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Abstract

Heisenberg motion equations in Quantum mechanics can be put into the Hamilton
form. The difference between the commutator and its principal part, the Poisson
bracket, can be accounted for exactly. Canonical transformations in Quantum me-
chanics are not, or at least not what they appear to be; their properties are formulated
in a series of Conjectures.

1 Introduction

The motion equations of Classical mechanics, in the Hamilton form, are:

q̇i =
∂H

∂pi
, (1.1a)

ṗi = −∂H

∂qi
. (1.1b)

Here i = 1, . . . , N , and H, the Hamiltonian, is a function of the pi’s and qi’s, most often
polynomial in the momenta pi’s. The overdot, as usual, denotes the time derivative.

The motion equations of Quantum mechanics, in the Heisenberg form, are:

q̇i = h−1[H, qi], (1.2a)

ṗi = h−1[H, pi]. (1.2b)

Here H again is a “function” of the pi’s and qi’s; the latter, however, no longer commute
between themselves but are, instead, subject to the commutation relations

[pk, q�] = hδk�, [pk, p�] = [qk, q�] = 0, (1.3)
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the complex number
√−1 having been absorbed into h for future convenience. The straight

bracket notation stands for the commutator:

[u, v] = uv − vu. (1.4)

These two types of motion equations are known as not entirely unrelated. For example, if
the pi’s and the qi’s are treated as operators, then the Classical equations (1.1) describe
the motion of the mean values of these operators provided the Hamiltonian is quadratic
in its arguments. (This is a Corollary of Ehrenfest’s Theorem. These and other mysteries
are revealed in Messiah’s classic text on Quantum Mechanics [8].)

The first main result of this paper is an observation that the Quantum motion equa-
tions (1.2) can be recast into the Classical form (1.1) provided one properly defines the
notion of partial derivatives entering into the RHS of the equations (1.1). This is done
in the next Section. The main idea is to treat Quantum notions as special instances of
noncommutative objects and then utilize noncommutative algebra concepts.

If the motion equations (1.1) and (1.2) are rewritten in the equivalent form as, respec-
tively,

Ḟ = {H,F}, (1.5)

Ḟ = h−1[H,F ], (1.6)

where F is an arbitrary function of the pi’s and qi’s and {·, ·} denotes the Poisson bracket:

{H,F} =
∑

i

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
, (1.7)

one can ask whether these two forms are related in some precise manner. Certainly, one
knows that the Poisson bracket is the “main part” of the commutator, in the sense that

lim
h→0

h−1[H,F ] = {H,F}, (1.8)

as a physicist would say, or

{H,F} = h−1[H,F ] (mod h) (1.9)

as is preferred by mathematicans. In Section 3 we shall verify that, when the number N
of degrees of freedom equals 1,

h−1[H,F ] =
∑
s≥1

(−h)s−1

s!

(
∂sH

∂ps

∂sF

∂qs
− ∂sF

∂ps

∂sH

∂qs

)
, (1.10)

where the partial derivatives in the RHS are understood in the same sense, to be defined
in Section 2, as those entering formulae (1.1) when considered noncommutatively. (The
general case N ≥ 1 is covered by formula (3.22).) We shall see that formula (1.10) is related
to the definition of multiplication on the space of normally quantised Hamiltonians.

In Section 4 we consider the question of canonical transformations in Quantum me-
chanics, reformulate the Classical Jacobian conjecture into a symplectic object, quantize
it, and state various generalizations of it.
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2 Heisenberg as Hamilton in disguise

Let us first fix notations and conventions. Our basic number field F (such as Q, R, C, etc.)
will be of characteristic zero; this is not essential for results, but allows shortcuts in proofs.
Instead of a field F one can take any associative ring (or Q-algebra) commuting with the
function-ring generators, but we shan’t travel this route either, to avoid interruptions by
remarks. Our function rings will always be polynomial, again to bypass necessary pedantic
comments; nothing much will change if we allow unspecified functions of the qi’s (rational,
algebraic, etc.) as is the case in practical mechanics, because all our formulae will describe
identities between differential operators, and the said identities remain true no matter
what objects these differential operators are allowed to act upon.

We start with the associative ring

C = Cu = F〈u1, . . . , um〉, (2.1)

consisting of polynomials in noncommuting variables u1, . . . , um; all with coefficients in F .
(The coefficients are always assumed to commute with the field variables ui’s.) If x ∈ C
then L̂x and R̂x denote the operators of left and right multiplication by x in C:

L̂x(y) = xy, R̂x(y) = yx, ∀ x, y ∈ C. (2.2)

The associative ring generated by the operators L̂x and R̂x, for all x in C, is denoted

Op0(C). (2.3)

We shall utilize the following useful elements in this operator ring ([7]): For any H ∈ C,

∂∼H

∂uk
∈ Op0(C) (2.4)

is the following operator:

∂∼H

∂uk
(x) =

d

dε

∣∣∣∣
ε=0

(
H

∣∣∣∣
uk→uk+εx

)
, x ∈ C. (2.5)

Alternatively, we can describe the operation
∂∼

∂uk
itself as a derivation (over F) of C into

Op0(C):

∂∼

∂uk
: C → Op0(C), (2.6a)

which acts on the generators of C by the rule

∂∼

∂uk
(us) = δks. (2.6b)

If X ∈ Der(C) is a derivation of C (over F) then, obviously,

X(H) =
∑
k

∂∼H

∂uk
(X(uk)) =:

∂∼H

∂u
(X), ∀ H ∈ C. (2.7)
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The same equality can be described in a more familiar form. First, let us write sugges-
tively, but imprecisely,

X =
∑
k

X(uk)
∂

∂uk
, ∀ X ∈ Der(C), (2.8)

to mean nothing more than X ∈ Der(C) is uniquely determined by the action of X on the
uk’s. Second, let

Ω1(C) =

{∑
ks

ϕksdukψks | ϕks, ψks ∈ C

}
(2.9)

be the C-bimodule of 1-forms over C, with the universal derivation d : C → Ω1(C) acting
naturally on the generators of C by the rule

d(uk) = duk, k = 1, . . . ,m. (2.10)

Then

d(H) =
∑
k

∂∼H

∂uk
(duk), (2.11)

where
∂∼H

∂uk
, as an element of Op0(C), is extended naturally to act on any C-bimodule,

in this case Ω1(C). If we now define the familiar pairing

Ω1(C) × Der(C) → C (2.12)

by the rule〈∑
ϕksdukψks, X

〉
=

(∑
ϕksdukψks

)
(X) =

∑
ϕksX(uk)ψks, (2.13)

then formula (2.7) can be rewritten in the familiar form

X(H) = 〈dH,X〉 = dH(X). (2.14)

So far we haven’t met any p’s or q’s. We shall get to them at the very end of this Section,
for more general formulae we work with now are more transparent and easier to handle.

For lack of better notation, we shall denote by
∂H

∂uk
the following element of the ring

C, not of the ring Op0(C):

∂H

∂uk
=

∂∼H

∂uk
(1) =

d

dε

∣∣∣∣
ε=0

(
H

∣∣∣∣
uk �→uk+ε

)
. (2.15)

If H is a homogeneous polynomial of degree � = deg(H) and Xrad ∈ Der(C) is the radial
derivation of C:

Xrad(uk) = uk, k = 1, . . . ,m, (2.16)
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then we have the following noncommutative analog of the Euler Theorem on homogeneous
functions:

Xrad(H) =
(∑

uk
∂

∂uk

)
(H) = �H = deg(H)H. (2.17)

Suppose now that we impose some commutation relations on the ui’s. This means that
we are given a finite or infinite system of polynomials (or, in more general circumstances,
power series, etc.)

Rr =
∑
σ

crσu
σ, crσ ∈ F , (2.18a)

uσ := uσ1 . . . uσs for σ = (σ1, . . . , σs), σc = 1, . . . ,m, (2.18b)

and we form the factor-ring

Cnew
u = Cu/IR, (2.19)

where IR is the two-sided ideal in Cu generated by the polynomials Rr’s. If we want now
to consider some “motion equations” in the ring Cnew

u , i.e., elements of the Lie algebra
Der(Cnew

u ), we have to look at only those derivations X ∈ Der(Cu) which preserve the
ideal IR. There exists quite a number of such special derivations, namely the elements

{adF := L̂F − R̂F | F ∈ Cu}. (2.20)

Indeed, any element of the ideal IR is a finite sum of the terms

{ϕPrψ | ϕ,ψ ∈ C}. (2.21)

But then

adF (ϕPrψ) = FϕPrψ − ϕPrψF (2.22)

is again an element of IR. In the physical language, if

u̇i = [F, ui], i = 1, . . . ,m, (2.23)

so that

ui(t + ∆t) = ui(t) + ∆t[F, ui(t)] + O(∆t)2, (2.24)

then ∑
crσu

σ(t + ∆t) =
∑

crσu
σ(t) + ∆t

[
F,

∑
crσu

σ(t)
]

+ O(∆t)2, (2.25)

so that the commutation relations on the ui’s are preserved in time.
There may exist also some other derivations of the ring Cu which preserve a particular

ideal IR. This is the case we are interested in, with the derivations in question being the

“partial derivatives”
∂

∂uk
(2.15).
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Lemma 2.26. Suppose we are given the relations

Pij = uiuj − ujui − cij , cij = −cij ∈ F . (2.27)

Then the derivations
∂

∂uk
preserve the two-sided ideal generated by these relations.

Proof. We have

∂

∂uk
(Pij) = δikuj + δjkui − δjkui − δikuj = 0, (2.28)

and hence

∂

∂uk
(ϕPijψ) =

∂ϕ

∂uk
Pijψ + ϕPij

∂ψ

∂uk
∈ IR. (2.29)

Corollary 2.30. In the ring Cnew
u :

Cnew
u = F〈u1, . . . , um〉/ ([ui, uj ] = cij) (2.31)

the objects{
∂H

∂uk

∣∣∣∣ H ∈ Cnew
u , k = 1, . . . ,m

}
(2.32)

are well-defined and satisfy formulae

adui(H) =
∑
k

∂H

∂uk
cik. (2.33)

Proof. By formula (2.7),

adui(H) =
∑
k

∂∼H

∂uk
(adui(uk)) in Cu. (2.34)

By formula (2.27),

[ui, uj ] = cij in Cnew
u . (2.35)

Hence, now in Cnew
u ,

adui(H) =
∑
k

∂∼H

∂uk
(cik) =

∑
cik

∂∼H

∂uk
(1) =

∑
cik

∂H

∂uk
. (2.36)

Corollary 2.37. Consider the case where F is replaced by

Fh = F [ [h] ], (2.38)

the ring of formal power series in h, and the ui’s are taken to be the pi’s and the qi’s, with
the commutation relations

[pi, qi] = hδij , [pi, pj ] = [qi, qj ] = 0. (2.39)

Then the Heisenberg motion equations (1.2) take the Hamiltonian form (1.1).
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Proof. We can transform formulae (1.2) as follows:

q̇i = h−1[H, qi] = −h−1adqi(H)
[by (2.33,39)]

= − h−1∂H

∂pi
(−h) =

∂H

∂pi
,

ṗi = h−1[H, pi] = −h−1adpi(H) = −h−1∂H

∂qi
h = −∂H

∂qi
.

Remark 2.40. Like in the commutative algebra and analysis, partial derivatives commute
between themselves both in Cu and Cnew

u :

∂2H

∂ui∂uj
=

∂2H

∂uj∂ui
. (2.41)

This is clear from the definition (2.15).

Remark 2.42. The operator-valued partial derivatives
∂∼H

∂uk
satisfy the chain rule: If the

uk’s are functions of the ϕα’s then

∂∼H

∂ϕα
=

∑
k

∂∼H

∂uk

∂∼uk

∂ϕα
. (2.43)

Indeed,

uk(ϕ1, . . . , ϕα + εx, . . .) = uk(ϕ) + ε
∂∼uk

∂ϕα
(x) + O

(
ε2

)
. (2.44)

Therefore,

H(u1(ϕα + εx), . . . , um(ϕα + εx)) = H

(
u1(ϕ) + ε

∂∼u1

∂ϕα
(x) + O

(
ε2

)
, . . .

)

= H(u(ϕ)) + ε
∑
k

∂∼H

∂uk

(
∂∼uk

∂ϕα
(x)

)
,

(2.45)

so that

d

dε

∣∣∣∣
ε=0

H(ϕ1, . . . , ϕα + εx, . . .) =
∂∼H

∂ϕα
(x) =

∑ ∂∼H

∂uk

∂∼uk

∂ϕα
(x), ∀ x, (2.46)

and formula (2.43) follows.

3 Commutator vs Poisson bracket

On the way to verify formula (1.10), we shall prove first a more general statement. Suppose
we impose the relations

[ui, uj ] = hcij , 1 ≤ i, j ≤ m, cij = −cij ∈ F , (3.1)

on the ring Fh〈u1, . . . , um〉. We can think of these relations as the rules allowing us to
reduce every polynomial in the ui’s to a specific lexicographic form by choosing an ordering
among the generators ui’s. The original relations (3.1), in the form

uiuj = ujui + hcij , (3.2)
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imply, and are equivalent to, the series of relations

un
i

n!
um

j

m!
=

∑
s≥0

(hcij)s
um−s

j

(m− s)!
un−s

i

(n− s)!
, n,m ∈ N. (3.3)

This series of relations, in turn, is equivalent to the single formal relation

Eλ·uEµ·u = Eµ·uEλ·ueh〈λ,µ〉 (3.4)

in Fh〈u1, . . . , um〉[[λ, µ]], where

Eλ·u = eλ1u1 . . . eλmum , (3.5)

〈λ,µ〉 =
∑

cijλiµj = −〈µ,λ〉. (3.6)

Lemma 3.7. Define the coefficients {θσσ′} in F by the identity:

∑
s≥1

(−h)s−1

s!
〈λ,µ〉s =

∑
σσ′

θσσ′λσµσ′ (−h)−1+(|σ|+|σ′|)/2

((|σ| + |σ′|)/2)!
, (3.8)

where

λσ = λσ1
1 . . . λσm

m for σ = (σ1, . . . , σm), σi ∈ Z+, (3.9a)

|σ| = σ1 + · · · + σm. (3.9b)

Then

h−1[H,F ] =
∑
s≥1

(−h)s−1

s!

∑
|σ|=|σ′|=s

θσσ′
∂|σ|H
∂uσ

∂|σ′|F
∂uσ′ , (3.10)

where

∂|σ|H
∂uσ

=
∂σ1

∂uσ1
1

· · · ∂σm

∂uσm
m

(H) for σ = (σ1, . . . , σm). (3.11)

Proof. It’s enough to check formula (3.10) for the case

H = Eλ·u, F = Eµ·u. (3.12)

Then

h−1[H,F ] = h−1
(
Eλ·uEµ·u − Eµ·uEλ·u

)
[by (3.4)]

= HF
1 − eh〈µ,λ〉

h
= HF

1 − e−h〈λ,µ〉

h
=

e−h〈λ,µ〉 − 1
−h

HF

=
∑
s≥1

(−h)s−1

s!
〈λ,µ〉sHF

[by (3.8)]
=

∑
θσσ′λσµσ′ (−h)−1+···

(· · ·)!

=
∑
s≥1

(−h)s−1

s!

∑
|σ|=|σ′|=s

θσσ′
∂|σ|H
∂uσ

∂|σ′|F
∂uσ′ .
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The terms with s = 1 in the RHS of formula (3.10) comprise the Poisson bracket part,
for formula (3.8) implies that

θij = cij . (3.13)

If we now specialize to the Quantum case when [pi, qj ] = hδij , we will not get formula
(1.10), for in the RHS of formula (3.10) H stands always to the left of F and the (H,F )
– skewsymmetry is thus hidden. But we can emulate the proof of Lemma 3.7. First, we
convert the relations

[pi, qj ] = hδij , [pi, pj ] = [qi, qj ] = 0, (3.14)

into the singl formal relation

eλ·peα·q = ehλ·αeα·qeλ·p. (3.15)

Next, we take

H = eα·qeλ·p, F = eβ·qeµ·p. (3.16)

Now, consider the operators

OHF =
∂H

∂p
· ∂

F

∂q
: HF �→

∑
i

∂H

∂pi

∂F

∂qi
, (3.17a)

OFH =
∂F

∂p
· ∂

H

∂q
: FH �→

∑
i

∂F

∂pi

∂H

∂qi
. (3.17b)

Let us verify that

e−hOHF (HF ) = (smbl(H)smbl(F ))normal, (3.18)

where, for H ∈ Cnew
u , smbl(H) ∈ F [u1, . . . , um] is the symbol of H which results by letting

h vanish (in Cnew
u /(hCnew

u )), and the subscript “normal” denotes the normal quantization,
with the qi’s standing to the left of the pi’s. Indeed, for H and F given by formula (3.16),

e−hOHF (HF ) =
∑
s≥0

(−hλ · β)s

s!
HF = e(α+β)·qe(λ+µ)·p. (3.19)

Since

smbl(H)smbl(F ) = smbl(F )smbl(H), (3.20)

formula (3.18) implies:

e−hOHF (HF ) = e−hOFH (FH), (3.21)

so that

h−1[H,F ] = h−1(HF − FH) =
e−hOHF − 1

−h
(HF ) − e−hOFH − 1

−h
(FH)

=
∑
s≥1

(−h)s−1

s!
((OHF )s(HF ) − (OFH)s(FH)) .

(3.22)
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For the case when the number of degrees of freedom N = 1,

OHF (HF ) =
∂H

∂p

∂F

∂q
, (3.23)

and formula (3.22) yields formula (1.10).

Remark 3.24. Formula (3.21) implies that we have a symmetric bilinear form in the
noncommutative ring Cnew

p,q :

(H,F ) = e−hOHF (HF ). (3.25)

There exists another attractive bilinear form on this ring, this time with values in the
commutative ring F [qi][[h]]:

(H,F ) = Res(HF †), (3.26)

where

Res
(∑

cσσ′qσpσ′)
:=

∑
cσ0q

σ, (3.27)

and † is an antiinvolution (over Fh):

(HF )† = F †H†, (3.28)

defined on the generators qi’s and pi’s by the rule

q†i = qi, p†i = −pi, i = 1, . . . , N. (3.29)

The bilinear form (H,F ) (3.26) is not symmetric in the linear algebra sense, but it is
symmetric in the differential algebra sense:

(H,F ) ∼ (F,H), (3.30)

where, for elements a, b ∈ F [qi][ [h] ], we write

a ∼ b to mean (a− b) ∈
∑

i

Im
∂

∂qi
. (3.31)

To prove formula (3.30), we take H and F given by formula (3.16). Then

(H,F ) = Res(HF †) = Res
(
eα·qeλ·pe−µ·peβ·q

)
= Res

(
e(α+β)·qe(λ−µ)·pe(λ−µ)·βh

)
= e(λ−µ)·βhe(α+β)·q.

(3.32)

Hence,

(F,H) = e(µ−λ)·αhe(α+β)·q = e(µ−λ)·(α+β)h(H,F )

= eh(µ−λ)·∂/∂q(H,F ) ∼ (H,F ).
(3.33)
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4 Canonical transformations, special and general

If M is a smooth manifold and T ∗M is the contangent bundle (= the phase space) of M ,
then any transformation

ϕ : M → M (4.1)

is uniquely lifted to a transformation

ϕ̄ : T ∗M → T ∗M (4.2)

covering ϕ, by the requirement that the canonical 1-form

ρ = pdq (4.3)

on T ∗M be preserved:

ϕ̄∗(ρ) = ρ. (4.4)

Re-expressing this picture analytically/algebraically, we start with an automorphism Φ of
the ring Cq

Φ : Cq → Cq, Cq = F [q1, . . . qN ], C∞(q1, . . . , qN ), . . . (4.5)

Φ(qi) = Qi = Qi(q1, . . . , qN ), i = 1, . . . , N, (4.6)

and then determine the elements

Φ̄(pi) = Pi = Pi(q, p) (4.7)

from the requirement that

pdq = PdQ : (4.8)

∑
j

pjdqj =
∑

i

PidQi =
∑

PiQi,jdqj . (4.9)

Thus,

pj =
∑

i

PiQi,j , j = 1, . . . , N. (4.10)

Denote by

J = JQ|q =
(
∂Qi

∂qj

)
(4.11)

the Jacobian of the map Φ. The transformation formulae (4.10) can be rewritten in one
of the equivalent forms:

pt = P tJ, (4.12a)

P t = ptJ−1, (4. 12b)
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P = (J−1)tp, (4.12c)

where p, P, q, Q are thought of as column-vectors. Since the canonical 1-form pdq is
preserved, the symplectic 2-form dp∧dq is preserved as well. Therefore, the basic Poisson
brackets are also preserved:

{Pi, Pj} = {Qi, Qj} = 0, {Pi, Qj} = δij . (4.13)

Remark 4.14. If one concentrates on the preservation of the Poisson brackets only, that
is, of the 2-form dq ∧ dq, rather than the canonical 1-form pdq, the uniqueness of the
lifting of ϕ into ϕ no longer holds. For example, we can replace formula (4.4) by the
relation

ϕ ∗(ρ) = ρ + ω, (4.15)

where ω is a closed 1-form on M lifted into T ∗M . Taking

ω = d(f), f ∈ Cq, (4.16)

we find, instead of formula (4.10), the relations

pj =
∑

PiQi,j + f,j , (4.17)

P = (J−1)t (p − ∇(f)) . (4.18)

We shall see below that such nonuniqueness is unavoidable in Quantum mechanics.

Lemma 4.19. Formulae (4.6,12c) preserve the Quantum commutation relations

[qi, qj ] = [pi, pj ] = 0, [pi, qj ] = hδij , 1 ≤ i, j ≤ N. (4.20)

Proof. Obviously,

[Qi, Qj ] = 0. (4.21)

Next,

[Pi, Qj ] =

[∑
α

(
J−1

)t

iα
pα, Qj

]
=

∑ (
J−1

)
αi

hQj,α = h
∑
α

(
J−1

)
αi

Jjα = hδij .(4.22)

Finally,

PiPj =
∑ (

J−1
)
αi

pα

(
J−1

)
βj

pβ =
∑ (

J−1
)
αi

{(
J−1

)
βj

pα + h
(
J−1

)
βj,α

}
pβ , (4.23)

whence

h−1[Pi, Pj ] =
∑
β

〈∑
α

(
J−1

)
αi

(
J−1

)
βj,α

−
∑
ν

(
J−1

)
νj

(
J−1

)
βi,ν

〉
pβ. (4.24)

Now, (
J−1

)
βj,α

= − (
J−1J,α J−1

)
βj

= −
∑
µν

(
J−1

)
βµ

Jµν,α

(
J−1

)
νj

, (4.25a)
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and thus(
J−1

)
βi,ν

= −
∑
µα

(
J−1

)
βµ

Jµα,ν

(
J−1

)
αi

. (4.25b)

Substituting formulae (4.25) into formula (4.24) and noticing that

Jµν,α =
∂2Qµ

∂qν∂qα
= Jµα,ν , (4.26)

we find that

[Pi, Pj ] = 0. (4.27)

The nonuniqueness of quantum formulae (4.12c) can be demonstrated in two ways.

Lemma 4.28. The transformation

Qi = qi, Pi = pi + g,i , i = 1, . . . ,m, g ∈ Cq, (4.29)

preserves the quantum commutation relations (4.20).

Proof. We have

[Pi, Pj ] = [pi + g,i , pj + g,j ] = hg,ij −hg,ji = 0, (4.30)

and the rest of the relations are obviously satisfied.

Lemma 4.31. The transformation

Qi = Qi(q), (4.32a)

Pi =
∑
α

pα

(
J−1

)
αi

, i = 1, . . . , N, (4.32b)

is also a quantum canonical transformation.

Proof. (A) The new formulae (4.32) are just the mirror image of the old ones, (4.6,12c),
and † is an (anti)isomorphism. (B) Alternatively, we can straightforwardly calculate like
in the proof of Lemma 4.19, and keep all the pα’s to the left of the qβ ’s.

Thus, given a transformation Φ : Cq → Cq, we have two different lifts of it into
quantum canonical maps, Φr (4.6,12c), and Φ� (4.32):

Φr(qi) = Qi(q), Φr(pi) =
∑
α

(
J−1

)
αi

pα, (4.33)

Φ�(qi) = Qi(q), Φ�(pi) =
∑
α

pα

(
J−1

)
αi

. (4.34)

How are these two maps related? Let us consider the composition Ψ = ΦrΦ−1
� :

Ψ(qi) = qi, Ψ(pi) =
∑
αβ

(
J−1

)
αβ

pαJβi, 1 ≤ i ≤ N. (4.35)
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Lemma 4.36.

Ψ(p) = p + h∇(g), (4.37a)

g = ln det(J). (4.37b)

Proof. From formulae (4.35) we find:

Ψ(pi) =
∑(

J−1
)
αβ

{Jβipα + hJβi,α} = pi + h
∑ (

J−1
)
αβ

Jβi,α. (4.38)

But ∑ (
J−1

)
αβ

Jβi,α =
∑ (

J−1
)
αβ

Jβα,i = Tr
(
J−1J,i

)
[by formula (4.42) below]

= (ln det(J)),i .
(4.39)

Remark 4.40. Recall that if A ∈ Matn(Cq) then

d(ln det(A)) = Tr(A−1dA), (4.41)

in the sense that

(ln det(A)),i = Tr(A−1A,i ) =
∑

(A−1)αβAβα,i. (4.42)

Indeed, Let B = ln(A), so that A = eB. Then

Tr(A−1dA) = Tr
(
e−Bd(eB)

)
= Tr

(
e−B

∑ Bsd(B)Br

(r + s + 1)!

)

= Tr
(
e−B

∑ BrBsd(B)
(r + s + 1)!

)
= Tr

(
e−B

∑ B�d(B)
�!

)
= Tr(dB))

= d Tr(B) = d(ln det(eB)) = d(ln det(A)).

Remark 4.43. Formula (4.41) is rational in A. An equivalent formulation, regular in A,
is

d(det(A)) = Tr(adj(A)dA), (4.44)

where adj(A) is the adjugate matrix of A:

adj(A)A = A adj(A) = det(A)1. (4.45)

Remark 4.46. Which one of the maps Φr or Φ� is right in practice? Unfortunately,
this is the sort of question akin to the problem of “right” quantization, that is to say,
a wrong and misleading one. The “right” answer depends on the problem at hand, i.e.,
the Hamiltonian, and it may be nonunique nonetheless. I shall leave an elaboration of
this point to the future. Let us consider instead an instructive case of the mechanical
Hamiltonians, those of the form

H =
∑

aij(Q)PiPj + V (Q). (4.47)
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It is well-known in Quantum mechanics that if Pk’s are treated as h
∂

∂Qk
’s (recall that

√−1 has been absorbed into h) then the selfadjoint form of H is

H =
∑

Pia
ij(Q)Pj + V (Q). (4.48)

In other words,

H† = H. (4.49)

How does one transform such an H under a change of variables qi �→ Φ(qi) = Qi(q) (4.6),
and still preserve the selfadjointness of H? Let us look at the simple example of a free
particle in polar coordinates:

x = r cos θ, y = r sin θ, (4.50a)

J =
(

cos θ − sin θ
sin θ cos θ

) (
1 0
0 r

)
⇒ J−1 =

(
1 0
0 r−1

) (
cos θ sin θ
− sin θ cos θ

)
. (4.50b)

Thus, for the left form (4.34) we get

(px, py) = (pr, pϕ)
(

1 0
0 r−1

) (
cos θ sin θ
− sin θ cos θ

)
= (pr cos θ − pθr

−1 sin θ, pr sin θ + pθr
−1 cos θ).

(4.51)

Hence, for the right form (4.33) we obtain

(px, py) =
(
cos θpr − r−1 sin θpθ, sin θpr + r−1 cos θpθ

)
. (4.52)

Now, the Hamiltonian p2
x + p2

y becomes:

p2
x + p2

y = p2
r + r−2p2

θ − hprr
−1 (left form), (4.53�)

p2
x + p2

y = p2
r + r−2p2

θ + hr−1pr (right form), (4.53r)

and neither of these is physically palatable by virtue of not being selfadjoint. This obser-
vation seems to suggest that a substantial fraction of literature on Quantum mechanics is
beside the point. What the point or points is or are I’ll again leave for the future can-of-
worms operations. Let us return to the mechanical Hamiltonian H (4.48): how should it
transform in order to preserve its selfadjointness? We have seen above that neither the
left nor the right transformation is satisfactory.

Lemma 4.54. Denote the left and right transformations as

P �
i =

∑
pα

(
J−1

)
αi

, P r
i =

∑ (
J−1

)
αi

pα. (4.55)

Set

H�r =
∑

P �
i a

ij(Q)P r
j , Hr� =

∑
P r

i a
ij(Q)P �

j . (4.56)

Then

(H�r)† = H�r, (Hr�)† = Hr�. (4.57)
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Proof.

(P �
i )† = −P r

i , (P r
i )† = −P �

i . (4.58)

In coordinates,

H�r =
∑

pα

(
J−1

)
αi

aij(Q)
(
J−1

)
βj

pβ, (4.59)

Hr� =
∑ (

J−1
)
αi

pαa
ij(Q)pβ

(
J−1

)
βj

. (4.60)

One can try other remedies, e.g.

Pi = (P �
i + P r

j )/2, Pi =
√

P �
i P

r
i , Pi =

√
P r

i P
�
i , (4.61)

etc., but they appear too artificial. It does seem unavoidable to work with two different
type of momenta in Quantum mechanics, left and right, and transform each one accord-
ingly. Formula (4.59) appears to offer slight advantages in this regard. In particular, for
the free particle in polar coordinates, we find

H�r = p�
xp

r
x + p�

yp
r
y = p2

r + r−2p2
θ, (4.62a)

Hr� = pr
xp

�
x + pr

yp
�
y = p2

r + r−2p2
θ, (4.62b)

and each one of these formulae is satisfactory. In general,

h−2(H�r −Hr�) = h−2
∑ ((

J−1
)
αi

pα + h
(
J−1

)
αi,α

)
aij

(
J−1

)
βj

pβ

−h−2
∑ (

J−1
)
αi

pαa
ij

((
J−1

)
βj

pβ + h
(
J−1

)
βj,β

)
= h−1

∑ (
J−1

)
µj,µ

aij
(
J−1

)
βi

pβ − h−1
∑ (

J−1
)
βi

pβa
ij

(
J−1

)
µj,µ

= h−1
∑ [(

J−1
)
µj,µ

aij ,
(
J−1

)
βi

pβ

]
= −h−1

∑ (
J−1

)
βi

h
((

J−1
)
µj,µ

aij
)
,β

[by 4.64)]
=

∑ (
J−1

)
βi

(
(ln det(J)),ψ

(
J−1

)
ψj

aij
)
,β ,

(4.63)

where we used the formula

−
∑
µ

(
J−1

)
µj,µ

=
∑ (

J−1J,µ J−1
)
µj

=
∑(

J−1
)
µϕ

Jϕψ,µ

(
J−1

)
ψj

[by (4.42)]
=

∑
ψ

(ln det(J)),ψ
(
J−1

)
ψj

.
(4.64)

Let us return now to the formula (4.37). It can be looked at from a slightly different
perspective, if we notice that Ψ(p) = p whenever

det(J) = const �= 0. (4.65)
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Namely, from formulae (4.33,34) we find that

Φr(pi) − Φ�(pi) =
∑ (

J−1
)
αi

pα − pα

(
J−1

)
αi

) =
∑ [(

J−1
)
αi

, pα

]
= −h

∑ (
J−1

)
αi,α

[by (4.64)]
= = h

∑ (
J−1

)
αi

(ln det(J)),α .
(4.66)

Thus, the condition of constant det(J) (4.65) is necessary and sufficient to have the left
and right formulae coincide, and thus provide a unique lift from an automorphism Φ of Cq

into a Quantum automorphism Φ of Cp,q. That a polynomial map Φ with a constant non-
zero det(J) does indeed define an automorphism of Cq, has been conjectured originally
by Keller in [5]; this conjecture is known as the Jacobian Conjecture, and it is related
to many other open problems in algebra; see , e.g., reviews in [2]. Let us discuss this
Conjecture, thereafter called Conjecture K, from the physical point of view. First, since
an automorphism of F [q] extends, via formulae (4.12), to a Poisson automorphism of
F [q, p], Conjecture K is implied by the more general symplectic

Conjecture S. A polynomial Poisson endomorphism of F [p, q] is an automorphism. (In
other words, if Pi, Qi ∈ F [p, q] are such that

{Pi, Pj} = {Qi, Qj} = 0, {Pi, Qj} = δij , 1 ≤ i, j ≤ N, (4.67)

then the pi’s and the qi’s can be re-expressed as polynomials in the P ’s and the Q’s. In
other words still, F [P,Q] = F [p, q].)

Vice versa, the symplectic Conjecture S is implied by the Conjecture K. Indeed, if the
form dp∧ dq is preserved then so is the volume form (dp∧ q)∧N ; thus, the det(J) in this
case equals to 1.

The symplectic Conjecture S is a quasiclassical limit of the Quantum

Conjecture Q. Let WN = WN (k;h) be the h-scaled Weyl algebra over a commutative
ring k, (see , e.g., [1]) with the generators q1, . . . , qN , p1, . . . , pN and the relations

[qi, qj ] = [pi, pj ] = 0, [pi, qj ] = hδij , 1 ≤ i, j ≤ N. (4.68)

If Q1, . . . , QN , P1, . . . , PN ∈ WN are such that

[Qi, Qj ] = [Pi, Pj ] = 0, [Pi, Qj ] = hδij , 1 ≤ i, j ≤ N, (4.69)

then the qi’s and pi’s can be re-expressed as polynomials in the P ’s and Q’s (with
coefficients in k[h] or kh = k[[h]] depending upon the version of WN ).

In-between Conjectures S and Q is located

Conjecture C–Q. (i) Every Poisson endomorphism (resp. automorphism) of F [p, q] can
be quantized; (ii) Such quantization is unique over k[h].

Quantization is certainly nonunique over k[[h]]. For example,

Pi = ψ(h)pi, Qi = qi/ψ(h), i = 1, . . . , N, (4.70)

is a quantum automorphism for any ψ(h) ∈ 1 + hk[[h]], and it reduces to an identical
Poisson map for h = 0 no matter what ψ(h) is; such nonuniqueness, therefore, attaches to
every Quantum endomorphism. On the other hand, results of Wollenberg [9, 3] show that
the (i) part of the Conjecture C–Q fails for infinitesimal endomorphisms, i.e., derivations.
(See also the last Remark at the end of this Section.)
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Conjectures K and S have noncommutative analogs.

Conjecture K. Let R be an associative ring and R〈x〉 = R〈x1, . . . , xm〉 a ring of polyno-
mials in noncommuting variables x1, . . . , xm with coefficients in R which do not necessarily
commute with the xi’s. Let F1, . . . , Fm ∈ R〈x〉 be such that the Jacobian matrix J(F ):

J(F )ij =
∂∼Fi

∂xj
∈ Op0(R〈x〉) (4.71)

is invertible, so that there exists a matrix M ∈ Matm(Op0(R〈x〉)) such that

MJ(F ) = 1. (4.72)

Then there exist polymonials G1, . . . , Gm ∈ R〈x〉 such that

Gi(F1, . . . , Fm) = xi, 1 ≤ i ≤ m. (4.73)

Conjecture S. In R〈p, q〉 = R〈p1, . . . , pN , q1, . . . , qN 〉, let the noncommutative Hamilto-
nian structure [7] be given by the Hamiltonian matrix

B =
(

0 1
−1 0

)
. (4.74)

If P1, . . . , PN , Q1, . . . , QN ∈ R〈p, q〉 preserve the Hamiltonian structure B:

JBJ† = B, (4.75)

then p1, . . . , pn, q1, . . . , qN ∈ R〈P,Q〉. (The adjoint J† of J in formula (4.75) is taken in
the noncommutative sense defined in [7].)

We conclude this Section by mentioning two other versions of Conjecture K:

Conjecture Kvar. If R is commutative and F1, . . . , Fm ∈ R〈x〉 are such that the matrix
Jvar(F ) ∈ Matm(R〈x〉) [7] is invertible, where

Jvar(F )ij =
δFi

δxj
∈ R〈x〉, (4.76)

δFi

δxj
χ ≡ ∂∼Fi

∂xj
(χ) (mod [R〈x〉, R〈x〉]), ∀ χ ∈ R〈x〉, (4.77)

then the map F : Rm → Rm is a polynomial automorphism.

Conjecture C–K. (A noncommutative analog of the Quantization Conjecture C–Q).
Let f : km → km be a polynomial map with an invertible Jacobian (resp. automorphism).
Then one can find a set of polynomials F1, . . . , Fm ∈ k〈x〉 with an invertible Jacobian (in
either of the two meanings, (4.71) or (4.76)) (resp. automorphism) such that fi(x) = Fi(x),
i = 1, . . . ,m, when all the xi’s are allowed to commute between themselves.

The Conjecture C–K is obviously true for tame automorphisms (generated by GLm(k)
and triangular maps), and thus is true for m = 2 ([4, 6]). The same conclusion applies to
the (i) part of Conjecture C–Q for the case N = 1.
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