
Journal of Nonlinear Mathematical Physics 1998, V.5, N 1, 82–114. Review Article

Unified approach to Miura, Bäcklund and
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Abstract

This paper is an attempt to present and discuss at some length the Singular Mani-
fold Method. This Method is based upon the Painlevé Property systematically used
as a tool for obtaining clear cut answers to almost all the questions related with
Nonlinear Partial Differential Equations: Lax pairs, Miura, Bäcklund or Darboux
Transformations as well as τ -functions, in a unified way. Besides to present the ba-
sics of the Method we exemplify this approach by applying it to four equations in
(1+ 1)-dimensions. Two of them are related with the other two through Miura trans-
formations that are also derived by using the Singular Manifold Method.

1 Introduction

1.1 Integrability and the Painlevé Property

The beginnings of the study of singularities in the complex plane for differential equations
has always been attributed to Cauchy [7]. Cauchy’s main idea was to consider local
solutions on the complex plane and to use methods of analytical prolongation to obtain
global solutions. For this procedure to work, a complete knowledge of the singularities of
the equation and its location in the complex plane is required. In this sense, it is essential
to distinguish between two types of singularity.

• Fixed singularities: Singularities determined by the coefficients of the equation
and its location does not therefore depend on initial conditions.

• Movable singularities: Singularities whose location on the complex plane does
indeed depend on the initial conditions.
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The truly decisive step towards the elucidation of the relationship between the analyti-
cal structure of a system and its integrability is attributed to the Russian mathematician
Sofia Kovalevskaya [24]. Her work focused on the study of the motion of a rigid solid
with a fixed point from an analysis of the singularities of the solutions [24]. Kovalevskaya’s
work was completely new and also addressed to uniquely determine the parameter values
for which the only movable singularities of the solutions on the complex plane were poles.
Although Kovalevskaya’s work was apparently afflicted by a lack of followers, in the

last decade of the nineteenth century some mathematicians focused their attention on
the classification of ordinary differential equations (ODEs) on the basis of the type of
singularity their solutions were able to exhibit.
It was the French mathematician Paul Painlevé [32] who, following the ideas of Fuchs,

Kovalevskaya, Picard and others, completely classified first order equations and studied
second order equations. In this last case, he found 50 types of second order equations
whose only movable singularities were ordinary poles. This special analytical property
now carries his name and in what follows will be referred to as the Painlevé Property
(PP) [35]. Of these 50 types of equation, 44 can be integrated in terms of known functions
(Riccati equations, Elliptic Functions, Linear Equations, etc) and the other six, in spite of
having meromorphic solutions, do not have algebraic integrals that allows one to reduce
the equation to quadratures. Today these are known as Painlevé Transcendents. The
main contribution of Paul Painlevé lies in that he established the basis for a theory that,
unlike what had been believed until then, would allow one a priori, by singularity analysis,
to decide on the integrability of an equation without previously solving it.
Although there is no definitive proof of why singularity analysis for an equation turns

out to be a test of integrability, some circumstances do seem to corroborate this. For
example, it has been found that Painlevé Transcendents often appear in similarity reduc-
tions of equations with solitons [3], [25]. It is also intriguing to note that always a certain
relationship seems to exist between equations with the PP and Isomonodromy Transfor-
mations of certain linear equations [14]. The validity of Painlevé’s analysis as a suitable
procedure for detecting integrability could be related to the combined study of Algebraic
Geometry and Abelian Function theory [34]. Jacobi elliptic functions have associated
with them a genus 2 Riemann surface (torus with a hole) and on this surface all algebraic
curves are meromorphic functions. Although hyperelliptic functions cannot generally be
parametrized in terms of meromorphic functions, Jacobi observed that certain combina-
tions of hyperelliptic integrals do have meromorphic inverses (this, for example, is the case
of the integrals obtained by Kovalevskaya in the fourth integrable case for the rigid solid)
and these are called Abelian integrals. Simultaneous study of these integrals together
with the associated Riemann surfaces could be crucial for establishing the final proof of
a reliable test of integrability based upon the ideas first developed by Paul Painlevé and
Sofia Kovalevskaya.

1.2 The Ablowitz, Ramani and Segur algorithm

Between 1955 and 1960 the Korteweg-de Vries equation reappeared in the work of Fermi-
Ulam-Pasta [15] and in the context of plasma physics. Towards 1965, with Zabusky
and Kruskal [39], the concept of soliton emerged for the first time. The Soliton was
an entity describing solitary wave solutions interacting among themselves without any
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change in shape except for a small change in its phase. With this discovery in mind the
Inverse Scattering Technique (IST) was developed [3], initially allowing one to solve the
KdV equation and then many integrable equations with soliton solutions. The incredible
success obtained with the IST technique prompted to Ablowitz, Ramani and Segur [2] to
develop an algorithm (similar to that used by Kovalevskaya in the rigid solid problem) to
determine whether an ordinary differential equation had the PP. As mentioned above, an
ODE is said to have the PP if the only movable singularities of its solutions are poles. This
same property can be stated by saying that all solutions are singlevalued except in the
fixed singularities of the coefficients. The ARS (Ablowitz, Ramani and Segur) algorithm
is a method for determining the nature of the singularities of the solutions of an ODE on
the basis of an analysis of their local properties.
Until now we have considered the study of singularities within the context of systems

described mathematically by ODEs. In view of the results obtained with the ARS al-
gorithm, it seems natural to ask ourselves whether some other method for dealing with
differential equations in partial derivatives (PDEs) could in principle be available. In
particular, to find a new version of the PP that can be applied directly to the study of
integrability for PDEs could indeed be extremely useful. One important problem here is
that the solutions of a PDE are functions of at least two independent variables and their
analytical continuation is clearly more complicated than in the case of ordinary equations.
The study of similarity reductions for PDEs that can be solved by IST led Ablowitz,

Ramani and Segur to formulate what has now become know as the ARS conjecture:
“Every ordinary differential equation that can be obtained as the similarity reduction of
a PDE solvable by IST has the PP up to a smooth change of variables”. This conjecture
provides a necessary condition for checking whether a PDE is integrable or not. Ablowitz,
Ramani and Segur [2] and Mc Leod and Olver [29] have tested some weak versions of this
conjecture. Such demonstrations are based on the fact that if a PDE can be completely
integrated its solutions can be evaluated in terms of the Gel’fand-Levitan-Marchenko linear
integral equation that appears in the IST.
The ARS conjecture can therefore be understood in the sense that if it is possible to

reduce a PDE to an ODE that does not have the PP (even after a suitable transformation
of variables) it may be concluded that the PDE is not integrable. An algorithmic procedure
has recently been put forward for determining similarity reductions for PDEs. The essence
of the procedure is the study of the Lie symmetries. To check that a PDE has the PP
using the ARS conjecture one must find all the possible similarity reductions and check
that all the resulting ODEs do have the PP even though one has to make transformations
of variables. In this context the ARS conjecture is on the one hand tedious (owing to the
huge number of reductions to ODEs shown by some equations) and on the other hand
becomes less useful as the number of symmetries shown by the equation decreases. It is
also not clear which transformations of variables are permitted when checking whether the
corresponding ODE is of the Painlevé type. In particular for equations that do not have
symmetries the ARS conjecture is quite useless as it is not possible to obtain similarity
reductions from usual group-theory procedures.
The obvious limitations of this method suggest that it would be interesting to have

available a direct method (analogue of the ARS algorithm for ODEs) that would allow
one to decide whether the PDEs under study are integrable. In this way one is extending
the definition of the PP to partial derivatives using the original idea of Painlevé and
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developing an algorithmic method to determine whether the equations have this property
(without the requirement of considering all their similarity reductions to ODEs) and hence
to decide whether they are integrable or not.

1.3 The Weiss, Tabor and Carnevale algorithm

The main difference between analytical functions of one and several variables is that the
singularities of the latter are not isolated. If f(z1, . . . , zn) is an analytical function of n
complex variables zi (i = 1, . . . , n), the singularities of f are in manifolds of (2n − 2)-
dimensions. These manifolds are determined by conditions of the form

χ(z1, . . . , zn) = 0, (1.1)

where χ is an analytical function in a neighborhood of the manifold defined by (1.1).
When this manifold depends on the initial conditions it is called a movable singularity
manifold. The existence of these singularity manifolds suggests the need for introducing
the PP concept for PDEs. This leads to a procedure to check whether the equations have
such a property in a way that makes possible to evaluate the question of integrability by
a unified analysis of singularities for both ODEs and PDEs. This was the work carried
out by Weiss, Tabor and Carnevale (WTC) [35]. According to these authors, we say that
a PDE has the Painlevé property (PP) if its solutions are singlevalued in a
neighborhood of the manifold of movable singularities.
The WTC method also allows one to successfully apply some of the techniques de-

veloped for integrable systems to systems that are not completely integrable. Certain
restrictions may be imposed on χ or on the parameters of the equation such that the
solutions thus obtained only have poles as movable singularities. In this case, the singu-
larity manifold χ is no longer an arbitrary function and the equation is said to have the
conditional PP [6] and hence is partially integrable.

1.4 The singular manifold method

Weiss [36], [37] introduced the singular manifold method (SMM) which is an efficient
algorithmic method to find the typical properties of integrable systems. If a PDE has the
PP we have seen that its solutions can be expressed as a Laurent series in the form

u =
∞∑

j=0

uj(z1, . . . , zn)[χ(z1, . . . , zn)]j−a. (1.2)

It is possible in any case to truncate the expansion series at a certain term in order to
obtain particular solutions of the equation. If the expansion is truncated at the constant
term (understood as the one that goes with φ0 where we use φ instead of χ for the manifold
in the truncated expansion), expression (1.2) reduces to:

u = u0φ
−a + u1φ

1−a + · · ·+ ua. (1.3)

It is interesting to note that some attempts have been made in order to truncate the
Laurent series at higher orders [33]; however here we shall only consider truncation at the
constant term. Substitution of (1.3) in the corresponding PDE leads to an overdetermined
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system of equations for φ, uj and their derivatives. The essential point is that the sin-
gularity manifold φ is no longer an arbitrary function but rather -as we now shall see- it
must fulfill certain equations due to the truncation condition. That’s why the truncation
of the Painlevé series is the basis of a method called Singular Manifold Method (SMM)
that has been proved to be extremely successful in studying nonlinear PDEs. Many of the
properties of such equations can be obtained through the SMM. Let us summarize some
of them.

• The truncation (1.3) of the Painlevé series has itself the meaning of an auto-Bäcklund
transformation between two solutions of a PDE [37], [12].

• The Lax pair can be obtained through the Singular Manifold equations [36], [30].

• The relation between the singular manifold method and nonclassical Lie symmetries
of the truncated solutions has been studied in [10].

• The method of Hirota [19], [18], [20] is known as a powerful procedure for generating
multisoliton solution for PDEs. It essentially consists in bilinearizing the differential
equation by an ansatz reminiscent of the Painlevé truncated expansion.
The WTC method also provides an iterative procedure for generating solutions [17]
from the Lax pair and from the corresponding auto-Bäcklund transformation, where
the corresponding singularity manifold φ is determined in each step and after n steps
the solution can be expressed in terms of the product φ1, φ2, . . ., φn from which it
is then possible to construct the Hirota τ function associated with the solution with
n solitons. The relationship between singular manifold and Hirota’s τ -functions [9],
[11], [13], [16] has also been clearly established.

• The Darboux transformations of a PDE [28], [4], [5], [27] are also an important
procedure to obtain solutions of PDEs. The connection between SMM and Darboux
transformations has been explained in different references [11], [13].

1.5 Plan of the paper

After the previous glimpses of evidence in regard to the relationship between the PP and
the integrability conditions various directions in the search for integrable PDE become
evident. On the one hand the Painlevé test does identify integrable systems and on the
other hand the Singular Manifold Method appears as a systematic technique for finding
Bäcklund and Darboux transformations, Lax pairs, Soliton Solutions etc. Our point of
view -as we shall show henceforth- is that the PP should be used not only as a test of
integrability but also as a fruitful source of information of practically all the important
features of the Non Linear Partial Differential Equations. This paper tries to go an
step further in this direction, adding the Miura transformations to the above mentioned
properties arising from the SMM.
Sections 2 and 4 deal with the application of the SMM to two equations in (1 + 1)-

dimensions as the AKNS (Ablowitz-Kaup-Newell-Segur) [1] and non local Boussinesq
equation NLBq [26], [38] equation. The Lax pair, Darboux transformations and Soli-
tonic Solutions are thus fully obtained in these cases. This also shows that our analysis
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becomes not only a conceptual piece of information but also an algorithmic tool that can
be systematically used.
Sections 3 and 5 are devoted to the study of the ShG (sinh-Gordon) [3] and KS (Kaup

system) [21] systems. The Miura transformations between these equations and AKNS
and NLBq respectively are obtained by using the SMM. Bäcklund transformations for
AKNS and NLBq are derived. The two component induced Lax pairs for ShG and KS are
identified by the same procedure.
Section 6 is one of conclusions. Some lengthy and/or auxiliary calculations are relegated

to Appendices A to E.

2 The AKNS equation in (1+1)-dimensions

The well known [1] AKNS equation in 1+1,

0 =Myxxx + 4MyMxx + 8MxMxy (2.1)

is a nice and easy example to start to show how the method works.
The PP for this equation means that all solutions of (2.1) can be written as a series of

the form (see [35]):

M =
∞∑

j=0

Mjχ
j−a, (2.2)

where a is the leading index and χ is an arbitrary function of x and t, depending on the
initial data, that is usually called singularity manifold. Mj are analytical functions
of t and x in the neighborhood of χ = 0. It is a trivial exercise to substitute (2.2) into
(2.1) and to check that if the leading index is a = 1, the series (2.2) satisfies (2.1) for any
functional form of χ. It could be said that (2.1) has the PP.

2.1 Truncated expansion. Bäcklund transformations

The SMM is based upon the above defined PP. It requires the truncation of (2.2) at
the constant level j = a. It means, for our equation (2.1), that the truncated solutions
should be:

M ′ =M +
φx

φ
, (2.3)

where we have called M =M1 and M ′ to the truncated solution. We have used here φ for
the singularity manifold, instead of χ, to emphasize that the truncation implies that the
singularity manifold is no longer an arbitrary function but a function that is “singularized”
by the fact that it should satisfy some definite equations as we will see later. We shall
be calling this manifold φ singular manifold [36], [37] and the method based on the
truncation of the Painlevé series is the so called Singular Manifold Method.
The substitution of the truncated expansion (2.3) into the equation (2.1) provides the

following results (see Appendix A):

•M as well asM ′ should be solutions of (2.1). It means that (2.3) could be consided as
an auto-Bäcklund transformation between two solutions M ′ and M of the same equation.
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• The solutionM can be written in terms of the singular manifold in the following way:

Mx = −
(
1
4

) (
vx +

v2

2
+ 2λ

)
, (2.4)

My =
1
2
(−vy + 2λq). (2.5)

The notation that we have used is [13]:

v =
φxx

φx
, (2.6)

q =
φy

φx
, (2.7)

and λ is an arbitrary constant that, as we will see, plays the role of the spectral parameter.

• The singular manifold equations. The equations that the truncation procedure
implies for φ are:

sy = 4λqx, (2.8)

where s is the schwartzian derivative defined as:

s = vx − v
2

2
. (2.9)

Furthermore the compatibility condition φxxt = φtxx between the definitions (2.6) and
(2.7) requires:

vy = (qx + qv)x =⇒ sy = qxxx + 2sqx + qsx. (2.10)

It is not difficult to prove that the singular manifold equations are nothing but the AKNS
system once again. In fact with the change of variables:

s = 4px + 2λ, (2.11)

q =
py
λ
. (2.12)

(2.8) is trivially fulfilled and (2.10) is written as:

0 = pyxxx + 4pypxx + 8pxpxy (2.13)

that is obviously the AKNS system.
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2.2 Lax pairs

As we have seen above, the singular manifold equations, written in terms of v and w are:

vxy − vvy = 4λqx, (2.14)

vy = (qx + qv)x (2.15)

that can be considered as a new system of nonlinear equations. If we apply the Painlevé
analysis to this system, the leading terms are (using ψ for the singularity manifold).

v ∼ v0ψa, q ∼ q0ψb.

The substitution in (2.14-15) provides:

a = −1, b = −2, v0 = 2ψx, q0 = − 1
λ
ψxψy.

These leading terms provide the key for the linearization of the truncated solutions (2.3-4).
Actually if we substitute v for its dominant term.

v = 2
ψx

ψ
=⇒ φx = ψ2. (2.16)

In such a case (2.4) is:

0 = ψxx + (2Mx + λ)ψ (2.17)

and from (2.16), (2.5) and (2.10) we obtain:

2
ψy

ψ
= qx + qv =

1
2λ
(2Mxy + vxy + 2vMy + vvy)

or

0 = 2λψy +Mxyψ − 2Myψx. (2.18)

(2.17) and (2.18) are precisely the Lax pair for AKNS. To summarize it is possible to say
that the Lax pair is nothing but the singular manifold equations in which the
eigenfuctions are directly obtained from the singular manifold through (2.16).

2.3 Darboux transformations

Following an idea of Konopelchenko and Stramp [23], we can consider the Lax pair itself
as a pair of coupled nonlinear equations between M and ψ. Let us now explain how to
proceed.
As far as M ′ is also a solution of (2.1) an associated singular manifold φ′2 linked to an

spectral parameter λ2 can be defined just by defining

φ′2x = ψ
′2
2 (2.19)

a Lax pair for M ′ can be written as

0 = ψ′
2xx + (2M

′
x + λ2)ψ′

2, (2.20)
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0 = 2λ2ψ
′
2y +M

′
xyψ

′
2 − 2M ′

yψ
′
2x, (2.21)

where the notation means that ψ′
2 is an eigenfunction for M

′ with eigenvalue λ2. If we
call φ1 and φ2 two singular manifolds for M attached to spectral parameters λ1 and λ2

respectively the corresponding eigenfunctions are defined as

φ1x = ψ2
1, (2.22)

φ2x = ψ2
2, (2.23)

and the Lax pairs take the form

0 = ψ1xx + (2Mx + λ1)ψ1, (2.24)

0 = 2λ1ψ1y +Mxyψ1 − 2Myψ1x, (2.25)

0 = ψ2xx + (2Mx + λ2)ψ2, (2.26)

0 = 2λ2ψ2y +Mxyψ2 − 2Myψ2x. (2.27)

If we use the singular manifold φ1 to construct the truncated Painlevé expansion

M ′ =M +
φ1x

φ1
(2.28)

and we then look at (2.20-21) as a system of nonlinear coupled equations a similar expan-
sion should be performed for ψ′

2. That is to say:

ψ′
2 = ψ2 +

Θ
ψ1
. (2.29)

The substitution of the truncated expansions (2.28-29) in (2.20-21) provides the func-
tional form for Θ. The result is

Θ = −ψ1Ω(ψ1, ψ2), (2.30)

where

Ω(ψ1, ψ2) =
(

1
λ1 − λ2

)
(ψ1ψ2x − ψ2ψ1x). (2.31)

The expansions (2.28-29) can be considered as transformations that leave invariant the
Lax pair (2.18-19). In this sense they are Darboux transformations. It should be pointed
out that we use the singular manifold φ1 to actually realize the transformation (2.28) but
not the eigenfunction ψ1 as it is usual [28] in the Darboux transformations. Nevertheless
eigenfunctions and Singular Manifolds are trivially related through (2.22) and therefore:
With two eigenfunctions ψ1 and ψ2 for M , we can construct an eigenfunction
ψ′

2 for the iterated solution M ′. That is why we call them Darboux transformations.
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2.4 Hirota’s function

Furthermore, (2.19) is a nonlinear equation that relates φ′2 and ψ′
2. It means that the

singular manifold φ′2 itself could also be expanded in terms of φ1

φ′2 = φ2 +
∆
φ1

(2.32)

and by substituting this expansion in (2.19) we obtain:

∆ = −[Ω(ψ1, ψ2)]2. (2.33)

The procedure described above could be easily iterated. The singular manifold φ′2 for M ′

can be used to construct a new solution

M ′′ =M ′ +
φ′2x

φ′2
(2.34)

that combined with (2.28) can be written as:

M ′′ =M +
τ12x

τ12
, (2.35)

where

τ12 = φ′2φ1 (2.36)

and by using (2.32) and (2.33)

τ12 = φ2φ1 − [Ω(ψ1, ψ2)]2. (2.37)

It is an interesting point to note that the function τ12 for the second iteration is not
a Singular Manifold but it can be constructed from two Singular Manifolds of the first
iteration. The SMM provides algorithmically, but sometimes considered just a clever
ansantz [16], [18], the Hirota’s bilinear method [19]. It also provides the way to construct
solutions for the τ -function, as we will see in the next section.

2.5 Solitonic solutions

The easiest nontrivial solutions can be obtained from the seminal solution

M = a0y. (2.38)

For this solution, exponential solutions of (2.24-27) are

ψi = exp
(
kix− a0

ki
y

)
, (2.39)

where

λi = −k2
i (2.40)

and the corresponding manifolds are

φi =
1
2ki

(αi + ψ2
i ), (2.41)
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where αi are arbitrary constants. The equation (2.31) provides:

Ω(ψ1, ψ2) =
1

k1 + k2
ψ1ψ2 (2.42)

and (2.37) also yields

τ12 =
1

4k1k2
(α1 + ψ2

1)(α2 + ψ2
2)−

ψ2
1ψ

2
2

(k1 + k2)2
. (2.43)

We can write the first and second iteration as:

M ′ = a0y +
φ1x

φ1
, (2.44)

M ′′ = a0y +
τ12x

τ12
, (2.45)

where

φ1 =
α1

2k1
(1 + F1), (2.46)

τ12 =
1α1α2

4k1k2
{1 + F1 + F2 +A12F1F2} , (2.47)

αi = exp (2kix0i) ,

Fi = exp
(
2ki

(
x− a0

k2
i

y − x0i

))
, (2.48)

A12 =
(
k1 − k2
k1 + k2

)2

. (2.49)

(2.44) corresponds to the one-soliton solution (see Fig. 1) and (2.45) to the interaction of
two solitons (see Fig. 2).

3 The sinh-Gordon equation.
Miura Transformation to AKNS

We shall be analyzing in this section how the SMM and the Singular Manifold equations are
able to provide also information about Miura transformations between nonlinear PDE’s.
In particular, this section is devoted to obtain the Miura map between AKNS and the
sinh-Gordon equation.
The sinh-Gordon equation [3]

Uxy = sinh 2U (3.1)

can be written as the system

0 = uxy + 2uηy, (3.2)

0 = ηx + u2 (3.3)
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through the change

u = Ux, (3.4)

ηy = − cosh 2U. (3.5)

This system has the same problem as the sine-Gordon equation [31]. It has two Painlevé
branches. In fact if we write the solutions of (3.2-3.3) as a Painlevé series

u =
∞∑

j=0

ujχ
j−a,

η =
∞∑

j=0

ηjχ
j−b.

The leading indexes are a = b = 1 but the dominant terms are:

u0 = ±χx, (3.6)

η0 = χx. (3.7)

The ± sign of u0 means that there are two possibilities for the expansion. This may seem
at first a problem when one attempts to apply the SMM since if we choose a definite sign
in the expansion we will be loosing information about the equation. This problem has
been discussed during the last years (see [9], [13], [31], [8]). In these papers a modification
of the SMM appears to be necessary. We need in fact to deal with two Singular Manifolds
altogether. Obviously this fact represents a non trivial complication for the calculations.
We present here the easiest form to work with these two Singular Manifolds. The idea

is the following: The two branches (3.6-7) suggest the following set of changes for the
functions:

u = m− m̂, (3.8)

η = m+ m̂ (3.9)

in such a way that m and m̂ should have only a Painlevé branch. It is now necessary
to look for the equations that m and m̂ should satisfy. For this purpose we introduce in
(3.2-3) the change (3.8-9). Adding and subtracting the result we obtain:

mxy + 2(m− m̂)my = 0, (3.10)

m̂xy − 2(m− m̂)m̂y = 0. (3.11)

From these equations we also obtain the additional information that we discuss in the next
Subsections.
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3.1 Miura Transformation

The m̂ can be obtained from (3.10) and substituted in (3.11). The result is that m obeys:

0 = 2mymxxy + 8mxm
2
y −m2

xy (3.12)

that is the integrated version of the AKNS equation

0 = myxxx + 4mymxx + 8mxmxy. (3.13)

In a similar form, we can obtain m from (3.11) and the substitution in (3.10) is

0 = 2m̂ym̂xxy + 8m̂xm̂
2
y − m̂2

xy (3.14)

that it is again the integration of the AKNS equation

0 = m̂yxxx + 4m̂ym̂xx + 8m̂xm̂xy. (3.15)

As a consequence of what has just been said the change of functions (3.8-9) can be inverted
to yield

2mx = ux + ηx = ux − u2, (3.16)

2m̂x = ηx − ux = −ux − u2 (3.17)

which represents the Miura transformations between the sinh-Gordon system (3.2-3) and
the AKNS equations (3.13) and (3.15).

3.2 Bäcklund Transformations

As an additional result we obtain that the solutions (u, η) of sinh-Gordon can be con-
structed by using two solutions m and m̂ of AKNS. Nevertheless these solutions are not
independent. They are related by (3.10-11) that can be written as:

m̂ = m+
1
2
mxy

my
, m = m̂+

1
2
m̂xy

m̂y
, (3.18)

(mym̂y)x = 0. (3.19)

These equation (3.18-19) can easily be recognized as Bäcklund transformations between
the two solutions m and m̂ of AKNS.

3.3 Singular manifold method with two manifolds

From the above discussion it is easy to understand why it seems reasonable to talk about
two Singular Manifolds, one for the expansion of m and the other for the expansion on
m̂. Let us call φ the singular manifold for m and φ̂ the singular manifold for m̂. The
truncated expansions are

m′ = m+
φx

φ
, (3.20)
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m̂′ = m̂+
φ̂x

φ̂
, (3.21)

and the corresponding expansions for u and η are:

u′ = u+
φx

φ
− φ̂x

φ̂
, (3.22)

η′ = η +
φx

φ
+
φ̂x

φ̂
. (3.23)

However φ and φ̂ are not independent because m and m̂ are related by the Bäcklund
transformation (3.18-19). This is reminiscent of the requirement that u and η satisfy (3.2-
3). In fact substituting (3.22-23) in (3.3) we obtain the coupling condition between φ and
φ̂ (see Appendix B)

φx

φ

φ̂x

φ̂
= A

φx

φ
+ Â

φ̂x

φ̂
, (3.24)

where

A =
v

2
+ u, (3.25)

Â =
v̂

2
− u. (3.26)

The notation is the one defined in (2.6).

3.4 Lax pair for sinh-Gordon

The derivative of (3.24) with respect to x (see Appendix B) provides:

Ax = A(v̂ −A− Â) = v̂ − v
2
, (3.27)

Âx = Â(v −A− Â) = v − v̂
2
. (3.28)

We should remember at this point that φ and φ̂ are Singular Manifolds for AKNS and
that the change

φx = ψ2, φ̂x = ψ̂2 (3.29)

relates the Singular Manifolds with the eigenfunctions of the Lax pair (2.17-18) of AKNS.
By combining (3.29) with (3.27-28) we can integrate out the variable x, and finally obtain

A = a
ψ̂

ψ
, (3.30)

Â = â
ψ

ψ̂
, (3.31)
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where a and â are constants. (3.25-26) can be now written as:

ψx = aψ̂ − uψ, (3.32)

ψ̂x = âψ + uψ̂, (3.33)

where ψ and ψ̂ are solutions of the Lax pair of AKNS. That is equivalent to

0 = ψxx + (2mx + λ)ψ, (3.34)

0 = 2λψy +mxyψ − 2myψx, (3.35)

0 = ψ̂xx + (2m̂x + λ̂)ψ̂, (3.36)

0 = 2λ̂ψ̂y + m̂xyψ̂ − 2m̂yψ̂x. (3.37)

The compatibility between (3.32-33) and (3.34), (3.36) requires

λ = λ̂ = −aâ. (3.38)

The y component of the Lax pair is given by (3.35), (3.37) and can be written as

2âψy = −(uy + ηy)ψ̂, (3.39)

2aψ̂y = (uy − ηy)ψ. (3.40)

Therefore, the Lax pair for sinh-Gordon can be written in its usual matrix form as:(
ψ

ψ̂

)
x

=
( −u a
â u

) (
ψ

ψ̂

)
, (3.41)

(
2âψ
2aψ̂

)
y

=
(

0 uy + ηy
uy − ηy 0

) (
ψ

ψ̂

)
. (3.42)

Conclusion: The method that we derived in Section 2 to obtain Darboux transformations
and solutions for AKNS can be directly applied to sinh-Gordon. The construction of
solution of sinh-Gordon can be done through (3.8-9) by using two solutions of AKNS
related by the Bäcklund transformation (3.18). From the point of view of the Singular
Manifold this implies that φ and φ̂ are related by the coupling condition (3.24). Using
(3.29-31) this condition can be written in a much easier form as:

aφ̂+ âφ = ψψ̂, (3.43)

λ̂ = λ = −aâ. (3.44)

We believe that the splitting (3.8-9) is the key to solve the long standing problem that
concerns to the application of the SMM to equations with two branches. In the next
sections we will return to the same topic in a different but not unrelated context.
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4 Non local Boussinesq equation

The following system of equations

Nx =Mt, (4.1)

MxNt =MxMxxx + 2M3
x +M

2
t −M2

xx (4.2)

or equivalently

M2
x(Mtt −Mxxxx) = 4M3

xMxx + 2Mx(MtMtx −MxxMxxx)−Mxx(M2
t −M2

xx) (4.3)

has been considered in [26], [38] as related with the Kaup (sometimes called Classical
Bousinesq) system through a Miura transformation. The Kaup system is a good example
of system with two branches [21], [9], [8]. Nevertheless (4.1-2) has only one branch. That
is why we are interested in this section in studying the relationship of both equations
from the point of view of the SMM and to relate the corresponding results with the Kaup
system in Section 5.

4.1 Truncated expansion. Bäcklund transformations

The leading terms of (4.1-2) are

M ∼ χxχ
−1,

N ∼ χtχ
−1

that suggests the truncated expansion

M ′ =M +
φx

φ
−→ N ′ = N +

φt

φ
. (4.4)

From this equations we obtain the following set of results (see Appendix C):

• (4.3) could be consided as an auto-Bäcklund transformation between two solutions
M ′ and M of the same equation.

• The solution M can be written in terms of the Singular Manifold as:

Mx =
(
1
4

) (
(w + 2λ)2 − v2) , (4.5)

Mt =
1
2

{
(w + 2λ)vx − vwx + (w + λ)

[
(w + 2λ)2 − v2]} , (4.6)

where [13]:

v =
φxx

φx
, (4.7)

w =
φt

φx
, (4.8)

and λ is an arbitrary constant.
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• The singular manifold equations can be written as the system of PDEs:

vt = (wx + wv)x (4.9)

wt =
(
vx − v

2

2
+
3
2
(w + 2λ)2 − 2λ(w + 2λ)

)
x

. (4.10)

Notice that the parameter λ can be removed from these equations through the galilean
transformation

w̄ → (w + 2λ),

x̄→ x− 2λt

that transforms (4.9-10) into

vt = (w̄x̄ + w̄v)x̄, (4.11)

w̄t =
(
vx̄ − v

2

2
+
3
2
w̄2

)
x̄

. (4.12)

This system is equivalent to the Kaup or classical Boussinesq system. In fact it could be
written as a single equation if we set

w̄ = px̄.

One can now remove v from (4.11-12) and the result is a sort of modified Boussinesq
equation

ptt − px̄x̄x̄x̄ − 4px̄px̄t + 6p2x̄px̄x̄ − 2ptpx̄x̄ = 0. (4.13)

Unlike the AKNS case in which the Singular Manifold equations were also AKNS, for
NLBq the Singular Manifold equations (4.11-12) are not the same system but rather they
become the Kaup system (KS). As we will see in the next section this means that both
systems NLBq and KS are related by a Miura transformation.

4.2 Lax pairs

The question of the linearization of the singular manifold equations is now a little bit more
complicated that it was for AKNS. If we look for the dominant terms of (4.11-12)

v ∼ v0χa,

w̄ ∼ w̄0χ
b.

The result is:

a = −1, b = −1, v0 = χx̄, w̄0 = ±χx̄,

the ± sign confirms the well known fact that the Kaup system has two Painlevé branches
[9], [8]. In the previous section we have explained that for those types of systems it
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is necessary the introduction of two Singular Manifolds. From that point of view, the
truncation ansatz for v and w̄ is now:

v =
ψ+

x̄

ψ+
+
ψ−

x̄

ψ− =⇒ φx̄ = ψ+ψ−, (4.14)

w̄ =
ψ+

x̄

ψ+
− ψ

−
x̄

ψ− (4.15)

or

2
ψ+

x

ψ+
= v + w + 2λ, (4.16)

2
ψ−

x

ψ− = v − w − 2λ. (4.17)

With this ansatz the expressions (4.5-6) for the truncated solutions (see Appendix D)
can be linearized as:

0 = 2Mx(ψ+
xx +Mxψ

+)− (Mt +Mxx + 2λMx)ψ+
x , (4.18)

0 = ψ+
t − ψ+

xx + 2λψ
+
x − 2Mxψ

+, (4.19)

0 = 2Mx(ψ−
xx +Mxψ

−) + (Mt −Mxx + 2λMx)ψ−
x , (4.20)

0 = ψ−
t + ψ

−
xx + 2λψ

−
x + 2Mxψ

−. (4.21)

To summarize, the existence of two branches in the Singular Manifold equations implies
the existence of two classes of eigenfunctions of two different Lax pairs (4.18-19) and (4.20-
21). This result reflects the fact that the equation is invariant under the discrete symmetry

x −→ −x,
t −→ −t,
M −→ −M

that transforms the first of the Lax pairs into the second one.

4.3 Darboux transformations

The generation of the Darboux transformations can be done in a similar way as we did in
Section 2. If we write the Lax pairs for the iterated solution M ′

0 = 2M ′
x(ψ

′+
2xx +M

′
xψ

′+
2 )− (M ′

t +M
′
xx + 2λ2M

′
x)ψ

′+
2x , (4.22)

0 = ψ
′+
2t − ψ′+

2xx + 2λ2ψ
′+
2x − 2M ′

xψ
′+
2 , (4.23)

0 = 2M ′
x(ψ

′−
2xx +M

′
xψ

′−
2 ) + (M ′

t −M ′
xx + 2λ2M

′
x)ψ

′−
2x , (4.24)

0 = ψ
′−
2t + ψ

′−
2xx + 2λ2ψ

′−
2x + 2M

′
xψ

′−
2 , (4.25)



100 P.G. Estévez, E. Conde and P.R. Gordoa

where ψ
′+
2 , ψ

′−
2 could be related to a singular manifold φ′2 in the form

φ′2 = ψ
′+
2 ψ

′−
2 . (4.26)

The consideration of (4.22-25) as coupled nonlinear equations allows us to write truncated
expansions for M ′, ψ

′+
2 , ψ

′−
2 , φ

′
2.

M ′ =M +
φ1x

φ1
, (4.27)

ψ
′+
2 = ψ+

2 +
Θ+

φ1
, (4.28)

ψ
′−
2 = ψ−

2 +
Θ−

φ1
, (4.29)

φ
′
2 = φ2 +

∆
φ1
, (4.30)

where

0 = 2Mx(ψ+
2xx +Mxψ

+
2 )− (Mt +Mxx + 2λ2Mx)ψ+

2x, (4.31)

0 = ψ+
2t − ψ+

2xx + 2λ2ψ
+
2x − 2Mxψ

+
2 , (4.32)

0 = 2Mx(ψ−
2xx +Mxψ

−
2 ) + (Mt −Mxx + 2λ2Mx)ψ−

2x, (4.33)

0 = ψ−
2t + ψ

−
2xx + 2λ2ψ

−
2x + 2Mxψ

−
2 , (4.34)

φ2x = ψ+
2 ψ

−
2 , (4.35)

0 = 2Mx(ψ+
1xx +Mxψ

+
1 )− (Mt +Mxx + 2λ1Mx)ψ+

1x, (4.36)

0 = ψ+
1t − ψ+

1xx + 2λ1ψ
+
1x − 2Mxψ

+
1 , (4.37)

0 = 2Mx(ψ−
1xx +Mxψ

−
1 ) + (Mt −Mxx + 2λ1Mx)ψ−

1x, (4.38)

0 = ψ−
1t + ψ

−
1xx + 2λ1ψ

−
1x + 2Mxψ

−
1 , (4.39)

φ1x = ψ+
1 ψ

−
1 . (4.40)

By substituting the truncation (4.27-30) in (4.22-26) it is possible to obtain

Θ+ = −ψ+
1 Ω

+, (4.41)

Θ− = −ψ−
1 Ω

−, (4.42)

∆ = −Ω+Ω−, (4.43)

where

Ω+ =
(

1
λ2 − λ1

)
ψ−

1

ψ+
1x

(ψ+
1 ψ

+
2x − ψ+

2 ψ
+
1x), (4.44)

Ω− =
(

1
λ2 − λ1

)
ψ−

2

ψ+
2x

(ψ+
1 ψ

+
2x − ψ+

2 ψ
+
1x). (4.45)

(4.27-30) together with (4.41-45) define Darboux transformations for NLBq.
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4.4 Hirota’s function

The generation of a new iteration can be done by using φ′2 as the Singular Manifold for
M ′ in order to construct

M ′′ =M ′ +
φ′2x

φ′2
=M +

τ12x

τ12
, (4.46)

where

τ12 = φ′2φ1 (4.47)

and by using (4.30) and (4.43)

τ12 = φ2φ1 − Ω+Ω−. (4.48)

4.5 Solitonic Solutions

The easiest nontrivial solutions can be obtained from the seminal solution

M = a0x. (4.49)

For this solution, exponential solutions of (4.22-25) are

ψ+
i = exp{ai(x− ait)}, ψ−

i = exp
{
−a0

ai

(
x− a0

ai
t

)}
, (4.50)

where ai are related with the spectral parameter in the form

λi = ai +
a0

ai
(4.51)

and the corresponding singular manifolds are

φi =
ai

a2
i − a0

(αi + ψ+
i ψ

−
i ), (4.52)

where αi are arbitrary constants. (4.44-45) gives:

Ω+ =
a2

a2a1 − a0
ψ−

1 ψ
+
2 , Ω− =

a1

a2a1 − a0
ψ+

1 ψ
−
2 , (4.53)

and (4.48) is:

τ12 =
a1a2

(a2
1 − a0)(a2

2 − a0)
(α1+ψ+

1 ψ
−
1 )(α2+ψ+

2 ψ
−
2 )−

a1a2

(a2a1 − a0)2
ψ−

1 ψ
+
2 ψ

+
1 ψ

−
2 .(4.54)

We can write the first (Fig. 3) and second iteration (Fig. 4) as:

M ′ = a0x+
φ1x

φ1
, (4.55)

M ′′ = a0x+
τ12x

τ12
, (4.56)

where

φ1 =
α1a1

a2
1 − a0

(1 + F1), (4.57)
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τ12 =
a1a2α1α2

(a2
1 − a0)(a2

2 − a0)
{1 + F1 + F2 +A12F1F2} , (4.58)

αi = exp
{(
ai − a0

ai

)
x0i

}
,

Fi =
ψ+

i ψ
−
i

αi
= exp

{(
ai − a0

ai

) [
x−

(
ai +

a0

ai

)
t− x0i

]}
, (4.59)

A12 = a0

(
a2 − a1

a1a2 − a0

)2

. (4.60)

5 The Kaup system. Miura transformation to NLBq

In the previous section, we have seen how the Kaup system (KS) arises as the Singular
Manifold equation for NLBq. That suggests a Miura transformation between KS and
NLBq [26], [22]. Let us write the Kaup system in the form

ut = ηxx + 2uux, (5.1)

ηt = uxx + 2uηx. (5.2)

Note that if we set u = px, (5.1-2) can be expressed as follows

ptt − pxxxx − 4pxpxt + 6p2xpxx − 2ptpxx = 0. (5.3)

This is precisely the Singular Manifold equation (4.13) for NLBq.
If we use Painlevé series for u and η

u =
∞∑

j=0

ujχ
j−a,

η =
∞∑

j=0

ηjχ
j−b

the dominant terms yield: a = b = 1 and

u0 = ±χx, (5.4)

η0 = χx. (5.5)

The existence of two branches in the Painlevé expansion suggests the following change of
functions:

u = m− m̂, (5.6)

η = m+ m̂. (5.7)

With this change the addition and subtraction of (5.1) and (5.2) yields

mt = mxx + 2(m− m̂)mx, (5.8)

m̂t = −m̂xx + 2(m− m̂)m̂x. (5.9)



Miura, Bäcklund and Darboux Transformations 103

5.1 Miura transformation

From (5.8) we can obtain m̂. By substituting it in (5.9), the result is:

m2
x(mtt −mxxxx) = 4m3

xmxx + 2mx(mtmxx −mxxmxxx)−mxx(m2
t −m2

xx) (5.10)

that is precisely the (4.3) NLBq. In a similar way m can be obtained from (5.9). Its
substitution in (5.8) takes the form

m̂2
x(m̂tt − m̂xxxx) = 4m̂3

xm̂xx + 2m̂x(m̂tm̂xx − m̂xxm̂xxx)− m̂xx(m̂2
t − m̂2

xx) (5.11)

that is again NLBq. In consequence, the splitting (5.6-7) leads to the possibility of con-
structing Soliton Solutions of KS by linear superposition of two solutions of NLBq. Actu-
ally the inversion of (5.6-7) can be written as:

2mx = ux − u2 + ∂−1
x ut, (5.12)

2m̂x = −ux − u2 + ∂−1
x ut (5.13)

that is a Miura transformation between KS and NLBq [26].

5.2 Bäcklund transformations

Although two solutions m and m̂ of NLBq can be used to construct (by means of (5.6-7))
a solution of KS, these solutions are certainly not unrelated. Actually (5.8-9) establishes
the correspondent relation between m and m̂. This relationship can be written in the
form:

m = m̂+
m̂t + m̂xx

2m̂x
, (5.14)

m̂ = m+
mxx −mt

2mx
(5.15)

which obviously is the Bäcklund transformation that relates the two solution of NLBq.

5.3 Two Singular Manifolds

The Singular Manifold approach derived in the previous section can be applied to m and
m̂. The Painlevé expansion takes the form

m′ = m+
φx

φ
=⇒ u′ = u+

φx

φ
− φ̂x

φ̂
, (5.16)

m̂′ = m̂+
φ̂x

φ̂
=⇒ η′ = η +

φx

φ
+
φ̂x

φ̂
. (5.17)

Noneless the Bäcklund transformations (5.14-15) imply that φ and φ̂ are not unrelated.
The substitution of the Painlevé expansions (5.16-17) (or alternatively in (5.1-2)) gives
rise to (see Appendix E) the coupling condition

φx

φ

φ̂x

φ̂
= A

φx

φ
+ Â

φ̂x

φ̂
, (5.18)
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where

A =
v − w
2

+ u, (5.19)

Â =
v̂ + ŵ
2

− u, (5.20)

and

λ = λ̂, (5.21)

u = λ+
v̂ + ŵ − v + w

2
. (5.22)

By using the definitions (4.16-17), the expressions (5.19-22) are:

A = u+ λ+
ψ−

x

ψ− , (5.23)

Â = −(u+ λ) + ψ̂
+
x

ψ̂+
, (5.24)

u+ λ =
ψ̂+

x

ψ̂+
− ψ

−
x

ψ− . (5.25)

5.4 Lax pair for KS

The derivative of the coupling condition (5.18) with respect to x is:

Ax = A(v̂ −A− Â) = v̂ − ŵ − v + w
2

=
ψ̂−

x

ψ̂− − ψ
−
x

ψ− , (5.26)

Âx = Â(v −A− Â) = v + w − v̂ − ŵ
2

=
ψ+

x

ψ+
− ψ̂

+
x

ψ̂+
. (5.27)

These expressions can be easily integrated as:

A = a
ψ̂−

ψ− , (5.28)

Â = b
ψ+

ψ̂+
. (5.29)

Combined with (5.23-24) these formulae yield

ψ−
x = aψ̂− − (u+ λ)ψ−, (5.30)

ψ̂+
x = âψ+ + (u+ λ)ψ̂+. (5.31)

The substitution of (5.25) in (5.30-31) leads to

aψ̂−
x = (ux − ηx)ψ−, (5.32)
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âψ+
x = −(ux + ηx)ψ̂+, (5.33)

where we have used ψ̂+
x ψ̂

−
x = −m̂xψ̂

+ψ̂−, ψ+
x ψ

−
x = −mxψ

+ψ− (see Appendix D).
Those expressions can be written as(

ψ−

ψ̂−

)
x

=


 −(u+ λ) a

ux − ηx
a

0


 (

ψ−

ψ̂−

)
, (5.34)

(
ψ+

ψ̂+

)
x

=


 0

−(ux + ηx)
â

â (u+ λ)


(

ψ+

ψ̂+

)
. (5.35)

(5.34-35) are the spatial part of two components Lax pair for KS. The temporal part can
be obtained from (4.17) and (4.19).

(
ψ−

ψ̂−

)
t

=




(
1
2a

)
[ηxx − uxx − (u− λ)(ηx − ux)],

ux − ηx
2

−
(
ηx + ux

2
+ u2 − λ2

)
, a(u− λ)




(
ψ−

ψ̂−

)
, (5.36)

(
ψ+

ψ̂+

)
t

=



ux + ηx

2
,

(
1
2â

)
[−ηxx − uxx − (u− λ)(ηx + ux)]

â(u− λ),
(
ηx − ux

2
+ u2 − λ2

)



(
ψ+

ψ̂+

)
.(5.37)

6 Conclusions

This paper has been dealing all along with the Painlevé analysis in the version formulated
by Weiss, Tabor and Carnevale [35]. Even though there is no rigorous proof so far available
of the connection between the Painlevé property and integrability the work hereby reviewed
aims to contribute to a better understanding of the validity and usefulness of methods
based on the Painlevé property for studying Nonlinear Partial Differential Equations.
With this idea in mind we would like to underscore some of the results that we have
obtained in this paper by applying the Singular Manifold Method of Weiss [36], [37].

• In Section 2, we have applied the SMM to AKNS. This method have been proved
to be quite useful to construct the Lax pair of AKNS. By applying the SMM to the
Lax pair itself Darboux transformations and Hirota functions have been constructed
algorithmically. The use of the SMM to construct solutions iteratively has been
shown with the help of examples.

• A similar procedure has been used in Section 3 to study NLBq.

• The identification of Miura transformations and Bäcklund transformations by means
of the SMM for equations with two Painlevé branches appears as the main goal
of Sections 3 and 5. There sinh-Gordon and Kaup systems are presented as the
modified versions of AKNS and NLBq respectively. Two component-Lax pairs for
both systems are obtained from the AKNS and NLBq Lax pairs as induced by the
Miura map.
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A Appendix

By substitution of (2.3) in (2.1) we obtain a polynomial in
(
φx

φ

)
whose coefficients are

(we have used the code MAPLE V for the algebraic computer algebra):

• Coefficient in
(
φx

φ

)3

4My + 2vy + 8qMx + qv2 + 2qvx = 0. (A.1)

• Coefficient in
(
φx

φ

)2

−4Mxy − 2qMxx − 6vMy − 12qvMx − 8qxMx − 2qxvx

−2qxv2 − 7
2
vvxq − 1

2
qvxx − 3vvy − 3

2
v3 = 0.

(A.2)

• Coefficient in
(
φx

φ

)

8vMxy + 4Mxx(qx + qv) + 4My(vx + v2) + 8Mx(qv2 + vqx + vy) + vyxx

+3vvxy + vxx(qx + qv) + 3vy(vx + v2) + 3qv2vx + 3vvxqx + v3qx + qv4 = 0.
(A.3)

• Coefficient in
(
φx

φ

)0

0 =Myxxx + 4MyMxx + 8MxMxy. (A.4)

(A.4) means that M is a solution of AKNS and (A.1) can be used to obtain

My = −2qMx − 1
2
vy − 1

4
qv2 − 1

2
qvx. (A.5)

The substitution of (A.5) in (A.2) is

Mxx +
vxx

4
+
vvx
4

= 0

that can be integrated as

Mx = −vx
4

− v
2

8
− λ(t)

2
, (A.6)
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where λ is a constant for the integration with respect to x. The substitution of (A.6) in
(A.5) is:

My = −vy
2
+ λ(t)q. (A.7)

The cross derivatives of (A.6) and (A.7) yield

vxy − vvy = 4λqx,

dλ

dt
= 0

that are the Singular Manifold equations.

B Appendix

• Let us substitute (3.22) in (3.3). The result is:
φx

φ
(v + 2u) +

φ̂x

φ̂
(v̂ − 2u)− 2

φx

φ

φ̂x

φ̂
= 0 (B.1)

that compared with (3.24) reads

A =
v

2
+ u, (B.2)

Â =
v̂

2
− u. (B.3)

• Taking the derivative of (3.24) with respect to x.

C Appendix

The substitution of (4.4) in (4.2) leads to a polynomial in
φx

φ
whose coefficients are:

• Coefficient in
(
φx

φ

)3

4Mxx − wt + vxx + wwx + vvx = 0. (C.1)

• Coefficient in
(
φx

φ

)2

Nt −Mxxx + 6vMxx − 2Mtw − 6M2
x +Mx(w2 − v2 − 4vx)

+w2
x − v2x + vvxx + v2vx + vwwx − vwt = 0.

(C.2)

• Coefficient in
(
φx

φ

)

vNt − vMxxx + 2Mxx(vx + v2)− 2Mt(wx + wv)− 6vM2
x

+Mx(−vxx − v3 + wt − 3vvx + wwx + w2v) = 0.
(C.3)
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If we set wt =
(
vx − v

2

2
+ p

)
x

, equation (C.1) can be integrated in x as:

Mx =
1
4

(
p− v2 − w

2

2
+ 2λ2(t)

)
, (C.4)

where λ is an integration constant. By multiplying (C.3) for v and subtracting (C.2)

2wx(−2Mt − vwwx + 2wMx) + (vx + 2Mx)(4Mxx − 2vvx) = 0. (C.5)

The substitution of (C.4) in (C.5) yields

Mt =
1
8

[
−4vwx + 2(z − w)vx + (z + w)

(
p− v2 − w

2

2
+ 2λ2(t)

)]
, (C.6)

where we have equated

px = zwx. (C.7)

The compatibility Mxt =Mtx between (C.4) and (C.7) implies that

z = 3w + 4λ, (C.8)

p =
3
2
w2 + 4λw + 2λ2, (C.9)

dλ

dt
= 0,

and therefore we obtain

wt =
(
vx − v

2

2
+
3
2
w2 + 4λw + 2λ2

)
x

, (C.10)

Mx =
1
4

[
(w + 2λ)2 − v2] , (C.11)

Mt =
1
2

{
(w + 2λ)vx − vwx + (w + λ)[(w + 2λ)2 − v2]

}
. (C.12)

D Appendix

To simplify the calculation let us define (see (4.16-17))

2α+ = 2
ψ+

x

ψ+
= v + w + 2λ, (D.1)

2α− = 2
ψ−

x

ψ− = v − w − 2λ, (D.2)

or

v = α+ + α−, (D.3)
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w + λ = α+ − α−. (D.4)

The substitution of (D.3-4) in (4.5-6) is

Mx = −α+α−, (D.5)

Mt = −α+α−
(
2α+ − 2α− − 2λ+

α+
x

α+
− α

−
x

α−

)
. (D.6)

• In order to remove α− from (D.5) and (D.6), we use (D.5) to set

α− = −Mx

α+
. (D.7)

Its substitution in (D.6) provides:

Mt =Mx

[
−Mxx

Mx
+ 2

Mx

α+
+ 2α+ + 2

α+
x

α+
− 2λ

]

=Mx

[
−Mxx

Mx
+ 2Mx

ψ+

ψ+
x
+ 2

ψ+
xx

ψ+
x

− 2λ
] (D.8)

that is (4.18). (4.20) can be obtained in the same form by removing α+ between (D.5)
and (D.6).

• The temporal part of the Lax pair is obtained from the derivation of (D.1) with respect
to t

2α+
t = 2

(
ψ+

x

ψ+

)
t

= vt + wt. (D.9)

The use of (4.9-10) yields:

2α+
t =

[
wx + wv + vx − v

2

2
+
3
2
(w + 2λ)2 − 2λ(w + 2λ)

]
x

(D.10)

that with the use of (D.3) and (D.4) finally leads to

α+
t =

[
α+

x + α
+2 − 2λα+ − 4α+α−

]
x
. (D.11)

Removing α− with the aid of (D.7)

α+
t =

[
α+

x + α
+2 − 2λα+ − 4α+2Mx

]
x
. (D.12)

Finally we can substitute (D.1) and integrate out in x as

ψ+
t

ψ+
=
ψ+

xx

ψ+
− 2λ

ψ+
x

ψ+
+ 2Mx (D.13)

that is precisely (4.19). The expression (4.21) can be obtained by repeating the same
process with (D.2).
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E Appendix

• The substitution of (5.16) in (5.1) gives
φx

φ
(−w + v + 2u) + φ̂x

φ̂
(ŵ + v̂ − 2u)− 2

φx

φ

φ̂x

φ̂
. (E.1)

The comparison with (5.18) yields to

A = u+
v − w
2
, (E.2)

Â = −u+ v̂ + ŵ
2
. (E.3)

• The derivative of (5.18) with respect to x provides just like in Appendix B
Ax = A(v̂ −A− Â), (E.4)

Âx = Â(v −A− Â). (E.5)

• The substitution of (5.16) in (5.2) gives us:
φx

φ
[−wx − wv + vx + v2 + 2uv + 2ηx] + φ̂x

φ̂
[−ŵx − ŵv̂ − v̂x − v̂2 + 2uv̂ − 2ηx]

+
(
φx

φ

)2

[w − v − 2u+ 2A] +

(
φ̂x

φ̂

)2

[ŵ + v̂ − 2u− 2Â]

+2
φx

φ

φ̂x

φ̂

[
v̂ − v + φx

φ
− φ̂x

φ̂

]
= 0.

(E.6)

The use of (E.4-5) and (5.18) yields to:
φx

φ
[−wx − wv + vx + v2 + 2uv + 2ηx + 2A(v̂ − v + Â−A)]

+
φ̂x

φ̂
[−ŵx − ŵv̂ − v̂x − v̂2 + 2uv̂ − 2ηx + 2Â(v̂ − v + Â−A)] = 0.

Setting to 0 both coefficients and using (E.2-5)

2m̂x = ηx − ux = −2A(v̂ −A) = 0, (E.7)

2mx = ηx + ux = −2Â(v − Â) = 0. (E.8)

The comparison between (E.8-9) and (4.5) leads to

A =
v̂

2
± ŵ + 2λ̂

2
, (E.9)

Â =
v

2
± w + 2λ

2
(E.10)

that compared with (E.2-3) means that A requires the plus sign and Â the minus sign and

λ = λ̂ (E.11)

which means that

u = A+
w − v
2

= −Â+ v̂ + ŵ
2

=
1
2
[w − v + ŵ + v̂ + 2λ]. (E.12)
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[13] Estévez P.G. and Gordoa P.R., Inverse Problems, 1997, V.13, 939–957.

[14] Flaschka H. and Newell A.C., Commun. Math. Phys., 1980, V.76, 65–116.

[15] Fermi E., Pasta J. and Ulam S., Studies in Nonlinear Problems I, Los Alamos, 1940.

[16] Ganesan S. and Lakshmanan M., J. Phys. A, 1987, V.20, L1143–L1147.
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