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Abstract

We study symmetry properties of the heat equation with convection term (the equation
of convection diffusion) and the Schrodinger equation with convection term. We also
investigate the symmetry of systems of these equations with additional conditions for
potentials. The obtained results are applied to construction of exact solutions of the
system of the Schrodinger equation with convection term and the Euler equations for
potentials.

Study of symmetry properties of evolution equations is an important problem in mathe-
matical physics. These equations are thoroughly investigated by a number of authors
(see, e.g., [1, 2, 3]). The fundamental property of these equations is the fact that they are
invariant under the Galilei transformations.

It is known [4] that the nonlinear heat equation

%: — AAu = F(u) (1)
is not invariant under the Galilei transformations if F(u) # 0. It is Galilei-invariant
only in the case of linear equation, i.e., in the case where F(u) = 0 (up to equivalence
transformations). Therefore, it is important to consider nonlinear evolution equations
which admit the Galilei operator.

In the present paper, we study symmetry properties of equations with convection terms,
namely, the heat equation with convection term (the equation of convection diffusion) and
the Schrodinger equation with convection term. We also investigate the symmetry of
systems of these equations with additional conditions for potentials Vi. The results of
symmetry classification are applied to constructing exact solutions of the system of the
Schrodinger equation with convection term and the Euler equations for potentials.

1 Symmetry of the Equation of Convection Diffusion

The equation of convection diffusion has the form

ou ou
— —MN\u=V,— 2
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where u = u(t, ¥) is a real function, A is a real parameter, the index k varies from 1 to n.

To extend the symmetry of equation (2), we apply the idea proposed in [4, 5, 6].
Namely, we assume that the functions Vi, = Vi (¢, &) are new dependent variables on equal
conditions with the function u. In other words, we seek for symmetry operators of equation
(2) in the form

X = guaxu + 773u + pkavk’ (3)

where &, n, pF are real functions of ¢, &, u, V. Applying the Lie algorithm [7, 8, 9], we
find that the unknown functions &*, i, p* have the form

0 =24(t), &= At)zy + B (t)a + Uk (1), n
p* = BR(t)V; — A(t)zy, — BF () — UR(t) — A(t)Vi, 0= Cru+ Cy,
where A, B¥, (k,1 =T1,n, k #1), B = —B*, U* (k = 1,n) are arbitrary smooth real
functions of ¢; C, Co are arbitrary constants. Thus, the following assertion is true:

Theorem 1 The equation of convection diffusion (2) in the class of operators (3) is
ivariant under the infinite—dimensional Lie algebra with infinitesimal operators

Qa = 2A(t)0; + A(t)z,0,, — [A(t)z, + A(t)V;]0v,,

Qu = B*(t) [110,, — t30x, + Vidy, — Vidy;] — B (t)(210y;, — 2x0y;),
Qa = U(t)0y, —U(t)Dy,, a=T,n,

Z1 = Uy, Zy = Oy,

(5)

where we mean summation from 1 to n over the repeated index v and no summation over
indices k, I, and a.

Remark 1. Infinite-dimensional algebra (5) includes the Galilei operator @,. This
operator generates the following transformations:

t—t=t,
Ty — 70 = Ty + OébUb(t)5ab,

(6)

U — U =u,

Vb — ‘717 =V, — OébUb(t)(saba

where ay is an arbitrary real parameter of transformations, d, is the Kronecker symbol,
there is summation from 1 to n over the repeated index b and no summation over the
repeated index a. We see that the function u is not changed under the action of this
operator. This fact is essentially different from the Galilei transformations for the standard
free heat equation

ou

where the Galilei operator has the form

1
Go =10y, — ﬁxauau. (8)
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For operator (8), the function u is changed as follows:

2\ 4

Tallg t(aa)2> 7 (9)

u—>ﬁ:uexp<—

Thus, the operators @, and G, are essentially different representations of the Galilei
operator.

Let us now investigate the symmetry of systems including equation (2) and additional
conditions for the potentials. Note that in [3], the authors find a nontrivial symmetry of
the nonlinear Fokker—Planck equation by imposing the additional conditions for coefficient
functions.

Let the additional conditions for the potentials Vj, be the Euler equations. In other
words, consider the following system:

0 S pu=u 2t
Ve 3viYe o, k=Tm
ot 1 lafﬁl — Y -5

Symmetry of the nonlinear system (10) essentially depends on the value of the param-
eter A\1. There are two different cases.

The first case. Ay = 1.
In this case, system (10) in the class of operators (3) is invariant under the Lie algebra
with the basis operators

PO = 8157 Pa = Uz, Jab = waaxb - xbaxa + Vaa\/b - VbaVaa

Gy =t0,, — ava, D =2t0; + xkﬁxk — Vkavk, (11)
A= t28t + ta:kaxk - (a:k -+ th)BVk, Z1 = u0y, Zo = Oy.

The Galilei operator Gy generates the following finite transformatios:

t—t=t,

Tp — %b = xp + tapdap, (12)
Vo — VP =V, — apbap,

U — U= u,

where we mean summation from 1 to n over the repeated index b.

Conclusion 1. Thus, the scalar function u, unlike the heat equation, is not changed
under the Galilei transformations.

The second case. A1 # 1.
In this case, the invariance algebra of system (10) is essentially more restricted and does
not include the Galilei operator and the projective one. In other words, for Ay # 1 in the
class of operators (3), system (10) is invariant under the Lie algebra with basis elements
Py, P,, Jay, D, Z1, Z5 of the form (11).

The first case is essentially more interesting and important that the second one. There-
fore, in what follows, we consider system (10) in the case where A\ = 1.
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Consider now system (10), where the Euler equations have the right-hand sides of the

form F (u)—u, i.e., the following nonlinear system:

8.1‘k

O snu=v 2

A (13)
k k u

ALV AL R

8t Wam (u) axk7 k 7n7

where F'(u) is a smooth function of u. Let us carry out symmetry classification of system
(13), i.e., determine all classes of functions F'(u), which admit a nontrivial symmetry of
system (13). We consider the following six cases:

Case 1. F(u) is an arbitrary smooth function.
System (13) is invariant under the Galilei algebra

AG(1,n) =< Py, Py, Ju, Gq >, (14)

where the basis operators have the form (11).

Case 2. F = Cexp(ku) (k and C are arbitrary constants, x # 0, C' # 0).
In this case, the symmetry of system (13) is more extended and includes algebra (14) and
the dilation operator

2
DW = 2t, + x40y, — ViOy, — ~0u.

Case 3. F = Cu" (k and C are arbitrary constants, k # 0, K # 1, C #0).
In this case, system (13) is invariant under the extended Galilei algebra (14) with the
dilation operator

2
D® = 2t0; + 24,0y, — ViOy, — — .

Case 4. F = ¢ (C is an arbitrary constant, C' # 0).
u

The maximal invariance algebra is
< POa Pa7 Jab7 GCL7 Zl >,

where Z1 = u0,.
Case 5. F'=C (C is an arbitrary constant, C' # 0).
The maximal invariance algebra is

< P07 Pa) Jab) é(ﬂ D(2)7 ZQ >,
where Zy = 8,. In this case, the dilation operator D has the form
D@ =218, + 2,0,, — Vidy, — 2ud,.

Case 6. F = 0.
In this case, system (13) admits the widest invariance algebra, namely,

<P0> Pa> Jab7 éaa D7 A7 Z17 ZQ >,

where the dilation operator D and the projective operator A have the form (11).
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Conclusion 2. It is important that system (13) is invariant under the Galilei trans-
formations for an arbitrary smooth function F'(u). It should be stressed once more that,
unlike the standard heat equation, the function u is not changed under the Galilei trans-
formations.

Consider other examples of systems of the equation of convection diffusion and addi-
tional conditions for the potentials V.

Let the functions Vj, satisfy the heat equation, i.e., we investigate the following system:

?ft‘ —MAu= Vka‘{)“,
WV, mk (15)

where A1 # 0 is an arbitrary real parameter.

Theorem 2 System (1) in the class of operators (3) is invariant under the Lie algebra
with the basis operators

P07 Paa Jab7 Da Zla ZQ
of the form (11).

The case where the functions Vj, satisfy the Laplace equation is more important:

ou ou
9\~ = 12
{ gt~ o=V (16)

AV =0, k=T,n.

Theorem 3 System of equations (16) in the class of operators (3) is invariant under
the infinite—dimensional Lie algebra with the basis operators

Qa, Quis Qa, 21, 22
of the form (5).
Note that the symmetry of system (16) is the same as the symmetry of equation (2).

In other words, the conditions AV, = 0 do not contract the symmetry of the equation of
convection diffusion.

2 The Schrodinger Equation with Convection Term

Consider the Schrodinger equation with convection term

.0 _ 1 OU
where ¢ = ¢(t,Z) and Vi, = Vi (t,Z) (k = 1,n) are complex functions. For extension of
symmetry, we regard the functions Vj as dependent variables. Note that the requirement
that the functions Vi are complex is essential for the symmetry of (17).

Let us investigate the symmetry of (17) in the class of first-order differential operators

X = &#0y, +ndy + 0" Oy + p* Oy, + p oy, (18)

—

where &%, n, 1%, pF, p** are functions of t, &, 1, ¢*, ‘7, V.
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Theorem 4 Equation (17) is invariant under the infinite—dimensional Lie algebra with
the infinitesimal operators

Qa =240, + Az,0,, — iAz,(0y, — Ov+) — A(V; 0, + Vo),
Qr = Bkl('l’lawk — $k8wl + Vla\/,C — Vkavl + Vl*avk* — Vk*é)vl*)_
— inl(-TlaVk — xkavl — 1‘18\/]: + .’L‘kavl*), (19)
Qu = U, —iU%(Dy, — ),
Zy = 0y, Zo = Oype, Z3 =y, Zu = Oy,

where A, B¥ (k < I, k,1 = T,n) , U® (a = 1,n) are arbitrary smooth functions of t,
B¥ = —B%  we mean summation over the index v and no summation over indices a, k,
and [.

This theorem is proved by the standard Lie algorithm in the class of operators (18).
Note that algebra (19) includes as a particular case the Galilei operator of the form:

Gy = t0y, — 10y, +i0y. (20)
This operator generates the following finite transformations:

Ty — Ty = Ty + Gptoap,

t—t=t,

VoY =9, Yt =Yt =y,

Vo = Vo = Vo — iBb0ap, V" = V' = V" + iBp0ab,
where 3 is an arbitrary real parameter and we mean summation from 1 to n over the
repeated index b. Note that the wave function v is not changed for these transformations.
Operator (20) is essentially different from the standard Galilei operator

Go = 0y, + %ma(w&/) — D). (21)

of the free Schrodinger equation (Vi = 0). Note that we cannot derive operator (21)
from algebra (19). Thus, we have two essentially different representations of the Galilei
operator: (20) for the Schrodinger equation with convection term and (21) for the free
Schrédinger equation.

Remark 2. If we assume that the functions Vj, are real in equation (17) and study
symmetry in the class of operators

X = &0y, + 10y + 0 0y+ + p*Oy,, (22)

where the unknown functions £*,n,n*, p* depend on t, %, 9, *, 17, then the maximal in-
variance algebra of equation (17) is sufficiently restricted. Namely, in the class of operators
(22), equation (17) is invariant under the Lie algebra with the basis operators

Py, P, Jab = 200z, — 140z, + Valy, — ViOy,,
D = 2t0; + xr8z7, — VraVT, A= 1/18¢, oy = i/J*aw*, J3 = 8¢, Zy = 8¢*.

Thus, in the case of real functions Vi, equation (17) is not invariant under the Galilei
transformations.
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Consider now the system of equation (17) with the additional condition for the poten-
tials Vi, namely, the complex Euler equations:

1% Ay =1 QL W

%Z'f Vi = <w|>a$k

(23)

Here, ¢ and V}, are complex dependent variables of ¢t and &, F' is a smooth function of |¢|.
The coefficients of the second equation of (23) provide the broad symmetry of this system.
Let us investigate symmetry classification of system (23). Consider the following five
cases.
Case 1. F is an arbitrary smooth function.
The maximal invariance algebra is < Py, Py, Ju, G4 >, where
Jab = xaamb - .%'ba;pa + Vaﬁvb - V};(?Va + Va*a%* — ‘/;)*8\/(1*,
Gy = 10y, — idy, + idys.
Case 2. F = C|y|F (C is an arbitrary complex constant, C' # 0, k is an arbitrary real

number, k£ # 0 and k # —1). N
The maximal invariance algebra is < Py, Py, Jap, Ga, D) >, where

DW= 20, + 2,0, — Ve, = V;}Ovy — g (b0 + 470y,

Case 3. F = T 1/}| (C is an arbitrary complex constant, C' # 0).
The maximal invariance algebra is < Py, P, Jau, éa, Z =71+ Zs >, where
Z = Ibaw + w*aw*, Z1 = 1/)81/,, Zy = ¢*8¢*

Case 4. F'=C #0 (C is an arbitrary complex constant).
The maximal invariance algebra is < Py, Py, Jup, Ga, DWW, Zs Zy >, where

3 = 8¢, Zy = 8¢*.

Case 5. F =0. B
The maximal invariance algebra is < Py, Py, Jap, Ga, D, A, Z1, Zo, Z3, Z4 >, where
D = 2t8t + l’rﬁxr — V;«aVT - V;*aVT*,
A =120 + tay 0, — (izy + tV;)0y, + (iz, — tV;F)Oy.

Thus, system (23) is invariant under the Galilei transformations generated by operator
(20) for an arbitrary function F'(|)|).

Let us now apply these results to obtain invariant solutions of system (23) with A =1
in two-dimensional space-time in the case where F(|¢|) = 0:

oY 0% oY
g‘tf T o a2v_ Vax’ (24)
J ot -V Ox
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The invariance algebra of system (24) includes the translation operators, Galilei, dila-
tion, and projective operators:

Py=0;, P=0,, G=1t9,—i0y +i0y+, D =2t0;+ 20, —Vy — V*0Oy~,
A =120 + txdy — (iz +tV)0y + (ix — tV*)dy-.
1). The one-dimensional subalgebra G + aP, is associated with the symmetry ansatz
¢ = SO(QOZ‘T - t2)7
i ) (25)
V= —at+U(2afc—t ).

Ansatz (25) reduces system (24) to the following system of ordinary differential equations:

2a¢" = U,

L et =0 (20
L s =

a Y

0
where ¢/ = —(’0, w = 2ax — t2. The general solution of system (26) has the form

Oow

/ 1 o 1 30
U = Cl + ?w, Y= 02/exp{3(01 + ﬁw) / }dw—l-Cg, (27)

where C1, Ca, ('3 are arbitrary constans. Thus, we obtain the partial solution of system
(24), where v has the form (27), and

] / 1
V:—lt‘i‘ Cl+72w.
« (%

2). The subalgebra
G+ a(Zs + Zy) = 10, — i0y + 0y« + a(dy + Oy

is associated with the symmetry ansatz

¢=a%+ﬂm

28
V:4%+mw 28)

Ansatz (28) reduces system (24) to the following system of ordinary differential equations:

i = 20,
U

with the general solution of the form

C C
U=71, SOZZ'%OZJrCm

where Cy, C9 are arbitrary constants. Thus, we get the partial solution of system (24):

A Cl oz ,C’la
V= s+ w—at+zt + Cs.
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3). The subalgebra
é + Oz(Zl + Zg) =t0, — 10y + i0y* + Oé(’(baw + ¢*a¢,*)

is associated with the symmetry ansatz

v=exp(a ) olt),

x (29)
V= —iZ+U),

Ansatz (29) reduces system (24) to the following system of ordinary differential equations:

2

(6] [0
o+ —o=U—p,
w+UtQ<P i

with the general solution

Gy i ia?
U=—, =C -Cia— — |,
; ¥ 2 €Xp ( : 1 7 )
where C, Cy are arbitrary constants. Thus, we get the partial solution of system (24):
x O axr 1 ia?
V=—i—+— =C —+ -Cia— —|.
vt (4 2eXp<t+t1a t)

4). The subalgebra
A + Oéi(Zl — Zg) = tgé?t + tw@m — (wc + tV)av + (Zl‘ + tV*)av* + ’L'Oé(lbaw — ’lﬁ*aw*)
is associated with the symmetry ansatz

oo (£)s(2)

r 1 T
v=—iZy-u(Z).
T <t>

Ansatz (30) reduces system (24) to the following system of ordinary differential equations:
{ U =0,
1/
@ —ap=0.

2
where ¢ = a—wﬁ, w= % Consider the following two cases:

4a). a > 0.
In this case, system (24) has the following solution:

V= —i%, 1 = exp (—i?) {01 exp <\/af> + Cyexp (—\/afﬂ )

where C1, Cy are arbitrary constants.
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4b). a < 0.
In this case, system (24) has the following solution:

V= *%Mﬁ — exp (z?) [Cl cos (\/Txf) + Cq sin (ﬂfﬂ ;

where C7, (5 are arbitrary constants.
5). The one-dimensional algebra

A+ a(Z3+ Zy) = 120y + tzdy — (ix + tV)Oy + (iz + tV*) Oy« + Dy + Op)

is associated with the symmetry ansatz

¢=—?+w<f>,

T 1 x (31)

which reduces system (24) to the following one:

where ¢ =

U =0,
¢" +ia = 0.

0? x
a—ﬁ, w= 7 Solving this system, we obtain the exact solution of system (24):
w
2
T a az T
V =—iZ =——i—-—+Ci—+C
A T A R

where C7, (9 are arbitrary constants.
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