-independent)
Hamiltonian does not contain ”fluctuation” terms [7] at a definite moment ¢ = ¢y up to
the fourth order and looks like :

H=H{A} =Vwy+ H{A} = H{VU [[A]} := Vwo + Ho{A} + H{A};
H | 0) = Ho | 0) = Hy | 0) = 0;

fo{A} 2 [ dRBR)ALR AR (o, ALR) = B(R)ALE):

) ) G om_ (6)
A {A} :/dgq/d3p/d3n/d3l 5y(G+P — R —1) K& <q2p, . 5
ALR) AL D A(B) Aa(@) + ~ > (AD)™A)™ m,n > 3.

KL(F,8) = KL(-%,-8); KL (5,7) = KL(f.8);

General conditions of the existence of such operator realizations lie beyond of issues of our
work. They always exist for the Lee models considered below.

This work is devoted to the second part of the problem, that is to construct the corre-
sponding dynamical mapping (Haag expansion) F* [¥ (X, to)] as a series of normal ordered
products of physical fields (%), A(K):

eiH(t—to)Aa(E)e—iH(t—to) — e—z’E(k)(zt—to)aa(1‘{’7 t) = o iB(k)(t—to) Aio [AQ(E)] , (7)
(K1) = An(R) + /d3z / dp AT+ ) Ap(K + ) Aa(D) FIV (5 | 1K) + (8)
(form =n) = A, [4a(®)] = Aa® + 3 [ ] {/d3qj/d3pj} -
n=1 j=1
9

n 1
T {4 @0} TT {46, 5} Aa) YA (K (G530 15515 D,
j=1 j=n

and to exploit these coefficient functions F,Y for the eigenvalue problem. The condition
m = n in eq.(9) means the absence of ”fluctuation terms” (with m # n) when the reduced
Hamiltonian (6) commutes with the particle number operator.
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It follows from egs. (7), (8) that vacuum and one-particle states remain stable for all ¢,
aa(k 1) | 0) = Aa(k) [ 0) = 0; | 1k, 0) = al(k,¢) | 0) = AL(K) | 0);

. . (10)

H, al,(k,1)] | 0) = E(k) AL(K) | 0),

that allows one to define the normal ordering directly for HF and the normal ordered
Hamiltonian (6) now correctly determines the nonlinear terms in reduced HE:

(10 — E(P)) Ua(%,1) = |Wa(%,1), H{W}]. (11)
010 (K1) = [aa(K.0), Arlal] = [ @*1Qu (E 1) aall (12)

QL) = [ d [ dpal(@.t) as(p,n e 1EEHE0-E0)-E0L.

[-p k—q

-, =2 5 (13)
'53(k+Q*p*1)2K22 Y5 T o |-

2 72

Case (9) means, moreover, stability not only for vacuum and one-particle states but also
for arbitrary N-particle ones. So, for arbitrary IV, one can reduce the product:

N . . N
O T] aa(Et) 2~ (0] 3 H/d?’siAa(sTi). (14)
=1 =1

However, if fluctuation terms appear with min (m,n) > Ny, then reduction (14) is possible
only for N < Np.

There exist two essentially different choices for the initial moment ¢y leading to different
choices of physical fields, correspondingly:

to — —oo, (Greenberg, Umezawa) to = 0, (Faddeev, Shirokov)
nonoperator initial condition operator initial condition
thirjloo<fin ‘ \Ij(iv t) - wm(iv t) | 'Lm> =0 S%LI% \Il()_(’7 t) =V [1/1(3?0)]
{¥in|Ain]} — incomplete Fock space {Y[A]} — complete Fock space
new fields V;, for every bound state no any new fields for bound states
A YE* Ho{ A} + Ho{Vin} + ... H = Hy{A} + H{A}

The second choice ty = 0 is used here. It seems more economical, and both bound and
same scattering eigenstates are treated on the basis in this case.

One can check by direct substitution that solutions of both scattering and bound state
two-particle eigenvalue problems

1 Boy(P.) = Ba(Pa) | RE(P); BaPao)=B (g +d) + (5 —a): o
H | BYg) = Ma(P) | Bg);

exist in the Fock eigenspace of the kinetic part of the reduced Hamiltonian (6)

Ho{A} AL, (k1) - - AL (k) | 0) = (i E(kj)) Al (k) - AL (ka) [ 0), (16)
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and can be written in the following form:

| RE(P.@) = [ 4R | RA(P.R)ORR): | BLy) = [ 4R | Rly(P. ) B ()

3 PN (P - (17)
| By(Poa) = AL (5 +a) 4] (5 —a) o)
Corresponding wave functions satisfy the usual Lippman-Schwinger equations:
1
dE (R)=063(R—q -/d3 oL (¥) 2KL(F,R),
pq(R) = 03(F qi T B P q) — Ba(Por) L0 r ®p,(F) 2 K (T, F) as)
BF(R) = -/d3rBPF2KPF,f%’.
In turn, at m,n > 3 for the first coefficient function of (8)
1)/, 7 = =7 S L (D, s T T
Y@K B = 6K +d—5-1) Fy) (5 - K| LK) (19)
an integral equation follows from the reduced HE (12) with the same kernel:
P P [, = P P
F(I)(._ﬁ_a L *)EF( ( ﬁ_~_~>:
A t7 KR Q|2+K72+q A t,/€+Q|2 ’%a2 q
t
_ / iy M2 (Pa)=Ex(P ) {2 KD(7.d) + / BBy B2 (Po) = Ba(P.r)]. (20)
i
0
2 L . P P
-EK;DQ(r, q) Flgl) (77;/{ +71 3R~ r)} .

It contains all information about the two-particle sector directly determining the scattering
wave function for Fy(P,q) — E2(P,q) £ i, § — 0+:

, L * L PP
B8,(7) = (R — @)+ F" (¢ = Foos k-] 5 + 7D +a). (21)
In (21) the simply derived expression for the scattering state was used:
| RE(Pa) = Rop(Pa) + [ d¥w2i K@ )

0 22
‘ / dt e~ B2 (Pa)~Ba(Pr) ) o f (723 LR t> a, <723 R t) o). (22)
0

that follows directly from (7) and the definition of scattering state. It is a simple matter to

see that all integral equations above are exactly solvable for degenerate kernels: KL (T, )
2 Va(F) Un(8)-
n

The dynamical mapping formulae (7), (8) give two forms of the instantaneous Bethe-
Salpeter matrix element (0 | ao(5 + & t)ag(5 — &,t) | 2,P), leading to the following
identities when | 2,P) stands for | R%(P,@[» or | B§5> :

W, o
1 e

which have a sense of the off-shell extension of a unitarity relation .

o5, (7) [eit<E2(P,m)fE2(7>,q)zm6) _
Flgl) (t; R+T|
BP () {eit(Eg(P,n)sz(P)) _ 1}
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2. Four-fermion models

As a first example, let us consider the contact four-fermion model by defining
z=(Zt); t=10; Px=—iVxi €s=—€sa; Xw)(@) = capTa(z)Ts(z);
Sy (@) = U(@) Wa(a), Ty (@) = U(@) P Vala);

{Walz),¥s(y)} = 0; with the convention: (24)
To=Yo
{\I]a('x)aqlg(y)} :50&53({(’_5’:) = 5aﬁ %7
To=Yo =y
and considering the following local densities:
A
Ha () = Wi (2) B(P) Wa(2) — = xly (2) (02 (25)
ot A2 O
Ha(z) = V() E(P) Wa(@) — o Sguy(2) + 7 Jiy) () = (26)
i At
Hale) o= wo + WL (2) B(R) Walw) = 5 Xay(2) X (@) +
Hot 7 o (27)
+Z \I’a(x) <J(\If)(y) P x) \I’a(x) s
z=y
They provide the reduced HE (11), (12) for HF:
d*k i(KR)—i L
Vo(r) = [ Gy @O k) (28)
(i0, — E(P)) Vo(z) = V(g)(t;X,P) Vo (z) = Tala), (29)
. . A - i s -
Vi) (6%, P) = =5 5w)(2) + p (Jiwy (@) - Px) = 3 (Vi Ty (@) |
Qwﬁﬁjﬂ)—-/}ﬁpa;ﬂw—ﬁx)@xp [ t) eitlB2(P 5 —)—Ea(P. 5D

'*K;DQ (T— g,g - 72)) is the Fourier-image of e“E(P)V(\P) (t: %, P)e—itE(P)7

and, for the following simple operator realizations via physical fields

. ] s UhE 0 (). B(k) — B (k)
Fal%,0) ‘I’ZB[Z‘*{A“‘)H { Va0 (), E(k) — B~ (k) (30)

LZJQ(J}) = / (27_‘_)3/2 ei(kif)_iE(k)tAa (E) = e_itE(P)dja(i? 0)7

lead to the reduced Hamiltonian (6) H{A} = : H2{A} : (note, that H;(x) looks like
a normal form of Ha(z) for the case p = 0), with the following degenerate kernel and
parameters:

2 ?
ZKP (.5 =

{L+n@E+8°}; L=x—pP? (31)
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E(k) — E*(k) = e (k:2+ <k*> ) + 43* T (E(k) — 23) ; (32)

1+1 A def ., [ d3k
w0—>w(jf:V*<< S(k:)>—2V*>; <&k) > v /(%)35(1@).

Here £(k) is an arbitrary ”bare” one-particle spectrum and V* has a meaning of the
volume of the excitation. Now the solution of (20) for the first coefficient function reads :

P P t (t) ico+Ag(t) do &7
W (pzea1P_2P &\ _ inF2(P.q) £(1) / _ doe” |
F (t,li-i-q | 5 My q) /dne 271 o+ iEs(P, k)
0 ‘ —ioo—i—A;la(t) (33)
[T/ (P) I () l

+2u ¢’

9

1—2uT (o)  1—2uJ7(0)

where () = e(t) = sign(t), A > 0, A — 0+ and

)

Jg (o) 1 [ dir 1 & Py
iﬁg;; - 5/ (2m)3  Ea(P,r) —ioc 73721 ; (34)
l
15(0) = 6308 () + Do R(0). TE(0) = & [1F(0) ~ 1B(o)]
DP(0) 1T 0) 1] = w2 ()T (0) ~ LI (o).
Dgl((;) = L+ pr?+ 2 [J5 (o) = s29F (0)] - (35)
Dralo) o+ 122 (k23 (o) = IF (0]

Setting If(f)( ) = { 3 (F0—iE(P,q)), Df(j}t)( ) =Dy }(:|:5—7,E2(73 q)), from eq.(18)
or from (21), (33) with § > A, 6 — 0+, for scattering eigenfunctions with the fixed parity
(angular momentum) [ = 0, 1 and spin J=0,1, defined in a symmetric basis (o}, j = 1,2, 3,
are usual Pauli matrices):

(0ap; (05)ap) — (Eag,Tgﬁ), €a = 1(02)as, Tiﬁ = Tga = i(020})as, (36)
+£(0,0 0)/ = +(1,1,m) /= m) z+(1),
as: gbp( )( RK)ag = €ag ©p ( )(m); gbpé )(n)ag = Téﬁ) @Pgl)(m); (37)
+1 Fi +(1,J,m (1,J,m -
C(Yg) = 5, To(éﬁ )= \/5 ( Tag 17, ﬂ) ¢7>¢(; )( K)o ¢7> )(—"ﬂ)ﬁaS

TPy = [ dr g™ (R)ag | Bs(P.#)):

one has the following expressions:
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DL (q) + K2 DL (g)

T O0)(E) (k) = cP&) (q) + 12 CP(i)<q) _a (39)

P ) 1 2 )

(27)3Dg ()
., TR I (P) [T (P)

T k) = (K67 P @) = rgh St ¢

’ (&%) Cm* | 1—2u; P (e) 11— 2015 (0)

. i PIP! il PIip!t

where projectors are HL(P) = <5jl - 732> ; | (P) = T (40)

The bound-state wave functions look like simple residues of the scattering one @;t(ll) (E) at
the corresponding poles for E»(P,q) £i0 — ioc — Mz(l)(P), q — ib(P):

DP(o)=0; 1-2uf(0)=0; 1—2uI0(0) =0; Cn(P)~CrH(g);

030 (§) — BPOE) = 20(P.5) [Ba(P, k) - MP(P)] (41)
ZO(P,K) = Co(P) + K Co(P); 21 (P, k) = (K- C3l(P)) ;
A(2m)~3

For the case pu—0: Cf(i)(q) — C;éi)(q) — 0. (42)

MY ()~ 1
The obtained solutions (33-41) directly satisfy the extended unitarity relation (23).

3. Case ;=0 and linearization of HE

Returning to HE, let us consider the conserved charge densities S(y) (x):

—

005 (0)(2) = (@) | B(B) — B(P)| Walo) — in Vs (Vo) Ty (@) Wa(o)

- 4
Q) = [dxSwE 0 800 = - f 7 - (V@) @) a(e)) 0.
YR

It is clear that, for u = 0, the HE for S(y)(z) contains only a kinetic term. Then the
initial conditions lead to the simple form of dynamical mapping for this operator:

S(\I,) ()Z, t) = Mt S(\Il) (}E, O) e tH! =

. . . . (44)
— eiHot S(\I,) (}E, 0) e~ tHot — oiMot Sw) (}_(', O) e tHot — Sw) (}_f, t).
So, HE (29) becomes a linear equation with respect to HF W, (X, t):
. S A . . A o o
(Zat - E(P)) ‘Ija(Xv t) = _55’(\11) (Xa t) v, (Xa t) = _is(w)(xa t) \Ila(X7 t)) (45)
and its solution gives a closed expression of HF in terms of the physical one:
FoOTA
\I"a(ia t) =T exp {Z/dﬁ |:2S(1ZJ)(>Z’ 77) - E(P)} } ¢a(§»0) =
0 ¢ (46)

>

2

_ o—tBP)m exp {z — /dn Sy (X +nv(P), 7])} Ya(X,0),
0
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where v(P) = §pE (P) is the corresponding group velocity. Dynamical mapping is given
by a normal ordering of this formal solution. It seems difficult to obtain such a solution
in terms of in-fields.

4. N,0 model

This model is determined by the following Hamiltonian, CCR, and HE (see e.g. [4]):

H = /d3x{NT(x)u(V2)N(x) + 01 (z)w(V?)O(x)+

(47)
A / d'y / d*2a(z - y)a(z z)NT(az)N(:p)@T(y)@(z)},
a(z —y) = alx —y)8(ty —t,); w(VHe* = m(k)e™; w(V?)e*™ = w(k)e>.
{N(2), N1 (9)}o(te — ty) = da(z —y), [O(2), 0 (y)]6(ts — t,) = da(x — ),
(i0h ~ (V)N (@) = & [ dy [ dza(o - yate - 2O (N ()O (),
(48)

(it = w(V2)B(@) = A [ d'y [ d'za(y—2)aly — IN' (N W)O(:).

All other (anti) commutators vanish. From this HE It is easy to see from this HE that
the HE for the operator NT(z)N(z), as in the previous case (43), contains only a kinetic
term:

— —

(N (@)N () = N1(@) [ (V) - (V)| N o). (49)

That means NT(x)N(z) = Ng(a;)No(x). Defining HF N(z), the physical field Ny(x) and
HE in the momentum representation

N(x d3k n(k,t etkx—im(k)t ~ d3x inx
@((x)) }_/(27r)3/2{ ogk,t; tkx—iw(k)t }; a(p) _/(271.)3/26 a(x); (50)

iom(l.t) = A [ & [ @qaa)a-p)e 50 g o(p. nll + g~ p.b).
7Evl1+l

ioo(l, ) = Aa(1) [ &p [ dqatp—q =0T 0l (g On(p. ol + g - p,0)

(51)

where EPT? = w(q) + m(p); and No(z), Og(x) are introduced by the same identities (50)
with n(k,t) — N(k), o(k,t) — ©(k), one has, as above, the linear HE for the operator
o(k,t)

o(k,t) = O(k) + / dn / &1 Ko (k, 1 m)o(l ), -
0

Ky (k,1;t) = —ira(k)a(—1) / dBq B =BT NT ()N (g + k — D).
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With the initial conditions o(k,0) = O(k), n(k,0) = N(k), it has the similar formal
solution

o(k,t) = O(k) + /d3z Ry(k,1;6)0(1) =T {exp @} (k), (53)

/tdnf(zv(n)
0

where Ky(n) is an integral operator with the kernel Ky (k,1;n). Note that, for a given
o(k,t), Eq. (51) for n(k,t) is also linear.
For the reduced Hamiltonian

A/d3 /d3k/d3qa a(k +q—p) N (p)N (k)0 (k + q — p)O(q),

(54)
Hy = [ dp [m(p) NUp)N ) + w(p) O/ )O()| . H = Ho+ Hy,

it’s also possible to find coefficient functions of dynamical mapping and two-particle bound
and scattering eigenstates. The dynamical mapping up to the third order now reads :

op.t) = OH[O(K). N (1] = 0(p) + [ &g [ kN (@)N(p+ g~ K)O(R)
F(t;q,p;p+q—k, k) +
n(p,t) = NN (). 0] = N(p) + [ d’q [ k6 (q)N (p+ g — K)O ()
F(t;p,¢;p+q—k k) +
where the first coefficient function may be found as

(@) .

e

F(t;l,q;1+q — p,p) = —ida(q /d§ ’fEHqZ

i0o+A-e(t) (56)
e’

/ do — m . IM(o) = A / d3k l +q .
q
—ioco+A-g(t) <J + ’LEp ) [1 +1 (J)]

The well-known solutions of Egs. (15), (18) for bound and scattering eigenstates of Hamil-

tonian (54) with two-particle energies M (P), E?, [4], [7):
| REN G - o)) = [ dfi @) Nip - )81(q) | 0), (57
RYM(q) = d3(k — q) + MQP&), Q) = 1+ 17 (x5 —iED)]
|B) = [ dqB"(q) NT(p— ) (q) [ 0): 1 +IP<—¢M<p>> ~o. (58)
50 = 2570 / N T
[ & B (0Br () | 20 P J(-iM () = 1. (59)

satisfy the orthogonality conditions:
(RN (p— k)O(k)} | RH{N(p1 — k1)O(k1)}) =

= 8s(p 1) [ dq BEF () REM (@) = balp — p) il — )
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B | FE(N(p~ )O(0)}) = (o1 — p) [ B (@R () =0. (61)

By definition, the S-matrix reads:

(Nin(p — k)Oin(k) | $* | Nin(pr — k1)Oin (k1)) <

CREN G - KO} | RF{N (1 — k1)O(k1)}) = o

= 0a(p—p1) [ A B2 (0) R (0) = ba(p — 1) SE(ks k)
SE (k, k1) = {0k — k1) F 2mi 6(EY, — E) Na(—ki)a(k) Q4 }.

This model was considered by Umezawa, Matsumoto, Tachiki [4] in the framework of the
dynamical mapping method using ”in” -fields. The dynamical mapping for this case has
the form:

n(l,£) = N [Nin(k), O (k)] = Nin(l) + /d3 /d3 k[RET*(q) — 83k — )] -
BT BN ()N (1 + g — k) O (k) +
N / BEBE (k) B M () (1 k) + . (63)
e itEy o(g,t)n(p —q,t) = eiitM(p)Bp(Q)Vin(p)"‘
4 / Pk e FRREF ()i (k) Nin(p — k) +

Unfortunately, the second term in the last equation was absent in [4]. With this correction,
one can compare their results with our approach using the uniqueness of HF and making
the dynamical mapping onto the ”in” -field in two ways:

n(k,t) = N oo [Nin (k)] = NGIN ()] = NG N oo [Nin ()] | (64)

One can see that the obtained consistency conditions have the same form as the above-
mentioned off-shell extended unitarity relations (23):

Bl*4(g) {i(Fa - Mla)e /d3 B U(p)F(t:1,q;1 +q — p,p),
l 1
REFH (q) {eitPa =BT /d3 Ry (p)F(t;1, ;1 + g — p,p),

and are held identically for solutions (56-59). Moreover, substituting (63) into (57), (58),
and using (60), (61), (62), it is a simple matter to see that scattering and bound states
for these two different approaches are connected correspondingly as:

(B” |=(0 I/d3qu*(q){B”(q) Vin(p) +/d3kR’-’ﬁk(q)®m(k) ( k) + }: (0 | Vin(p);

(65)

So, as expected, the bound state | BP), obtained by the self-consistency method [4] with
the help of a new bound state operator V;,(p), coincides with one derived from a direct
solution of the eigenvalue problem in terms of constituent fields, and, in turn, the scattering
eigenstates are nothing but two-particle in- and out- states from [4].
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5. Conclusions

In this work, we demonstrate the convenience to use Schrédinger fields (SF) ¥, (X,0)
as physical ones instead of the asymptotical fields (AF) 1, (x) on exactly solvable four-
fermion and N, © models. The point is that SF and HF ¥, (X, t), contrary to AF, form a
complete irreducible representation of CCR (CAR) also in the presence of bound states,
whereas a complete set of AF must incorporate a new field for every bound state. Thus,
the dynamical mapping of HF onto SF is simpler than on AF and, for several cases, may
be found in closed form (46), (53).

The authors are grateful to A. Andrianov and A. Kaloshin for constructive discussions.
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