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Abstract

We investigate closed ideals in the Grassmann algebra serving as bases of Lie-invariant
geometric objects studied before by E.Cartan. Especially, the E.Cartan theory is
enlarged for Lax integrable nonlinear dynamical systems to be treated in the frame
work of the Wahlquist Estabrook prolongation structures on jet-manifolds and Cartan-
Ehresmann connection theory on fibered spaces. General structure of integrable one-
forms augmenting the two-forms associated with a closed ideal in the Grassmann
algebra is studied in great detail. An effective Maurer-Cartan one-forms construction
is suggested that is very useful for applications. As an example of application the
developed Lie-invariant geometric object theory for the Burgers nonlinear dynamical
system is considered having given rise to finding an explicit form of the associated
Lax type representation.

1 General setting

It is well known [1, 4] that motion planning, numerically controlled machining and robotics
are just a few of many areas of manufacturing automation in which the analysis and
representation of swept volumes plays a crucial role. The swept volume modeling is also
an important part of task-oriented robot motion planning. A typical motion planning
problem consists in a collection of objects moving around obstacles from an initial to a
final configuration. This may include in particular, solving the collision detecting problem.

When a solid object undergoes a rigid motion, the totality of points through which it
passed constitutes a region in space called the swept volume. To describe the geometrical
structure of the swept volume we pose this problem as one of geometric study of some
manifold swept by surface points using powerful tools from both modern differential ge-
ometry and nonlinear dynamical systems theory [2-4, 7, 8] on manifolds. For some special

Copyright ©1998 by the Authors



Lie-Invariant Geometric Objects 55

cases of the euclidean motion in the space R? one can construct a very rich hydrodynamic
system [1] modelling a sweep flow, which appears to be a completely integrable Hamil-
tonian system having a special Lax type representation. To describe in detail these and
other properties of swept volume dynamical systems in this article we develop differential-
geometric Cartan’s theory of Lie-invariant geometric objects generated by closed ideals in
the Grassmann algebra as well as investigate some special examples of euclidean motions
in R? leading to Lax type integrable dynamical systems on functional manifolds.

Let a Lie group G act on an analytical manifold Y in the transitive way, that is the
action GxY &Y generates some nonlinear exact representation of the Lie group G on the
manifold Y. In the frame of the Cartan’s differential geometric theory, the representation
G xY 2 Y can be described by means of a system of differential 1-forms

= dy’ + iégwi(a; da) € AM(Y x G) (1)
=1

in the Grassmann algebra A(Y x G) on the product Y x G, where @'(a;da) € T}(G),
it = 1,7 =dimG is a basis of left invariant Cartan’s forms of the Lie group G at a point
a€G y={y:j=1n=dmY} €Y and & : Y x G — R are some smooth real
valued functions. The following Cartan’s theorem is basic in describing a geometric object
invariant with respect to the mentioned above group action G X Y Ly

Theorem 1.(E.Cartan). The system of dif ferential forms (1) is a system of an invariant
geometric object if and only if the following conditions are fulfilled:

i) the coef ficients ff € C®(Y;R) for alli = 1,7, j = 1,n, are some analytical func-
tions on Y,

it) the dif ferential sysetm (1) is completely integrable within the Frobenius-Cartan cri-
terium.

The Theorem 1 says that the differential system (1) can be written down as

F=dy + € (y)a' (a; da), (2)

i=1

where one-forms {&w’(a;da) : i = 1,7} satisfy the standard Maurer-Cartan equations

_ . 1 I
Vi=dod +5 3 chd' A @F =0 (3)
ik=1

for all j = 1,7 on G, coefficients czk € R, i,j,k = 1,7, being the corresponding structure
constants of the Lie algebra G of the Lie group G.

Let us consider here a case when the set of canonical Maurer-Cartan one-forms
{@'(a;da) € T}(G) : i =1,r} is defined via the scheme:

T (M x Y)SST*(M) TG x Y)
l l | (4)
MxY < M % aGxy
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where M is a given smooth finite-dimensional Enanifold with some submanifold M C M
imbedded intoit as s : M — M xY,and p: M — G XY is some smooth mapping into
G x Y. Under the mappings scheme (4) the expression (3) takes the following form:

SQJ’M .—MQJ‘M =0 (5)
for all j = I,7 upon the integral submanifold M C M, where Q7 € A%2(M), j = 1,7, is
some a priori given system of 2-forms on M.

Assume further that a set {a; € A?(M) : j = 1,m,} is a basis of two-forms {Q/ €
A%2(M) : j = 1,7}, generating the ideal Z(a) C A(M). The ideal Z(«) should be
completely integrable within the Cartan criterium, because due to the set of equations
dV € I7(Q), j = 1,r, following from (3), giving Z(2) = 0 on M, from the scheme (4) it
follows that dZ(a) C Z(«) since s*Z(a) = p*Z(Q).

To define now a criterium for a Lie group action G XY 2 Y to generate a representation
of the Lie group G, we need to build the ideal Z(«a, 8) C A(M x Y'), corresponding to (2)
and (5), for a some set of forms #/ € AYM x Y), j = I,n, where s*3; := p*j3; €
A(M xY), j =1,n, and to insist it to be closed in A(M x Y), that is dZ(a, 8) C Z(a, 3),
or

i¥ =3 flab+3 gl np (6)
k=1 =1

for all j = 1,n and some f,z € A°(M xY), k =T1,mag, gg € AY(M xY),i,j =T1n.
The condition (6) assures that there exist some smooth submanifold M(Y) C M x Y, on
which a nonlinear Lie group G representation acts exactly. Thereby we have stated that
the following theorem is valid [4].

Theorem 2. The system {3} of Cartan’s one-forms 37 € AY(M xY), j = 1,n, generated
by the mapping scheme (4), describes an exact nonlinear Lie group G representation on a
manifold Y if and only if the adjoint ideal I(«, 3) generated by the system {3} and a basic
system {a} of the “curvature” 2-forms Q€ A2(M), j = 1,7, of (5), is closed together
with the corresponding ideal I(or) = I(«,0) in the Grassmann algebras A(M x Y') and
A(M) correspondingly.

Going out of the results stated above, it is naturally to make some specialization of
Cartan’s geometric construction by means of the theory of principal fiber bundles [5]. To
proceed with, let us try to interpret the Cartan differential system {5} on M x Y as
one generating a linear (r X r) - matrix adjoint representation [6,10] of the Lie algebra G,

. roo. o
putting the functions & (y) := Y ¢, 4", i,7 = 1,7, when dimY =n :=1r:
k=1
. . r . .
= dy’ + Y dyfhi(z) € A(M x Y), (7)
ik=1

where z € M, and 1-forms b'(z) on M satisfy the necessary embedding conditions
s*b' = p*o' upon M C M for all 4,7 = 1,7 in accordance with the scheme (4).
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The Lie group G acts on the linear r-dimensional space Y by the usual left shifts as
follows: Y x G 2 yxa > ay € Y for all a € G. Whence we can easily deduce the following
infinitesimal shifts in the Lie group G:

dak+Zc7 b¥(2)al € AY(M x G).

These expressions ultimately engender the next G-valued Ad-invariant 1-form w on M x G
via the isomorphic mapping p* : A/(M xY) — A} (M x G) ® G:

(8} 5 wi=a"'da + Ad,T(2), (8)
where the one-forms matrix I'(z) := ||F{€(z) I, 7,k = 1,7, belongs tO the (rxr)-matrix repre-
sentation of the Lie algebra G due to construction: |[I(z2)[| == | Z Wb(2)|| € T*H(M)®G.

The results above one can naturally interpret as a way of deflnlng [5 7] some G-valued
connection I upon a principal fibered space P(M;G), carrying the G-valued connection
1-form (8). The corresponding Cartan’s 1-forms determine the horizontal subspace of
the parallel transporting vectors of the fiber bundle P(M;G,Y) associated with P(M; Q)
according to the general theory [5] of fibered spaces with connections.

Thus, we have built the G-valued connection 1-form (8) at a point (z,a) € P(M;G)
as w := w(a) + Ad,-1T'(z), where w(a) € T*(G) ® G is the standard Maurer-Cartan left-
invariant G- valued 1-form on the Lie group G. The connection 1-form (8) is vanishing upon
the above mentioned horizontal subspace, consisting of vector fields on P(M;G), which
generate a Lie group G representation on the space Y . This means, that this horizontal
subspace necessarily defines a completely integrable differential system on P(M;G), or
equivalently, the corresponding curvature 2 € A%(M)® G of the connection T is vanishing
upon the integral submanifold M C M:

Q= dotwhw = Ad,—1(dl'(2) +T(2) AT (2)) = —Ada 1 Z Qjrd?? Ad2"| = 0.(9)
Jj=1 14
from where we obtain

8Fj(z) B 8FZ(Z)

j(2) = =5 azj +[1i(2), T ()],
m (10)
=Y Tj(2)dz’ :—ZZr’f )dz? Ay
7j=1 7j=1k=1

The vanishing curvature  (9) upon the submanifold M C M is easily explained by means
of the followimg commuting diagram:

T*(G)LST* (P(M; G)) =T (P(M; G)) L=T*(P(M; G, Y))
! | ) ! (11)
G &£ pPM;G) = PWM;G) & PWM;G,Y)

We can now derive from (12), that due to (8)

FiB = STL=Y s = Sa= =0 (12)
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giving rise to the implication (9) upon M.
Thus, if some integrable ideal Z(«) C A(M) is a priori given on the manifold M, we
can take the corresponding to (9) equation in A(M):

m
> Qpded NdZF CT(a) @G
Jik=1
both as determining the G-valued 1-forms I';(z) € T*(M) ® G, j = 1,m, and as deter-
mining a Lie algebra structure of G, taking into account the holonomy Lie group reduc-
tion theorem of Ambrose, Singer and Loos [9, 10]. Namely, the holonomy Lie algebra

G(h) C G being generated by covariant derivatives composition of the G-valued curvature
form Q € T*(M) ® G:

G(h) = sp(mR{V]l‘lV%2 LVINQG€G: jr€Zy, s ik =1,n} (13)

where, by definition, the covariant derivative V; : A(M) — A(M), j = 1,n, is given as
follows

V;:=0/02 +T(z). (14)

If the identity G(h) = spanr{Qsg € G : s,l = 1,n} takes place, that is the inclusion
[G(h),G(h)] C G(h) is reached, the holonomy Lie algebra G(h) is called perfect. Thus, we
can formulate the following equivalence theorem.

Theorem 3. Given a closed ideal Z(c) on a manifold M, dZ(a) C I(«), its 1-forms
augmentation Z(a, ) on M x'Y by means of a special set {3} of 1-forms

n
{6} := {/3’ =dy + ) W) V(2) € THM), j = 17n}, (15)
k=1

compatible with the scheme (11), is integrable within Frobenius-Cartan criterium if and
only if there exists some Lie group G action on'Y, such that the adjoint connection (8)
on a fibered space P(M;G) with the structure group G is vanishing upon the integral
submanifold M C M of the ideal (o)) C A(M). The latter can serve as the algorithm of
determining the structure of the Lie group G basing on the holonomy Lie algebra reduction
theorem of Ambrose-Singer-Loos [9, 10].

If the conditions of Theorem 3 are fulfilled, the set of 1-forms {5} (15) generates a
representation of the Lie group G upon the analytical manifold Y according to the Cartan
theorem 1. The Lie algebra G of the Lie group G can be reduced to the holonomy Lie
algebra G(h), generated via (13) by the curvature 2-form Q of the connection I' on the
principal fiber bundle P(M;G) built above.

2 An effective Maurer-Cartan one-forms construction

To proceed further in study of the integrability of Lie-invariant geometric objects generated
by the scheme (4) with some mapping s : M — G, one needs to have an effective way
of construction corresponding to the Lie algebra G ~ T}(G) the Maurer-Cartan forms
wl(a;da) € T} (G)® G, j = 1,r. Below we will describe an effective direct procedure of
building these forms on G.
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Let be given a Lie group G with the Lie algebra G ~ T.(G), whose basis is a set
{A; €G:i=1,7}, where r = dimG = dimG. Let also aset Uy C {a' € R: i=1,r} be
some open neighborhood of the zero point in R". The exponential mapping exp : Uy — G,
where by definition

R"DUy3 (a',....a —>exp<ZaZA>::a€GOCG, (16)

is an analytical mapping of the whole Uy on some open neighborhood Gq of the unity
element e € G. From (16) it is easy to find that T.(G) = T.(Gy) ~ G, where e := exp(0) €
G. Define now the following left invariant G- valued differential one-form on Gog C G:

,
@(a;da) = a 'da = Z@j(a,da)Aj g, (17)
j=1

where &/ (a;da) € T:(G),a € Gp, j = 1,r. To build effectively the unknown forms

{@(a;da) : j = 1,7}, let us consider the following analytical one-parameter one-form
T .

wi(a;da) := w(ay;day) on Gy, where a;;= exp (t D a’Ai) ,t € ]0,1], and differentiate
i=1

this form with respect to the parameter ¢t € [0, 1]. We will get that

day /dt = — Z ajAjagldat + Z a;latdajAj + Z a[ldatajAj
i=1 = j=1 (18)

= — Z aj[Aj, o] + Z Ajda;.
j=1 j=1

Having used the Lie identity [A;, Ax] = > c;-kAi, j,k = 1,r, and the right hand side of
i=1
(17) in form

@ (a;da) = Z wi(a)dak, (19)

we ultimately obtain that

d r . :
y7 —(tw](ta)) = > Altwk (ta) + 57, (20)
k=1
where the matrix Af , i,k =1,r, is defined as follows:

,
= Zcfjaj. (21)
j=1

Thus, the matrix Wf (t) := tw] (ta), i,j = 1,r, satisfies the following from (20) differential
equation [6]

AW /dt = AW + E, W|,_, =0, (22)
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where £ = H(Sf || is the unity matrix. The solution of (22) is representable as
— A" (23)

for all ¢ € [0,1]. Whence, recalling the above definition of the matrix W (t), we obtain
easily that

[e.e]

(@) =Wim)| _ =S m)7tar (24)

t=1
n=1

Thereby the task of finding the Maurer-Cartan one-form for a given Lie algebra G is solved
in the effective and constructive way, being at the same time completely algebraic.

Therefore, the following theorem solves the problem of finding in an effective algebraic
way corresponding to a Lie algebra G the left invariant one-form w(a;da) € T (G) ® G at
any a € G:

Theorem 4. Let’s be given a Lie algebra G with the structure constants c eR,i,5,k=
1,r = dimG, related to some basis {A; € G : j =1,r}. Then the adjoint to g left-invariant
Maurer-Cartan one-form @(a;da) is built as follows:

(a;da) Z A]wk, (25)
k,j=1
where the matriz W := ||wl(a)|, j,k = T, 7, is given exactly as
o . r . .
=> (a)7rAr A =) . (26)
n=1 i=1

Below we shall try to use the experience gained above in solving an analogous problem of
the theory of connections over a principal fiber bundle P(M;G) as well as over associated
with it a fiber bundle P(M;Y, G).

3 General structure of integrable one-forms augmenting the
two-forms associated with a closed ideal in the Grassmann
algebra

Given two-forms generating a closed ideal Z(«) in the Grassmann algebra A(M), we will
denote as above by Z(«, ) an augmented ideal in A(M;Y"), where the manifold Y will be
called in further the representation space of some adjoint Lie group G action: GxY 2 Y.
We can find therefore the determining relationships for the set of one-forms {4} and
2-forms {a}

{a}={a? € A2(M): j =T, ma},

(B ={F e AN\(MxY): j=L,n=dmY}, (27)
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satisfying such equations:
da' = Z al (o) Ao,
dp’ = Z fla¥ +ij A B%,

s=1

(28)

where al, (o) € AY(M), f € A°(MxY)andw] € AY(MxY) for all i,k = T,mq, j,s = 1,n.
Since the identity d?(37 = 0 takes place for all j = 1, n, from (28) we deduce the following
relationship:

Z(dwk+ZwJAwk>/\ﬂk—i-Z(dfj—i-Zwkfs+Zf )Aoﬁ: . (29
k=1 s=1 s=1 k=1 =1
As a result of (29) we obtain that

dwi f:wj/\wZEZ(a B),
n (30)
df3+Zwkfs+Z a) € Z(a, B)

for all j,k =1,n, s = 1, mq. The second inclusion in (30) gives a possibility to define the

. Ma -
1-forms 67 := Y f/al(c) satisfying the next inclusion:
=1

d01+Zka6keI @Z (31)
k=1

. m .
which we obtained having used the identities d?a? = 0, j = 1,my, in the form 3" ¢l(a) A
o’ =0,

M

ci(@) = daj(a) + Y af(a) A al(), (32)
k=1
following from (28). Let us suppose further that as s = s the 2-forms ¢J (o) = 0 for all
j =1,mq. Then as s = sp, we can define a set of 1-forms 67 := 03 € Al(M xY), j=1n,
satisfying the exact inclusions:

A’ + > Wl A OF =07 € I(a, B) (33)
k=1

together with a set of inclusions for 1-forms wi e AN (M xY)
dwl + Y w! Awj == Q) € Z(a, B) (34)
s=1

As it follows from the general theory [5] of connections on the fibered frame space
P(M;GL(n)) over a base manifold M, we can interpret the equations (34) as the equa-
tions defining the curvature 2-forms 3 € A?(P), as well as interpret the equations (33)
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as those, defining the torsion 2-forms ©7 € A%(P). Since Z(a) = 0 = Z(a, 3) upon the
integral submanifold M C M, the reduced fibered frame space P(M; GL(n)) will have the
flat curvature and be torsion free, being as a result, completely trivialized on M C M.
Consequently, we can formulate the following theorem.

Theorem 5. Let the condition above on the ideals Z(«) and Z(c, 3) be fulfilled. Then
the set of 1-forms {B} generates the integrable augmented ideal I(cv,3) C A(M xY) if
and only if there exists some curvature 1-form w € A'(P) ® Gl(n) and torsion 1-form
0 € AY(P)®R" on the adjoint fibered frame space P(M;GL(n)), satisfying the inclusions

dw+wAw € I(a,B) ®Gl(n),

(35)
dd+wNnbel(a,B) @R
Upon the reduced fibered frame space P(M;GL(n)) the corresponding curvature and tor-
sion are vanishing, where M C M s the integral submanifold of the ideal Z(c)) C A(M).

We can see from Theorem 5 that some its conditions coincide with those of Theorem 3,
concerning the properties of adjoint curvature forms w € A'(P) ® G. Thus, the condition
of existing some curvature 1-form w € A'(P) ® G, whose curvature form Q € A2(P)® G
must necessarily vanish upon the integral submanifold of the ideal Z(«) C A(M). The
nature of the second inclusion of (35) is at present not completely understood, namely
the condition of existence of the integrable augmented ideal Z(a, ) C A(M x Y'). This
problem is under started view of an article under preparation. Below we will analyse in
detail some special examples [7, 8] of the construction suggested above, concerned with
the integrable dynamical systems, given on some invariant jet-submanifolds.

4 The Cartan’s invariant geometric object structure of Lax
integrable nonlinear dynamical systems in partial deriva-
tives

Consider at the beginning some set {3} defining a Cartan’s Lie group G invariant object
on a manifold M x Y

B dy + 3 & )2, (36)

k=1

where ¢ = 1,n =dimY, r = dim G, satisfying the mapping scheme (4) with a chosen
integral submanifold M C M. This means, that the set (36) defines on the manifold ¥ a
set {&} of vector fields, compiling a representation p : G — {£} of a given Lie algebra G,

n

9 o

that is vector fields & := ng (y)ﬁ € {¢}, s = 1,r, enjoy the following Lie algebra G
— Y
7j=1
relationships

(£, &] =D i (37)
k=1
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for all 5,1,k = 1,7. We can now compute the differentials d3’ € A>(M x Y), j = 1,n,
using (36) and (37) as follows:

izaék ( ZEI )Ab’“ iggk )b (=

=1 k=1 =1
_iiagk B AR (2) ZZ agk EL(y)b*(2) AV (2 +ka )db* (2
I=1k=1 ‘ =1 k,s=1 (38)
n T a J 1 n ' a a
=zz—%<§’)mbk<z>+§z > [ Gl >58< )- &l )m )
—1k=1 Y =1 k,s=1

xdb®(z) A db®(z +ng )db* (=

iz% B Ab(2) + = Zés,gk]dbk()/\dbs(z)

I=1k=1 k‘s 1
+Z§; )db* (= ZZ‘%’@ B A br(2)
I=1k=1
+;ZZ b (2) A dbe (2 +ng )b (= ZZ ﬁl/\b()
=1 k,s=1 1=1k=1

ksl

+ig{' (dbl + = Z ch bk ( )AdbS(z)) ;€ I(a, B) C A(M x Y),
=1

where {a} C A%2(M) is some a priori given integrable system of 2-forms on M, vanishing
upon the integral submanifold M C M. It is obvious that inclusions (38) take place if and
only if the following conditions are fulfilled: for all j = 1,r

)+ = Z . db*(2) A db®(2) € T(a). (39)
ks 1

The inclusions (39) mean in particular, that upon the integral submanifold M C M of the
ideal Z(a) C A(M) the equalities

ol = s, (40)

are true, where @’/ € T)(G), j = 1,7, are the left invariant Maurer-Cartan forms on the
invariance Lie group G. Thus, due to inclusions (39) all conditions of Cartan’s Theorem
1 are enjoyed, giving rise to a possibility to obtain the set of forms b(z) € AY(M) in an
explicit form. To do this, let us define a G-valued curvature 1-form w € AY(P(M;G)) ® G
as follows

w = Ad, (i Ajbj) +w (41)

=1
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where w € G is the standard Maurer-Cartan 1-form on G, built in Chapter 2. This 1-

r :
form satisfies followed by (39) the canonical structure inclusion (9) for I' := > A;b/ €
j=1
A (M) ®G:
A +T AT €Z(a) ® G, (42)

serving as a main relationships determining the form (41) in accordance with results of
Chapter 3. To proceed further we need to give the set of 2-forms {a} C A%(M) in explicit
form.

Example 1. The Burgers dynamical system.
Let’s be given the following Burgers dynamical system on a functional manifold
M c C*(R;R):

Up = Uy + Ugzg, (43)

where u € M, t € R is an evolution parameter. The flow (43) on M can be recast into a
set of 2-forms {a} C A%(J(R?; R)) upon the adjoint jet-manifold J(R?;R) as follows:

{a} = {du(o) Adt —uDdz Adt = o', du® A dz + u©dul® A dt

. (44)
Fdu® pdt = a2 (a0 D) € Mt C RER)),

where M* is some finite-dimensional submanifold in J!(R?;R)) with coordinates (m,t,

w0 = o, uM) = ux) The set of 2-forms (44) generates the closed ideal Z(«), since

da' = dz A a? —uQdz Ao, da? =0, (45)

the integral submanifold M = {z,t € R} C M* being defined by the condition Z(a) = 0.
We now look for a reduced ”curvature” 1-form I' € A'(M*) ® G, belonging to some not
yet determined Lie algebra G. This 1-form can be represented using (44), as follows:

U= b0 (w® uM)da + 6@ (u® uM)at, (46)
where elements b, b)) € G satisfy such determining equations, engendered by (42):
ob@) ob(@) ob®)
(0) 1 el ()

ENO du'™ A dx + e du'” Ndx + MO du'™ A dt

o)

T du® () p®) =

+8u(1)du Adt+ [ bW ]dx A dt = Q (47)

= g (du® A dt —uWVdx A dt) + go(du® A da
+u@du® A dt + du™ A dt) € T(a) @ G

for some G-valued functions g1, g2 on M. From (47) it follows that

ob(®) ob(®) ob® ©)
8U(0) = 92, 8u(1) = 07 au(o) =01+ gau',

® (48)
ob

0D 9 b, 60] = —uMg,.
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The set (48) has the following unique solution

b(x) = A() + Alu(o),

0)? (49)

(
LAy + Ay, AgJu© + Ay,

b = oy A4, +
2

where A; € G, j = 0,2, are some constant elements on M of a Lie algebra G under search,
enjoying the next Lie structure equations:

[Ag, Az] =0,
[AOa [AL AOH + [Al, AQ] = 0, (50)
(A1, [A1, Aol] + 5[40, 4] = 0.

From (48) one can see that the curvature 2-form Q € spanr{A1,[Ao, A1]: A; € G, j =
0,1}. Therefore, reducing via the Ambrose-Singer theorem the associated principal fibered
frame space P(M; G = GL(n)) to the principal fiber bundle P(M;G(h)), where G(h) C G
is the corresponding holonomy Lie group of the connection I' on P, we need to satisfy the
following conditions for the set G(h) C G to be a Lie subalgebra in G : VI'V}Q € G(h)
for all m,n € Z,.

Let us try now to close the above transfinitive procedure requiring that

G(h) =G(h)o := spanr{V,yViQeG: m+n=0} (51)
This means that
G(h)o = spanr{A1, Az = [Ao, A1]}. (52)

To enjoy the set of relations (50) we need to use expansions over the basis (52) of the
external elements Ay, A2 € G(h):

Ao = qo1 41 + qi3As, Ay = 2141 + 23 As. (53)

Substituting expansions (53) into (50), we get that go1 = ¢a3 = A, q21 = —A?/2 and
go3 = —2 for some arbitrary real parameter A € R, that is G(h) = spanr{A1, As}, where

[A1, A3] = A3/2;  Ag=MA; — 243, A= —)\2A1/2+ M. (54)

As a result of (54) we can state that the holonomy Lie algebra G(h) is a real two-
dimensional one, assuming the following (2 x 2)-matrix representation:

w4 b we (3 )

(N4 =2 o (=AF8 A
t0= (" D) 4= (T )
Thereby from (46), (49) and (55) we obtain the next reduced curvature l-form I' €

A (M)®G
T = (Ao +udy)dz + ((ug +u?/2) Ay — uAz + Ag)dt, (56)

(55)
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generating parallel transporting of vectors from the representation space Y of the holonomy
Lie algebra G(h):

dy+Ty=0 (57)

upon the integral submanifold M C M* of the ideal Z(a), generated by the set of 2-forms
(44). The result (57) means also that the dynamical system (43) is endowed with the
standard Lax type representation, having the spectral parameter A € R necessary for its
integrability in quadratures.

In the case when the condition

G(h) =G(h)1 = spang{VyViQeG: m+n=0,1}

is assumed satisfied, one can compute that

G(h)1 = spanr{Vy'Vig; €G: j=1,2, m+n=0,1}
= spanr{g; € G; 9g;/0x + [g;, Ao + Aru)],
dg;j /0t + [gj,uM A +u® Ay /2 + [Ar, AgJu® + As] € G+ j =T,2} (58)
= spanr{A1, [A1, Ao], [[A1, Ao], Ao), [[A1, Ao), A1l
[A1, A2], [[A1, Ao), A2] € G} = spanr{Ajz € G: j =17},

where, by definition,
[A1, Ao] = A3, [A3,Ag] = Ay, [A3,A] = Ay,

(59)
[A3, A1) = A5, [A1, As] = Ag.

As aresult, we have the following expansions for undetermined hidden elements Ag, A3 € G

7 7
Ao = Z quAj, AQ = Z q2jAj, (60)
J=1,j#2 J=1,j#2

where qo;, g2; € R are some real members to be found successfully from conditions (58) and
(59) as well as from the standard Jacobi identities. Having found some finite-dimensional
representation of the Lie algebra G(h) = G(h); (58) and substituted it into (56), we will
be in a position to write down the parallel transportation equation (57) in a new Lax
type form useful for the study of exact solutions to the Burgers dynamical system (43).
The analogous calculations could be fulfilled effectively in cases of any other nonlinear
dynamical systems [7,8], integrable by Lax on some infinite-dimensional functional spaces.
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