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Abstract 

In this paper, we discuss the optimal accelerated life test plans for Burr type X distribution with log-linear model under 
periodic inspection and Type I censoring. We obtain the maximum likelihood estimators, the Fisher information and 
the asymptotic covariance matrix of the maximum likelihood estimators. Accelerated life test is optimized with respect 
to the low test stress and the proportion of test units allocated to the low test stress for given shape parameter. The 
asymptotic variance of the maximum likelihood estimator of qth quantile at the design stress is derived as an optimality 
criterion with equally spaced inspection times and the optimal allocation of units for two stress levels are determined. 
Optimality results show that the asymptotic variance of qth quantile at the design stress is insensitive to the number of 
inspection times and to misspecifications of guessed failure probabilities at design and high test stresses. Procedures for 
planning an accelerated life test, including selection of sample size, have been discussed through an example. 
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1. Introduction 

 

There are many engineering situations where components in a system are designed to last a relatively long 
time under design conditions. These long life spans make it impractical to conduct life tests under design 
conditions. Accelerated life tests (ALTs) are used to estimate the lifetime of such highly reliable products 
within a reasonable testing time. In an ALT experiment, test units are run at higher than usual levels of 
stress to induce early failures. The test data obtained at the accelerated conditions are analyzed in terms of a 
model, and then extrapolated to the design stress to estimate the life distribution. Such ALTs have proven 
to be useful in many phases of product design and manufacture, from prototype testing to post production 
screening. Meeker and Escobar (1998) devoted three complete chapters to this topic and proper 
implementation of such tests. Nelson (1990) provided an extensive coverage of statistical models, test 
plans, and analytical procedures employed in accelerated life testing. For more details on research and 
issues in ALTs, see Meeker and Escobar (1993). 

 

There are two inspection modes applied in ALT. One is the continuous inspection that results in exact 
failure times (see Chernoff (1962), Meeker (1984), Meeker and Nelson (1975), Nelson (1990), Nelson and 
Meeker (1978)). The other is the periodic inspection in which test units are inspected for failure at 
predetermined points in time. The periodic inspection is frequently employed by many authors (see Ahmad 
(2010), Ahmad and Islam (1996), Ahmad et al. (1994, 2006), Ehrenfeld (1962), Islam and Ahmad (1994), 
Meeker (1986), Yum and Choi (1989), Seo and Yum (1991)) because it requires less testing effort and is 
administratively more convenient. For more useful and up-to-date results in ALTs, see Nelson (2005), 
Yang (2007). 

 

This paper considers planning ALT for items whose lifetime follows Burr type X failure model. Burr 
(1942) introduced twelve different form of cumulative distribution function for modeling lifetime data. 
Several authors consider different aspects of the Burr type X distribution (see Ahmad, et al. (1997), Jaheen 
(1996), Sartwi and Abu-Salih (1991), Raqab (1998), Surles and Padgett (1998, 2005), Raqab and Kundu 
(2005), Kundu and Raqab (2005)).  Recently, Surles and Padgett (2001) and Ahmad, et al. (2009) showed 
that the Burr type X can be used quite effectively in reliability and survival analysis.  

 

In this paper we develop ALT plans for the Burr type X distribution under Type I censoring and periodic 
inspection at two test stress levels. It is assumed that a log-linear model exists between the Burr type X 
scale parameter and the stresses and that the shape parameter is constant and is independent of the stresses. 
The unknown parameters in the log-linear model are estimated by maximum likelihood estimation (MLE) 
method. For the known shape parameter, the low test stress and associated proportion of test units are 
optimally determined at design stress. The optimal test plans are derived by minimizing the asymptotic 
variance of the maximum likelihood estimator of qth quantile at design stress. This paper is a generalization 
of Ahmad et al. (1994) work. It may also be viewed as an extension of Surles and Padgett (2001) work to 
the case of ALT with periodic inspection. A self-developed software program has been used to carry out 
the computations. The proposed method is limited to tests with only two acceleration levels, but we show it 
can be extended to multiple acceleration level situations. 

 

Computational studies are conducted for various combinations of parameters to examine how the optimal 
plans vary with respect to these parameters at design and high-test stresses. Sensitivity analyses have also 
been performed for various combinations of parameters to assess the effect of inaccuracy to 
misspecification of guessed failure probabilities on the optimal plan at design and high-test stresses. 
Procedures for selecting a sample size and for planning an ALT are discussed with an example. 
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2. The Proposed Model and Test Method 

 

A statistical model for an ALT consists of a life distribution that represents the scatter in product life and a 
relationship between distribution parameter and accelerating stress. Most previous work on optimal design 
of ALT assumes that the life distribution is either exponential or Weibull (see Ahmad (2010), Ahmad et al. 
(1994), Chernoff (1953, 1962), Ehrenfeld (1962), Islam and Ahmad (1994), Meeker (1984), Meeker and 
Escobar (1998), Meeker and Nelson (1975), Nelson (1990), Nelson and Meeker (1978), Park and Yum 
(1996), Yum and Choi (1989), Seo and Yum (1991)). The Burr type XII, Burr type III, Normal and log-
normal models have also been used (see Ahmad and Islam (1996), Ahmad et al. (2006), Meeker (1984), 
Nelson and Kielpinski (1976)). We propose the Burr type X lifetime distribution that describes the failure 
mechanism of test units. 

 

2.1 Assumptions 

We make the following assumptions: 

 Three test stress levels s0, s1, s2 are used such that s0 < s1 < s2, where s0 is the design stress level 
representing use condition and s1 and s2 are higher than usual stresses representing accelerated 
conditions. 

 The lifetimes (T) of test items at any stress s follow the Burr type X failure model. The probability 
density function of Burr type X failure model is given by 

 

   
2 2( / ) ( / ) 1( ) 2( / )( / ) (1 ) ,    0t tf t t e e t          ,           (1) 

 
where  > 0 is shape parameter and  > 0 is a scale parameter. 

The reliability function of T is given by 

 
2( / )( ) 1 (1 ) ,tS t e      

 
 and the failure rate function is given by 

 

    
2 2

2

( / ) ( / ) 1

( / )

2( / )( / ) (1 )( )
1 (1 )

t t

t

t e er t
e

  

 

     






 
. 

 
Raqab and Kundu (2005) observed that for 1/ 2   Burr type X density is a decreasing function 
and it is a right skewed unimodal function for 1/ 2  . It also observed that Burr type X failure 
rates have the different shapes depending on the value of  . For 1/ 2  , it has increasing 
failure rate and for 1/ 2  , it is bathtub type. For more details properties of the Burr type X 
distribution, see Surles and Padgett (2005). 

 The scale parameter   is assumed to be a log-linear function of stress level s. That is,  

     
0 1ln s    ,                       (2) 

 
where 0 and 1 are unknown parameters to be estimated. The above relationship is frequently 
used in ALT. This model includes the inverse power model and the Arrhenius relation rate model 
see, Islam and Ahmad (1994), Nelson (1990). 

Published by Atlantis Press 
Copyright: the authors 

268



  

 The shape parameter  is independent of stresses (constant for any stress). 

 The lifetimes of test units at stress level si are independent and identically distributed. 

 

2.2 Test Procedure 

 The design stress (s0) and high-test stress (s2) are pre-specified, while the test stress (s1) is to be 
optimally determined. 

 Out of total N test items, the test items (ni) allocated to si is given by 

   
i = ni/N, 1 + 2 = 1 and N = n1 + n2;       i > 0, i =1, 2,                          (3) 

 
where 1 is to be optimally determined. 

 At stress level si, the test items (ni) are initially to be put on test and run until a pre-specified 
censoring time cit , see Fig. 1. 

 The items are inspected periodically: at stress level si, at times 1 2 ( ),  ,  ...,  ,i i iK it t t  

where 0 0it  , , ( ) 1i K it     and , ( )i K it is the Type I censoring time, denoted by cit , see Fig. 1. 

 At stress level si, the number of failures xij and corresponding probability of failures Pij in the 
respective intervals (ti,j-1, tij) are recorded for i = 1, 2 and j = 1, 2, … , K(i)+1, see Fig. 1. 

 The grouped data {xij, i = 1, 2; j = 1, 2,... , K(i)+1} are used to estimate 0 and 1 in (2). The 
estimated relationship is then extrapolated to estimate mean lifetime or qth quantile at the design 
condition. At design condition s0, (2) can be written as 

   
0 = ln0 = 0 +1 s0.              (4) 

 
Note that the qth quantile (tq) of the lifetime distribution at design stress s0 and 0 are related as 

 

   1/
0 1 0

1ln ln[ ln(1 )]
2q qy t s q        .            (5) 

 
Let 0̂  and 1̂  be the ML estimates of 0 and 1, respectively. Then, 

 
    0100

ˆˆˆ s  ,              (6) 

 

and 1/
0

1ˆ ˆ ln{ ln(1 )}
2qy q     .                           (7) 

 
2.3 Standardization 

Without loss of generality, let with and without prime represent the original and standardized scale, 
respectively, then the stress level is standardized as follows (see Meeker (1984)): 

 

0 2 0( ) /( )s s s s s      , 
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or equivalently, 

 

2 0 0( )s s s s s      , 

 
so that 0 1s  , design stress 00 s , and high stress 12 s . We also standardized all the time related 

variables with respect to censoring time ct  (say 1 2c c ct t t  ). For instance, / ct t t   and / ct    . 

Under the above standardization, the scale parameter is represented by 0 1( ) /s
ce t      . 

Because 0 1( )se    , we have  
 

0 0 1 0 ln cs t        , 1 1 2 0( )s s      . 

 
Then from equation (7) it can be shown that 
 

1/
0

1ˆˆ ln ln{ ln(1 )}
2q cy t q       . 

 
Note that '

ct becomes 1 in the standardized time scale. 
 

1/
0

1ˆˆ ˆln{ ln(1 )}
2q qy q y      . 

 
Hence, no generality is lost under the above transformation. 

 

2.4 Optimization Criterion 

Nelson (1990) and Nelson and Kielpinski (1976) describe various criteria for determining optimal ALT 
plans. A common purpose of an ALT experiment is to estimate a particular quantile qt  in the lower tail of 

the failure-time distribution at use conditions. Thus our optimality criterion is to minimize AsVar ˆ( )qy , the 

asymptotic variance of the MLE of the logarithm of the target quantile at design conditions. q is often 
chosen to be a small number like .01 or .001. 

 

2.5 Design Problem 

The statistically optimal ALT plans under periodic inspection and Type I censoring can now be stated as: 
given N, s0, s2, , 2

1}{ icit , and 2
1)}({ iiK , determine 1 and s1 such that the asymptotic variance, 

AsVar ˆ( )qy , is minimized using equally spaced inspection times. 

The design problem of an ALT under periodic inspection and Type I censoring may be extended to l stress 
levels and can be stated as: given N, s0, sl, , l

icit 1}{  , and l
iiK 1)}({  , determine 1

1}{ 


l
ii  and 1

1}{ 


l
iis  

such that the AsVar( qŷ ) is minimized using equally spaced inspection times. 
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3. Estimation of Parameters 

 

There are several methods of estimation for censored data, which provide estimates of the parameters of the 
assumed log-linear model. The MLE method is used for the following reasons (see Ahmad and Islam 
(1996), Meeker and Nelson (1975), Nelson (1990)). 

 It is easier to calculate the optimal plans by this method in comparison to linear estimation 
methods. 

 This method provides asymptotically minimum variance estimates for large sample sizes. Also, 
for small sample sizes, ML estimates generally compare well with other estimates. 

 

3.1 Maximum Likelihood Estimation 

The likelihood function of the set of observations 1)(
1}{ 


iK
jijx  which are multinomially distributed with ni 

and 1)(
1}{ 


iK
jijP  at stress level si, is given by 

 

   
2

1
i

i
L L


  

1( ) 1 ( ) 12

1 1 1
! ! ij

K i K i x
i ij ij

i j j
n x P


 

  

   
     

   
 .                           (8) 

 
Taking logarithm of both the sides, we get 

 

   
2

1
ln ln i

i
L L L


   

( ) 12

1 1
ln

K i
ij ij

i j
C x P



 
    ,             (9) 

 
where C is constant with respect to 0 and 1 and 

  

           
2 2

, 1( / ) ( / )1 1ij i i j it t
ijP e e

 
              

, for  i = 1, 2 and j = 1, 2, ….. , K(i)+1.               (10) 

 
The ML estimates of 0 and 1 can be obtained by solving the following equations: 

 

0

0L






 and 
1

0L






. 

 
The above equations can be rewritten as 

 

   
( ) 12

, 1
1 10

{ ( ) / } 0,
K i

ij i j ij ij
i j

L x A A P





 


   


                        (11) 

 

   
( ) 12

, 1
1 11

{ ( ) / } 0,
K i

i ij i j ij ij
i j

L s x A A P





 


   


          (12) 
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where 
2 2( / ) ( / )2 12 ( / ) (1 )ij i ij it t

ij ij iA t e e        , for i = 1, 2 and j = 0, 1, 2, …, K(i)+1. 

 
3.2 Fisher Information Matrix 

The Fisher information matrix F (see Nelson (1990), Rao (1973)) for the optimal plan is 

 

  

2 22 2

21 1 0 10

2 22 2

21 11 0 1

ln ln

ln ln

i i

i i

i i

i i

L LE E

F
L LE E

 

  

 

 

      
                
                     

= N (fgh),    g, h, = 0, 1,                          (13) 

 

where   
( ) 12

1 1

K i ij ij
gh i ij

i j g h

P P
f P

 



 

   
         

.                                   (14) 

 

After some algebraic simplification, (14) becomes 

 

   
2 ( )

1

g h
gh i ii

i
f s Q 


   , for g, h = 0, 1,                             (15) 

 

where  
( ) 1 2

, 1
1

( ) /
K i

i i j ij ij
j

Q A A P





   ,     for i = 1, 2.                                     (16) 

 

 Note that   
01  






 ij
i

ij P
s

P
.                           (17) 

 

3.3 Asymptotic Variances of MLEs 

The asymptotic covariance matrix V of the ML estimates 0̂  and 1̂  is the inverse of the Fisher 
information matrix F: 

 

 







 

)ˆ()ˆ,ˆ(
)ˆ,ˆ()ˆ(

101

1001




AsVarAsCov
AsCovAsVarFV ,)(1 1 ghf

N
 g, h = 0, 1.                   (18) 

 

The asymptotic variance (AsVar) of the MLE of qŷ  is 
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  0 0ˆ( ) (1, )  (1, )qAsVar y s V s   

          11 2 2
00 11 01 11 0 00 0 012N f f f f s f s f

    .                       (19) 

 

4. Optimal Plans 

 

4.1 Optimization Method 

The optimal plans are determined with the following simplified assumptions and standardization: 

 Censoring times at s1 and s2 are the same, that is, ccc ttt  21 . 

 The number of inspections at each stress level is the same, that is, K(1) = K(2) = K (known). 

 Parameters are standardized such that the common censoring time, as well as the high test stress 
becomes 1, and the design stress is 0. That is, tc = s2 = 1, and s0 = 0. Such standardization does not 
alter the nature of our problem. 

 

Based upon the above assumptions and standardization, (19) is reduced to  

 
   0

ˆˆ( ) ( )qAsVar y AsVar   

                11 2
00 11 01 11N f f f f

  .                         (20) 

 

After some algebraic simplification (20) becomes 

 

 1 2 2 2
1 1 1 2 1 1 2 1 1 1ˆ( ) ( (1 )) /( ( 1) ( ))qAsVar y N s Q Q Q Q s         ,                        (21) 

or 

2 2
2 1

2 2
1 1 1 2 2 2 1 2

ˆ( )
( ) ( )q
s sAsVar y

NQ s s NQ s s 
 

 
.                        (22) 

  

Under the above assumptions, the optimal plan is developed by determining optimal values of s1 and 1, 
say *

1s  and *
1  respectively, for given N, K, and  by minimizing ˆ( )qAsVar y . This asymptotic variance 

depends on the unknown quantities 0 and 1, which are expressible in terms of the more approachable 
parameters Pu and Ph, where 

 

0
( )u s cP P T t  , 

 
the probability that an item under design stress would fail before the censoring time and 

  

2
( )h s cP P T t  , 
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the probability that an item under high test stress would fail before the censoring time. From expert 
judgment the user supplies Pu and Ph, which determines 0 and 1. That is 

 

    1/
0

1  ln( 1/ ln(1 ))
2 uP     ,                         (23) 

and    

1/ 1/
1

1   ln( ln(1 ) / ln(1 ))
2 u hP P      .                        (24) 

 

For given values of K, Pu, Ph, and , optimal values of s1 and 1 are determined by the following two-step 
procedure that minimizes ˆ( )qAsVar y . 

 We obtain the optimum values of ( 1, 2)i i   by formulating the problem as the following 
nonlinear programming problem (NLPP): 

 
2

1
2

1

Minimize

subject to 1,

and 0, 1,2

i

i i

i
i

i

AZ

i












 


 

 





             (25) 

 

where 
2
2

1 2
1 1 2( )

sA
NQ s s




 and 
2
1

2 2
2 1 2( )

sA
NQ s s




. 

 
The restrictions 0i   are obvious because negative values of i  are of no practical use. 

 

Ignoring the restrictions 0i  , we can use Lagrange multipliers technique to solve NLPP (25) 

for determining the optimum values of i . If these values (say) *
i ,  satisfy the ignored 

restrictions, the NLPP (25) is solved completely. 

The Lagrangian function   is defined as 

 

 
2 2

1 1
, 1i

i i
i ii

A
    

 

     
 

,          (26) 

 
where   is a Lagrange multiplier. 

The necessary conditions for the solution of the problem are 
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2 0i

i i

AL 
 


   


;   

which gives 

    i
i

A



 ; 1, 2i             (27) 

and    
2

1
1i

i

L


 


 


 .                         (28) 

 
Solving (27) and (28) the optimum solution to NLPP (25) is given by 

 

  

 
* 2
1

2 2
1 1 2 2 2

s

s Q s Q Q
 


 and * *

2 11   .          (29) 

 

It can be verified that the objective function Z  in (25) is convex and the constraint is linear. 
Therefore, the Kuhn-Tucker necessary conditions for the NLPP (25), which are also sufficient for 

the problem, are hold at the point  * *
1 2,   given by (29). Hence,  * *

1 2,   is optimum for 

NLPP (25). 

 We imply a grid search with respect to 1s . We divide the range of standardized stress into 500 

equal parts, and calculate *
1  and ˆ( )qAsVar y  at each grid point, 0.000, 0.002, 0.004,…, 0.998. 

Among these grid points we select the one that yields the smallest value of ˆ( )qAsVar y . 

 

When K tend to infinity (i.e. continuous inspection) the minimum ˆ( )qAsVar y  and corresponding *
1s  and 

*
1  are determined by using the method described by Nelson and Meeker (1978). It can also be determined 

by a two-step procedure. Finally, the ratio of ˆ( ( ))qAsVar y K  to ˆ( ( ))qAsVar y   is determined, A 

FORTRAN coded algorithm finds (s1, 1) that minimizes the ˆ( )qAsVar y  has been written and was run 

on the computer. 

 

4.2 Sensitivity Analysis  

To use an optimal plan, one must provide approximate values of the model parameters (or equivalently Pu 
and Ph). Chernoff (1953, 1962) call such a plan “locally optimal”. Values that are appreciable in error may 
result in a plan that is far from optimal. This possibility can be checked if one examines the plans for 
different parameter values and suggested sensitivity analysis. For some selected values of Pu, Ph, and , a 
sensitivity analysis was conducted to see how misspecification of imputed failure probabilities affect 

ˆ( )qAsVar y . Let uP~  and hP~  be the guessed values of imputed failure probabilities. For these guessed 
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values optimal s1 (i.e. *
1

~s ) and 1 (i.e. *
1

~ ) are determined. The ratio of * *
1 1ˆ( ( , ))qAsVar y s   to 

minimum * *
1 1ˆ( ( , ))qAsVar y s   is calculated for various cases with K = 2. 

 

4.3 Sample size 

From (21), we observe that N appears in ˆ( )qAsVar y  as a scaling factor only; therefore, *
1s  and *

1  do 

not depend on N. However, N affects the magnitude of ˆ( )qAsVar y , implying the need for its selection. 

To determine the sample size N, one requires that with high probability 0
ˆ  ,   falls between 0/h and 0 h 

for a specified h (> 1) (see Meeker, (1986)). That is 

  
      }ˆ/{ 000 hhPr .                         (30) 

 
Note that (30) can be rewritten as 

 
     }lnˆln{ 000 hhPr .                         (31) 

 
Then, the approximate sample size is obtained as 

 

     2

2
0*

)(ln
 v

h
N


  ,                         (32) 

 
where v0 is the asymptotic variance of 0̂  when N = 1 and  is the (1+)/2 quantile of the standard normal 
distribution. 

 

5. Optimality Results 

 
Optimal ALT results are presented in Tables 1-2 for various combinations of Pu, Ph, K, and . Tables 3-4 
summarize results of sensitivity analysis for various values of Pu, Ph, and   with K = 2. We have the 
following observations: 

 For given values of Pu, Ph, and , ˆ( )qAsVar y  is almost same over the number of inspection 

(K). Thus increasing K has little effect on the asymptotic variance. This implies that the 
number of inspection need not be too large.  

 For given value of , ˆ( )qAsVar y  is insensitive to K as Pu increases and/or Ph decreases.  

 In all cases, the values of ratio in last column of tables indicate that there is no significant 
difference in ˆ( )qAsVar y  for variation in K, because it is much closer to 1. Therefore, 

unnecessarily large K is not needed, which is an encouraging result in terms of testing efforts.  

 When Pu and Ph are fixed, *
1s  and *

1  are fairly stable over K in all the cases under study.  
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 For selected values of  and Pu, as Ph decreases, asymptotic variance of 0̂  increases and it 
become minimum when Ph is 0.99. 

 For selected values of  and Ph, as Pu increases, ˆ( )qAsVar y  decreases and it become 

minimum when Pu equals 0.1. 

 In general, for given , *
1s  gets close to zero (the design stress) and *

1  to 1, as Pu increases 

and/or Ph decreases. For instance, when Pu = 0.1 and Ph  0.99, 0*
1 s  and 1*

1  . Similar 
trends are also observed when Pu is less than 0.1, for small values of Ph. This implies that 
there is almost no need for an ALT. 

 For each Pu and Ph, asymptotic variance of 0̂  decreases as  increases. 

 For given , ratio values of sensitivity analysis indicate that the plan is robust against the 
likely departures of the true Pu and Ph from their guessed values for all K. 

 The results of optimal plans obtained by Ahmad et al. (1994) becomes the particular case of 
the result obtained here for  = 1 (Table 1). 

 

6. Planning ALTs 

 
We suggest the following procedure for planning an ALT. 

 Provide pre-estimates of Pu, Ph, and  and the ranges of their plausible values.  

 Determine an optimal test plan using the pre-estimates. 

 For given , conduct sensitivity analyses with respect to the plausible values of pre-estimates. 

 Check the necessity of an ALT based upon *
1s  and *

1 . 

 Determine the sample size. 
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Table 1.  Optimal ALT Plans when  = 1.0. 
 
        Pu       Ph        0           1     K       

1s        
1  N AsVar( ˆqy ) Ratio 

0.0001 0.99 4.605 -5.369 2 0.698 0.752 29.483 1.0744 
    5 0.706 0.765 27.808 1.0134 
    10 0.706 0.768 27.529 1.0032 
     0.706 0.770 27.441       1 
 0.9 4.605 -5.022 2 0.708 0.787 41.060 1.0283 
    5 0.710 0.794 40.114 1.0047 
    10 0.710 0.795 39.373 1.0011 
     0.710 0.796 39.928       1 
 0.5 4.605 -4.422 2 0.698 0.823 86.461 1.0029 
    5 0.698 0.824 86.254 1.0005 
    10 0.698 0.824 86.221 1.0001 
     0.698 0.824 86.211        1 
 0.1 4.605 -3.480 2 0.630 0.849 317.219 1.0001 
    5 0.630 0.849 317.203 1.0000 
    10 0.630 0.849 317.200 1.0000 
     0.630 0.849 317.200        1 
 0.01 4.605 -2.305 2 0.444 0.890 1318.717 1.0000 
    5 0.444 0.890 1318.716 1.0000 
    10 0.444 0.890 1318.716 1.0000 
     0.444 0.890 1318.716        1 

0.001 0.99 3.454 -4.217 2 0.616 0.774 17.141 1.0676 
    5 0.624 0.787 16.252 1.0122 
    10 0.626 0.789 16.103 1.0029 
     0.626 0.790 16.056        1 
 0.9 3.454 -3.871 2 0.620 0.809 23.131 1.0256 
    5 0.624 0.814 22.649 1.0042 
    10 0.624 0.815 22.577 1.0010 
     0.624 0.816 22.555        1 
 0.5 3.454 -3.270 2 0.590 0.847 44.774 1.0025 
    5 0.592 0.846 44.681 1.0004 
    10 0.592 0.846 44.666 1.0001 
     0.592 0.846 44.662        1 
 0.1 3.454 -2.328 2 0.446 0.888 129.820 1.0000 
    5 0.446 0.888 129.815 1.0000 
    10 0.446 0.888 129.814 1.0000 
     0.446 0.888 129.813        1 

0.01 0.99 2.300 -3.064 2 0.472 0.817 8.113 1.0547 
    5 0.484 0.826 7.768 1.0099 
    10 0.486 0.828 7.710 1.0024 
     0.486 0.829 7.692        1 
 0.9 2.300 -2.717 2 0.458 0.852 10.293 1.0200 
    5 0.464 0.855 10.125 1.0033 
    10 0.466 0.855 10.099 1.0008 
     0.466 0.855 10.091        1 
 0.5 2.300 -2.117 2 0.368 0.898 16.644 1.0017 
    5 0.368 0.899 16.621 1.0003 
    10 0.368 0.899 16.617 1.0001 
     0.368 0.899 16.616        1 
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Table 2.  Optimal ALT Plans when  = 1.5. 
 

 Pu Ph   0      1      K        
1s        

1      N AsVar( ˆqy )           Ratio 

0.0001       0.99      3.070     -3.875 2  0.652      0.742     12.988   1.0889 
                                 5  0.660      0.757     12.134   1.0173 
                                             10  0.662     0.760     11.977   1.0042 
                                               0.662      0.761     11.927   1 

  0.9       3.070     -3.564 2  0.668      0.776     18.386   1.0430 
                                 5  0.672      0.785     17.753   1.0071 
                                             10  0.674      0.785     17.658   1.0017 
                                               0.674      0.785     17.628   1 
                 0.5       3.070     -3.067 2  0.672      0.815     38.683   1.0064 
                                 5  0.674     0.815     38.478   1.0011 
                                             10  0.674      0.816     38.445   1.0003 
                                              0.674      0.816    38.435   1 

0.1       3.070     -2.361 2  0.620      0.845          141.717   1.0003 
                                 5  0.620      0.845          141.680   1.0001 
                                             10  0.620      0.845          141.674   1.0000 
                                               0.620      0.845          141.672   1 
                0.01      3.070     -1.546 2  0.442      0.889          588.183   1.0000 
                                 5  0.442      0.889          588.179   1.0000 
                                             10  0.442      0.889          588.178   1.0000 
                                               0.442      0.889          588.178   1 
0.001      0.99      2.300     -3.106 2 0.566      0.768        7.782   1.0801 
                                 5  0.576      0.781        7.318   1.0156 
                                             10  0.578      0.784        7.232   1.0038 
                                               0.578      0.785        7.205   1  
                0.9       2.300     -2.795 2  0.578      0.799     10.621   1.0385 
                                 5  0.582      0.808     10.293   1.0064 
                                             10  0.584      0.808     10.243   1.0015 
                                               0.584      0.809     10.228   1  
                0.5       2.300     -2.297 2  0.562      0.841    20.412   1.0056 
                                 5  0.564      0.841     20.318   1.0010 
                                             10  0.564      0.841     20.303   1.0002 
                                               0.564      0.841     20.298   1  
                0.1       2.300     -1.592 2  0.436      0.886     58.627   1.0002 
                                 5  0.436      0.886     58.615   1.0000 
                                             10  0.436      0.886     58.613   1.0000 
                                               0.436      0.886     58.612   1  
0.01       0.99      1.523     -2.329 2  0.422     0.816        3.871   1.0640 
                                  5  0.434      0.826        3.684   1.0126 
                                             10  0.436      0.828        3.649   1.0030 
                                                0.438      0.828        3.638   1  
               0.9       1.523     -2.018 2  0.414      0.848        4.930   1.0297 
                                 5  0.422      0.853       4.811   1.0050 
                                             10  0.424      0.853        4.793   1.0012 
                                               0.424      0.853        4.787   1  
              0.5       1.523     -1.520 2  0.340      0.897        7.841   1.0038 
                                 5  0.340      0.898        7.817   1.0007 
                                             10  0.340      0.898       7.813   1.0002 
                                               0.342      0.897       7.811   1 
_______________________________________________________________________________________ 
 

 

7. An Application 

 

Suppose that an experimenter is planning to develop an ALT for a certain type of electrical capacitor with 
the use of temperature (or voltage) as an accelerating stress. The lifetimes of electrical capacitors are 
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known to have a Burr type X failure distribution, and the log mean lifetime at the design stress is of 
interest. The design stress is characterized by 30 C (or 20 V). The high stress level of temperature (or 
voltage) is pre-specified as 120 C (or 400 V). The test duration (the censoring time tc) is allowed for 1000 
hours at each stress level. The experimenter first guesses the Pu, Ph and   is 0.0001, 0.90 and 1.5, 
respectively. 

 

Based upon the above information the optimal plan for K = 2 are computed to be (see Table 2): 

0 = 3.070, 1 = -3.564, *
1s  = 0.668,  *

1 = 0.776 , and N. ˆ( )qAsVar y  = 18.386.                       (33) 

 

Now, we want to calculate sample size by taking  and h as 0.9 and 2.0, respectively. Using (32), the 
required sample size becomes approximately 104. Being conservative, the experimenter might want to 
determine the sample size for the worst case of this optimal plan where ˆ( )qAsVar y  = 588.183 for Ph = 

0.01 and same Pu, , and K. We obtain a conservative sample size 3318. 

 

Next, the experimenter guesses that Pu, Ph and  are 0.0001, 0.90 and 1, respectively, then the optimal plan 
for K = 2 are computed as (see Table 1): 

 

0 = 4.605,  1 = -5.022, *
1s  = 0.708,  *

1 = 0.787 , and N. ˆ( )qAsVar y  = 41.060. 

 

For the same  and h, an approximate sample size obtained for this optimal plan is 232. Hence, if the shape 
parameter decreases an experimenter requires larger sample size.  

 

Although the true values of Pu and Ph are different from their guessed values, suppose that the ranges of the 
plausible values of Pu, Ph, and   are as follows: 

 

0.00001  uP  0.05, 

   0.006  hP  0.999, 

      1    2. 

 

For the above plausible ranges of pre-estimates, sensitivity analyses are conducted. Tables 3-4 shows that 
sensitivity ratios are very close to 1, implying that the selected plan in (33) is generally robust against the 
likely departures of true Pu, Ph, and   from their guessed values, except for the case where Pu is 
underestimated and Ph is overestimated. For instance, using the guessed values of Pu = 0.0001, Ph  = 0.90, , 
and   = 1.5 as uP  = 0.0003, hP  = 0.70, and   = 1.5 (see Table 4) then the optimal plan for K = 2 has 

relatively increased in ˆ( )qAsVar y . The sensitivity is 1.0220 which means that the increase in 

ˆ( )qAsVar y  due to the uncertainties involved in estimating Pu, Ph, and   is 2.20%. Also, the sensitivity 

value ranges from less than 1% to 15% approximately. In general, this variation may be tolerable. 
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Table 3.  Sensitivities of AsVar( ˆqy ) When  = 1.0 with K = 2 

 

uP  hP        

0.0001 0.99 /u hP P   0.9700 0.9800 0.990 0.995 0.9990 

                  0.00001     1.1150    1.1014    1.0861    1.0691    1.0519 
                  0.00003     1.0440    1.0361    1.0248    1.0192    1.0107 
                  0.00005     1.0208    1.0155    1.0085    1.0056    1.0034 
                 0.00010     1.0026    1.0011    1             1.0008    1.0069 
                 0.00020     1.0057    1.0074    1.0107    1.0151    1.0300 
                 0.00030     1.0200    1.0238    1.0296    1.0364    1.0568 
                 0.00050     1.0564    1.0588    1.0679    1.0823    1.1055 
 0.90 /u hP P   0.7000 0.8000 0.900 0.950 0.9900 

                  0.00001     1.1097    1.1007    1.0823    1.0638    1.0446 
                 0.00003     1.0393    1.0341    1.0243    1.0181    1.0114 
                  0.00005     1.0169    1.0149    1.0087    1.0058    1.0067 
                 0.00010     1.0031    1.0014    1             1.0015    1.0126 
                 0.00020     1.0123    1.0087    1.0103    1.0160    1.0361 
                  0.00030     1.0324    1.0274    1.0279    1.0360    1.0618 
                  0.00050     1.0774    1.0658    1.0669    1.0784    1.1073 
 0.50 /u hP P   0.3000 0.400 0.500 0.6000 0.7000 

                 0.00001     1.0652    1.0794    1.0888    1.0923    1.0948 
                 0.00003     1.0124    1.0206    1.0279    1.0299    1.0347 
                  0.00005     1.0017    1.0061    1.0102    1.0133    1.0147 
                  0.00010     1.0047    1.0008    1             1.0004    1.0015 
                 0.00020     1.0365    1.0208    1.0114    1.0075    1.0061 
                  0.00030     1.0737    1.0474    1.0325    1.0233    1.0203 
                 0.00050     1.1471    1.1036    1.0769    1.0620    1.0533 
 0.10 /u hP P   0.0600 0.080 0.100 0.1200 0.1400 

                  0.00001     1.0826    1.1084    1.1267    1.1459    1.1601 
                 0.00003     1.0149    1.0278    1.0391    1.0520    1.0599 
                  0.00005     1.0013    1.0072    1.0146    1.0226    1.0299 
                 0.00010     1.0099    1.0016    1             1.0012    1.0031 
                  0.00020     1.0644    1.0340    1.0194    1.0101    1.0047 
                 0.00030     1.1298    1.0814    1.0524    1.0342    1.0234 
                 0.00050     1.2671    1.1790    1.1301    1.0968    1.0718 
 0.01 /u hP P   0.0060 0.008 0.010 0.0120 0.0140 

                  0.00001     1.1685    1.2199    1.2604    1.2978    1.3306 
                  0.00003     1.0312    1.0579    1.0843    1.1092    1.1300 
                 0.00005     1.0024    1.0147    1.0312    1.0478    1.0632 
                 0.00010     1.0232    1.0042    1             1.0024    1.0076 
                  0.00020     1.1744    1.0869    1.0465    1.0232    1.0110 
                  0.00030     1.3942    1.2218    1.1359    1.0869    1.0561 
                  0.00050     1.8871    1.5968    1.3891    1.2749    1.1993 
0.0010 0.99 /u hP P   0.9700 0.980 0.990 0.9950 0.9990 

                 0.00010     1.1637    1.1553    1.1323    1.1190    1.0925 
                  0.00030     1.0580    1.0501    1.0413    1.0349    1.0237 
                  0.00050     1.0238    1.0207    1.0154    1.0103    1.0074 
                  0.00100     1.0020    1.0007    1             1.0005    1.0048 
                  0.00200     1.0140    1.0146    1.0183    1.0228    1.0343 
                 0.00300     1.0439    1.0455    1.0519    1.0557    1.0716 
                 0.00500     1.1153    1.1181    1.1232    1.1332    1.1504 
_________________________________________________________________ 
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Table 3. Continued 
 

uP  hP        

 0.90 /u hP P   0.7000 0.800 0.900 0.9500 0.9900 

                  0.00010     1.1514    1.1484    1.1342    1.1129    1.0873 
                  0.00030     1.0455    1.0464    1.0422    1.0349    1.0259 
                 0.00050     1.0163    1.0178    1.0152    1.0115    1.0112 
                 0.00100     1.0029    1.0011    1             1.0009    1.0085 
                  0.00200     1.0316    1.0232    1.0195    1.0214    1.0348 
                  0.00300     1.0792    1.0596    1.0510    1.0532    1.0700 
                  0.00500     1.1836    1.1477    1.1287    1.1264    1.1390 
 0.50 /u hP P   0.3000 0.400 0.500 0.6000 0.7000 

                  0.00010     1.1067    1.1324    1.1540    1.1641    1.1730 
                  0.00030     1.0196    1.0345    1.0476    1.0591    1.0644 
                  0.00050     1.0021    1.0090    1.0174    1.0244    1.0300 
                  0.00100     1.0121    1.0019    1             1.0012    1.0036 
                  0.00200     1.0839    1.0435    1.0229    1.0126    1.0070 
                 0.00300     1.1711    1.1032    1.0641    1.0414    1.0298 
                 0.00500     1.3720    1.2365    1.1648    1.1189    1.0882 
 0.10 /u hP P   0.0600 0.080 0.100 0.1200 0.1400 

                  0.00010     1.1677    1.2187    1.2588    1.2957    1.3208 
                  0.00030     1.0304    1.0567    1.0829    1.1075    1.1279 
                  0.00050     1.0025    1.0151    1.0302    1.0465    1.0639 
                 0.00100     1.0234    1.0043    1             1.0024    1.0077 
                 0.00200     1.1742    1.0883    1.0455    1.0224    1.0104 
                  0.00300     1.3917    1.2221    1.1355    1.0861    1.0552 
                 0.00500     1.9168    1.5895    1.3866    1.2676    1.1925 
0.010 0.99 /u hP P   0.9700 0.980 0.990 0.9950 0.9990 

                  0.00100     1.2793    1.2629    1.2433    1.2272    1.2000 
                  0.00300     1.0902    1.0856    1.0763    1.0721    1.0605 
                 0.00500     1.0345    1.0318    1.0284    1.0245    1.0210 
                 0.01000     1.0011    1.0004    1             1.0003    1.0026 
                 0.02000     1.0414    1.0402    1.0381    1.0382    1.0417 
                 0.03000     1.1253    1.1160    1.1119    1.1080    1.1052 
                  0.05000     1.3358    1.3131    1.2929    1.2794    1.2603 
 0.90 /u hP P   0.7000 0.800 0.900 0.9500 0.9900 

                  0.00100     1.2457    1.2559    1.2527    1.2394    1.2095 
                  0.00300     1.0637    1.0767    1.0821    1.0798    1.0714 
                  0.00500     1.0171    1.0245    1.0292    1.0302    1.0313 
                 0.01000     1.0086    1.0020    1             1.0008    1.0057 
                  0.02000     1.1096    1.0678    1.0411    1.0332    1.0320 
                  0.03000     1.2691    1.1829    1.1229    1.0988    1.0865 
                  0.05000     1.7033    1.4878    1.3327    1.2735    1.2196 
 0.50 /u hP P    0.3000 0.400 0.500 0.6000 0.7000 

                 0.00100     1.2190    1.2838    1.3305    1.3721    1.3991 
                 0.00300     1.0379    1.0733    1.1085    1.1397    1.1624 
                 0.00500     1.0021    1.0184    1.0393    1.0616    1.0837 
                 0.01000     1.0403    1.0069    1             1.0040    1.0129 
                 0.02000     1.2905    1.1338    1.0622    1.0265    1.0094 
                 0.03000     1.4966    1.3468    1.1921    1.1070    1.0590 
                 0.05000     1.4968    1.4967    1.4966    1.3568    1.2251 
______________________________________________________________ 
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Table 4.  Sensitivities of AsVar( ˆqy ) When  = 1.5 with K = 2 

 

uP  hP        

0.0001 0.99 /u hP P   0.9700 0.980 0.990 0.9950 0.9990 

                 0.00001     1.1315    1.1112    1.0903    1.0737    1.0481 
                  0.00003     1.0489    1.0406    1.0262    1.0181    1.0085 
                 0.00005     1.0248    1.0169    1.0098    1.0054    1.0027 
                 0.00010     1.0038    1.0012    1             1.0010    1.0084 
                  0.00020     1.0042    1.0070    1.0119    1.0185    1.0367 
                  0.00030     1.0191    1.0229    1.0315    1.0415    1.0666 
                  0.00050     1.0548    1.0616    1.0754    1.0903    1.1196 
 0.90 /u hP P   0.7000 0.800 0.900 0.9500 0.9900 

                  0.00001     1.1447    1.1235    1.0889    1.0646    1.0356 
                  0.00003     1.0582    1.0455    1.0266    1.0153    1.0082 
                  0.00005     1.0299    1.0208    1.0088    1.0047    1.0069 
                 0.00010     1.0068    1.0030    1             1.0022    1.0182 
                 0.00020     1.0074    1.0064    1.0111    1.0216    1.0500 
                 0.00030     1.0220    1.0225    1.0317    1.0444    1.0807 
                  0.00050     1.0597    1.0620    1.0729    1.0908    1.1384 
 0.50 /u hP P   0.3000 0.400 0.500 0.6000 0.7000 

                 0.00001     1.0880    1.0907    1.0924    1.0884    1.0790 
                  0.00003     1.0232    1.0271    1.0282    1.0264    1.0248 
                  0.00005     1.0056    1.0085    1.0106    1.0098    1.0092 
                  0.00010     1.0017    1.0003    1             1.0002    1.0010 
                  0.00020     1.0283    1.0171    1.0122    1.0117    1.0122 
                  0.00030     1.0620    1.0418    1.0339    1.0302    1.0304 
                 0.00050     1.1367    1.1005    1.0834    1.0731    1.0689 
 0.10 /u hP P   0.0600 0.080 0.100 0.1200 0.1400 

                 0.00001     1.0892    1.1147    1.1269    1.1448    1.1518 
                 0.00003     1.0176    1.0287    1.0396    1.0490    1.0592 
                 0.00005     1.0021    1.0077    1.0150    1.0208    1.0274 
                 0.00010     1.0082    1.0014    1             1.0008    1.0024 
                 0.00020     1.0604    1.0333    1.0191    1.0113    1.0056 
                 0.00030     1.1248    1.0776    1.0522    1.0364    1.0255 
                 0.00050     1.2679    1.1793    1.1305    1.1009    1.0788 
 0.01 /u hP P   0.0060 0.008 0.010 0.0120 0.0140 

                  0.00001     1.1716    1.2230    1.2634    1.2941    1.3260 
                  0.00003     1.0323    1.0593    1.0858    1.1075    1.1278 
                  0.00005     1.0027    1.0154    1.0305    1.0467    1.0618 
                  0.00010     1.0226    1.0040    1             1.0022    1.0079 
                 0.00020     1.1741    1.0887    1.0460    1.0240    1.0116 
                 0.00030     1.3900    1.2217    1.1385    1.0888    1.0576 
                 0.00050     1.8843    1.5996    1.3954    1.2753    1.2030 
0.0010 0.99 /u hP P   0.9700 0.980 0.990 0.9950 0.9990 

                 0.00010     1.1791    1.1582    1.1359    1.1177    1.0880 
                  0.00030     1.0624    1.0544    1.0427    1.0337    1.0209 
                  0.00050     1.0271    1.0219    1.0149    1.0101    1.0061 
                  0.00100     1.0023    1.0009    1             1.0007    1.0054 
                  0.00200     1.0124    1.0147    1.0203    1.0247    1.0384 
                  0.00300     1.0417    1.0463    1.0526    1.0593    1.0786 
                  0.00500     1.1190    1.1218    1.1317    1.1417    1.1639 
__________________________________________________________________ 
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Table 4. Continued 
 

uP  hP        

 0.90 /u hP P   0.7000 0.800 0.900 0.9500 0.9900 

                  0.00010     1.1862    1.1716    1.1355    1.1136    1.0762 
                 0.00030     1.0657    1.0577    1.0421    1.0320    1.0203 
                 0.00050     1.0287    1.0233    1.0156    1.0104    1.0079 
                 0.00100     1.0038    1.0016    1             1.0014    1.0110 
                 0.00200     1.0239    1.0183    1.0206    1.0249    1.0455 
                 0.00300     1.0670    1.0551    1.0563    1.0621    1.0833 
                  0.00500     1.1677    1.1433    1.1348    1.1425    1.1650 
 0.50 /u hP P   0.3000 0.400 0.500 0.6000 0.7000 

                  0.00010     1.1333    1.1476    1.1555    1.1569    1.1515 
                  0.00030     1.0292    1.0427   1.0498     1.0539    1.0548 
                  0.00050     1.0050    1.0120    1.0173    1.0216    1.0245 
                  0.00100     1.0073    1.0014    1             1.0005    1.0020 
                 0.00200     1.0716    1.0391    1.0232    1.0160    1.0123 
                  0.00300     1.1603    1.0978    1.0684    1.0502    1.0403 
                  0.00500     1.3641    1.2385    1.1703    1.1314    1.1067 
 0.10 /u hP P   0.0600 0.080 0.100 0.1200 0.1400 

                 0.00010     1.1788    1.2247    1.2637    1.2926    1.3158 
                 0.00030     1.0344    1.0618    1.0857    1.1066    1.1262 
                 0.00050     1.0031    1.0163    1.0317    1.0460    1.0605 
                 0.00100     1.0227    1.0039    1             1.0023    1.0073 
                  0.00200     1.1726    1.0885    1.0470    1.0246    1.0119 
                  0.00300     1.3951    1.2217    1.1369    1.0891    1.0594 
                  0.00500     1.9034    1.5997    1.3957    1.2772    1.2031 
0.010 0.99 /u hP P   0.9700 0.980 0.990 0.9950 0.9990 

                  0.00100     1.2811    1.2653    1.2405    1.2195    1.1888 
                 0.00300     1.0940    1.0861    1.0774    1.0705    1.0567 
                 0.00500     1.0349    1.0323    1.0274    1.0237    1.0188 
                 0.01000     1.0009    1.0003    1             1.0002    1.0022 
                 0.02000     1.0426    1.0412    1.0384    1.0381    1.0427 
                  0.03000     1.1260    1.1195    1.1143    1.1093    1.1079 
                 0.05000     1.3525    1.3262    1.3025    1.2862    1.2684 
 0.90 /u hP P   0.7000 0.800 0.900 0.9500 0.9900 

                  0.00100     1.2851    1.2779    1.2576    1.2311    1.1924 
                  0.00300     1.0802    1.0863    1.0806    1.0749    1.0647 
                  0.00500     1.0253    1.0297    1.0302    1.0276    1.0257 
                 0.01000     1.0063    1.0016    1             1.0008    1.0053 
                  0.02000     1.1014    1.0670    1.0435    1.0368    1.0358 
                  0.03000     1.2641    1.1820    1.1292    1.1060    1.0936 
                 0.05000     1.7269    1.5033    1.3511    1.2902    1.2328 
 0.50 /u hP P   0.3000 0.400 0.500 0.6000 0.7000 

                 0.00100     1.2504    1.2979    1.3346    1.3580    1.3728 
                 0.00300     1.0469    1.0823    1.1087    1.1312    1.1476 
                 0.00500     1.0042    1.0211    1.0410    1.0587    1.0744 
                 0.01000     1.0360    1.0058    1             1.0032    1.0098 
                  0.02000     1.2945    1.1349    1.0642    1.0296    1.0127 
                  0.03000     1.4657    1.3600    1.1972    1.1148    1.0672 
                  0.05000     1.4659    1.4658    1.4657    1.3808    1.2443 
_______________________________________________________________ 
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8. Conclusions 

 
Even through a lot of work has been done on optimal ALT plans, the computational techniques and results 
concerning asymptotically optimal ALT plans for Burr type X with log-linear model are new. In this paper, 
we have discussed optimal ALT plans for minimizing ˆ( )qAsVar y  under the assumptions of Burr type X 

distribution, periodic inspection, and Type I censoring with log-linear model. We have derived the optimal 
allocation of units for two stress levels using Lagrange multipliers technique.   

 

In optimality results, we have indicated various patterns of optimal plans and shown that the number of 
inspections need not be large and the plan is insensitive to misspecification of guessed failure probabilities 
at the design and high stress levels. We have also observed that the schemes with equally spaced inspection 
times at each stress level are administratively convenient and statistically optimal. We conclude that the 
Burr type X failure model is widely and quit effectively lifetime distribution for ALT.  Finally, we have 
used an example to illustrate the planning of an ALT.  
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Appendix 
 

Probability of failure  1iP    2iP            , ( )i K iP    , ( ) 1i K iP   
Number of failure 1ix    2ix           , ( )i K ix   , ( ) 1i K ix   

              
             0 0it       1it         2it          , ( ) 1i K it       , ( )i K i cit t     , ( ) 1i K it     

  

Figure 1. Structure of periodic inspection at the ith stress level 
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