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Abstract

We consider six different estimators of residual heterogeneity in random-effects meta-regression, five es-
timators already known and implemented in the R package metafor and one estimator not yet considered
in random-effects meta-regression. In a numerical study, we investigate the properties of these residual
heterogeneity estimators as well as the impact of these estimators on the properties of the regression
parameter estimates. It turns out that the new estimator performs quite well in terms of bias and mean
squared error. The impact of the different residual heterogeneity estimators on the actual confidence co-
efficient of confidence intervals for regression parameters can be substantially different as shown in the
numerical study.
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1. Introduction

Meta-analysis aims to compare and possibly com-
bine estimates of effect across related studies. For
example, in a meta-analysis of clinical trials, the
overall effect of a treatment can be expressed as
standardized difference of means for normal re-
sponses or as relative risk or odds ratio for binary
responses. Methods for providing such an overall

estimate are well known1,2. Methods which incorpo-
rates a between-study component of variance for the
treatment effect are based on random-effects mod-
els; the between-study variance represents the ex-
cess variation in observed treatment effects over that
expected from the imprecision of results within each
study. Between-study variance is also often called
heterogeneity.

When substantial heterogeneity is present, un-
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derstanding the possible causes of heterogeneity is
crucial. One possibility is to incorporate study-
specific covariates in the random-effects model that
then leads to the notion meta-regression. In random-
effects meta-regression inference, that is, in a meta-
regression model allowing for residual heterogene-
ity, accurate estimation of the variances of the pa-
rameter estimates is fundamental, as always in sta-
tistical inference. Accurate estimation of the resid-
ual heterogeneity is a first step in this process as
the reduction of residual heterogeneity compared to
meta-analysis heterogeneity can be used to interpret
whether the study-specific covariates may or may
not explain heterogeneity.

Several estimators of heterogeneity or residual
heterogeneity have been already proposed. We con-
sider five estimators already implemented in the
R package metafor (Ref. 3), namely Hedges
(HE) estimator, DerSimonian-Laird (DL) estima-
tor, maximum likelihood (ML) estimator, restricted
maximum likelihood (REML) estimator, and Sidik-
Jonkman (SJ) estimator. HE, DL, and SJ estima-
tor are originally proposed in random-effects meta-
analysis but can be easily extended to the meta-
regression context as shown in Section 2. Addi-
tionally, we consider an iterated (IT) version of
the Sidik-Jonkman estimator and the Mandel-Paule
(MP) estimator in the meta-regression context and,
interestingly, we can prove that these two estimators
are identical.

The outline of this paper is as follows: Section
2 contains the description of the general random-
effects meta-regression model and the residual het-
erogeneity estimators. In Section 3, we present re-
sults of a numerical study. We discuss properties
(bias and mean squared error (MSE)) of the estima-
tors of residual heterogeneity and of the regression
parameters. Further, properties of the confidence in-
tervals of the regression parameters are examined.
Finally, some concluding remarks are given.

Throughout this paper, we will use the following
matrix notation: Let A be a matrix then AT is the
transposed matrix of A. Let A be a regular matrix
then A−1 denotes the inverse of A. For a quadratic
matrix A, let |A| denote the determinant of A and
tr(A) the trace of A. 1k is the k-dimensional vector

consisting of ones.

2. Estimators of Residual Heterogeneity

Let us consider k independent studies. The general
random-effects meta-regression model can be writ-
ten as:

θ̂i ∼N
(

xT
i β ,τ2 + σ̂

2
i (θ̂i)

)
, i = 1, . . . ,k, (1)

where θ̂i is the estimator of the study-specific pa-
rameter of interest, xi ∈ Rp, p < k, the vector of
known covariates, where the first component is one,
β ∈ Rp the vector of unknown regression param-
eters, τ2 > 0 the residual heterogeneity parameter,
and σ̂2

i (θ̂i) the estimated variance of θ̂i in the ith
study treated as fixed. In the following, we simply
write σ̂2

i for the estimated within-study variability.
If no covariates are used, that is, xi = 1, we have
the usual random-effects meta-analysis model with
β ∈ R the parameter of interest.

In matrix notation, model (1) can be written as

θ̂ ∼N (Xβ ,Λ) , Λ = τ
2Ik + ∆̂, (2)

where θ̂ = (θ̂1, . . . , θ̂k)T ∈ Rk is the observable vec-
tor of study-specific estimators, X ∈ Rk×p is the
known matrix of covariates, whose ith row contains
the covariate values of the ith study, and has full
column rank rk(X) = p, p < k− 1, β ∈ Rp is the
unknown vector of regression parameters, τ2 > 0
the residual heterogeneity parameter, Ik the (k× k)-
identity matrix, and ∆̂ = diag{σ̂2

1 , . . . , σ̂2
k } the (k×

k)-diagonal matrix with the estimated within-study
variances as entries on the diagonal. Recall that
for X = 1k, we have the usual random-effects meta-
analysis model in matrix notation.

In the following, we use either the notation of (1)
or (2) based on convenience. We consider estimators
of τ2 based either on residual sum of squares or on
likelihood approaches.

Given an estimator of the residual heterogeneity
parameter τ2 as described below, say τ̂2, we ob-
tain the estimated covariance matrix W = τ̂2Ik + ∆̂.
The weighted least squares estimator of β is then
β̂ = (XTW−1X)−1XTW−1θ̂ with Ĉov(β̂ ) =
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(XTW−1X)−1. An approximate (1−α)-confidence
interval on a single regression parameter β j, j =
1, . . . , p, is given by

β̂ j±
√

v j jz1−α/2, (3)

where β̂ j is the jth component of β̂ , v j j is the jth
diagonal element of Ĉov(β̂ ), and zγ is the γ-quantile
of the standard normal distribution, see e. g. (Ref. 2)

2.1. Hedges-type estimator

Consider the vector of ordinary least squares residu-
als in model (2)

(Ik−X(XT X)−1XT )θ̂ = P1θ̂

with P1 = Ik−X(XT X)−1XT . Note that P1 is sym-
metric and idempotent. The residual sum of squares
is given by θ̂ T P1θ̂ . Under model (2) we have
E(θ̂ T P1θ̂) = tr(P1Cov(θ̂)), since P1X = 0. Now
tr(P1Cov(θ̂)) = τ2tr(P1) + tr(P1∆̂) = τ2(k − p) +
tr(P1∆̂).
The method of moments estimating equation is then
θ̂ T P1θ̂ = τ2(k− p)+ tr(P1∆̂) leading to

τ̂
2
HED =

1
k− p

(
θ̂

T P1θ̂ − tr(P1∆̂)
)

. (4)

Note that τ̂2
HED can yield negative estimates of the

nonnegative residual heterogeneity parameter and is
usually truncated at 0. If X = 1k, then τ̂2

HED reduces
to the estimator of heterogeneity introduced in the
random-effects meta-analysis model4.

2.2. DerSimonian-Laird-type estimator

This part is patterned from (Ref. 5). Consider
the vector of weighted least squares residuals under
H0 : τ2 = 0 in model (2):(

Ik−X
(

XT
∆̂
−1X

)−1
XT

∆̂
−1
)

θ̂ = P2θ̂

with P2 = Ik−X
(

XT ∆̂−1X
)−1

XT ∆̂−1.
Note that P2 is idempotent. The weighted resid-

ual sum of squares is then θ̂ T PT
2 ∆̂−1P2θ̂ .

Under model (2), we obtain with analogue calcu-
lations as above

E(θ̂ T PT
2 ∆̂
−1P2θ̂)

= tr(PT
2 ∆̂
−1P2Cov(y))

= τ
2tr(PT

2 ∆̂
−1P2)+ tr(PT

2 ∆̂
−1P2∆̂).

This leads to the method of moments estimating
equation

θ̂
T PT

2 ∆̂
−1P2θ̂ = τ

2tr(PT
2 ∆̂
−1P2)+ tr(PT

2 ∆̂
−1P2∆̂)

which reveals the estimator

τ̂
2
DL =

θ̂ T PT
2 ∆̂−1P2θ̂ − tr(PT

2 ∆̂−1P2∆)

tr(PT
2 ∆̂−1P2)

=
θ̂ T PT

2 ∆̂−1P2θ̂ − (k− p)

tr(PT
2 ∆̂−1P2)

. (5)

Note that ∆̂−1P2∆̂ = Ik− ∆̂−1X(XT ∆̂−1X)−1XT such
that

PT
2 ∆̂
−1P2∆̂ = Ik− ∆̂

−1X(XT
∆̂
−1X)−1XT

and
tr(PT

2 ∆̂
−1P2∆̂) = k− p.

Like the Hedges-type estimator, the DerSimonian-
Laird-type estimator can yield negative estimates
of the nonnegative residual heterogeneity parame-
ter and is, thus, truncated at zero in practice. If
X = 1k, then τ̂2

DL reduces to the estimator of het-
erogeneity introduced in the random-effects meta-
analysis model6.

2.3. Mandel-Paule-type estimator

Let be Λ = τ2Ik + ∆̂ the covariance matrix in model
(2) and consider the generalized least squares vector
of residuals

(Ik−X(XT
Λ
−1X)−1XT

Λ
−1)θ̂ = P3θ̂

with P3 = Ik − X(XT Λ−1X)−1XT Λ−1. Note that
P3 is idempotent. The weighted residual sum of
squares is θ̂ T PT

3 Λ−1P3θ̂ . Under normality, it holds
θ̂ T PT

3 Λ−1P3θ̂ ∼ χ2
k−p. Recall E(χ2

k−p)= k− p. Note
that the only unknown parameter in Λ is τ2. Con-
sider Q(τ2) = θ̂ T PT

3 Λ−1P3θ̂ as a function of τ2.
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This function is monotone decreasing in τ2 as shown
in Appendix A.

The Mandel-Paule-type estimator τ̂2
MP is then de-

fined as the unique solution of the equation

Q(τ̂2
MP) = k− p, (6)

if the solution exists, or τ̂2
MP = 0 if Q(0) < k− p.

If X = 1k, then p = 1, and Eq. (6) reduces to
the estimating equation originally proposed in the
random-effects meta-analysis model7. Appendix B
contains R code showing that the Mandel-Paule-
type estimator can be easily calculated within the R
package metafor.

2.4. Sidik-Jonkman-type estimator

Let us rewrite model (2) as

θ̂ ∼N
(
Xβ ,τ2V

)
with V = diag

(
1+

σ̂2
i

τ2

)
i=1,...,k

.

(7)
Then the vector of weighted least squares residuals
is given by

(Ik−X(XTV−1X)−1XTV−1)θ̂ = P4θ̂

with P4 = Ik−X(XTV−1X)−1XTV−1. Note that P4 is
idempotent. The weighted residual sum of squares
is then

θ̂
T PT

4 V−1P4θ̂

= θ̂
T (V−1−V−1X(XTV−1X)−1XTV−1)

θ̂ .

Then it holds E(θ̂ T PT
4 V−1P4θ̂) = τ2(k− p). This

leads to an unbiased estimator of τ2, namely

τ̃
2 =

1
k− p

θ̂
T PT

4 V−1P4θ̂ , (8)

which, in contrast to the above discussed estima-
tors, always yields positive values (with probability
1) for the residual heterogeneity parameter. But τ̃2

depends through V on the unknown τ2. In the meta-
analysis context, (Ref. 8)

τ
2
0 =

1
k

k

∑
i=1

(
θ̂i−

1
k

k

∑
j=1

θ̂ j

)2

(9)

as the crude estimate for between-study variability.
In meta-regression context, (Ref. 9) use the same
crude estimator of τ2 and plug this estimate in τ̃2

though the meaning of τ2 in meta-regression is dif-
ferent from the meaning of τ2 in meta-analysis. In
the following, we will denote the (one-step) Sidik-
Jonkman-type estimator by τ̂2

SJ when we replace τ2

by τ2
0 in τ̃2. Note that, if the crude estimator τ2

0 is
equal to zero, then τ̂2

SJ = 0.

2.5. Iterated Sidik-Jonkman-type estimator

At least in meta-regression, it is appealing to iterate
the Sidik-Jonkman-type estimator that is, we con-
sider in the jth iteration step

τ̂
2
j =

1
k− p

θ̂
T P̂T

4, j−1V̂−1
j−1P̂4, j−1θ̂ , (10)

starting with τ2
0 from Eq. (9) on the right-hand side

of Eq. (10). P̂4, j−1 and V̂−1
j−1 are the corresponding

matrices with τ2 replaced by τ̂2
j−1. We continue the

iteration until convergence and denote the final esti-
mator by τ̂2

IT . Note that τ̂2
IT is set to zero if τ2

0 = 0.

Lemma 1. The Mandel-Paule-type estimator τ̂2
MP

and the iterated Sidik-Jonkman-type estimator τ̂2
IT

are identical.

Proof. Based on the unbiased estimator τ̃2, see
Eq. (8), we obtain the estimating equation for the
iterated Sidik-Jonkman-type estimator as

τ
2 =

1
k− p

θ̂
T PT

4 V−1P4θ̂ .

Note PT
4 V−1P4 = V−1 −V−1X(XTV−1X)−XTV−1.

Using Theorem 1 of Appendix A, the above estimat-
ing equation can be rewritten as

τ
2 =

1
k− p

θ̂
T K(KTV K)−1KT

θ̂

with KT X = 0 and KT of maximum row rank. Re-
call that τ2V = Λ and rearranging the last estimating
equation to

k− p =
1
τ2 θ̂

T K(KTV K)−1KT
θ̂

= θ̂
T K(KT

τ
2V K)−1KT

θ̂

= θ̂
T K(KT

ΛK)−1KT
θ̂
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yields the estimating equation for the Mandel-Paule-
type estimator. This completes the proof.

2.6. Maximum Likelihood Estimation

Under normality assumption of θ̂i consider the con-
ditional log-likelihood function

`(β ,τ2|θ̂1, . . . , θ̂k, σ̂
2
1 , . . . , σ̂2

k )

= const− 1
2

k

∑
i=1

ln(τ2 + σ̂
2
i )− 1

2

k

∑
i=1

(θ̂i− xT
i β )2

τ2 + σ̂2
i

.

The partial derivatives of ` with respect to β and τ2

are, defining wi = (τ2 + σ̂2
i )−1, i = 1, . . . ,k,

∂ `

∂ β
=

∂

∂β

(
−1

2

k

∑
i=1

wi

(
θ̂i− xT

i β

)2
)

=
k

∑
i=1

(wiθ̂i) xi−
k

∑
i=1

[wi(xT
i β )] xi

and

∂`

∂τ2 =−1
2

k

∑
i=1

1
τ2 + σ̂2

i
+

1
2

k

∑
i=1

(θ̂i− xT
i β )2

(τ2 + σ̂2
i )2 .

Setting both partial derivatives equal to zero yield
the estimation equations

k

∑
i=1

wi(xT
i β )xi =

k

∑
i=1

(wiθ̂iyi)xi

and

τ
2 =

k

∑
i=1

w2
i
[
(yi− xT

i β )2− σ̂
2
i
]
,

which have to be solved iteratively under the con-
straint of nonnegative τ2.

2.7. Restricted Maximum Likelihood Estimation

The maximum likelihood estimator of τ2 tends to
underestimate the residual heterogeneity in finite
samples by failing to account for the fact that the
regressions parameters are also estimated from the
data. The restricted maximum likelihood estima-
tor compensates for this underestimation. Following

(Ref. 10)) and using the model in matrix notation
from Eq. (2), the log-likelihood function to be max-
imized is then

`R(τ2|θ̂1, . . . , θ̂k, σ̂
2
1 , . . . , σ̂2

k )

= −1
2

ln |Λ|− 1
2
|XT

Λ
−1X |

−1
2
(θ̂ −X β̃ )T

Λ
−1(θ̂ −X β̃ ),

leaving out the additive constant and β̃ is the maxi-
mum likelihood solution of β given fixed τ2 (Ref.
11). This log-likelihood function has to be max-
imized numerically. In the R package metafor,
Fisher scoring algorithm is implemented for max-
imizing this function. This algorithm is known to
be robust to poor starting values and usually con-
verges quickly.11,12 By default, the starting value is
set equal to the value of the Hedges-type estima-
tor and the algorithm terminates when the change
in the estimated value of τ2 is smaller than 10−5

from one iteration to the next. The Fisher scoring
algorithm makes use of step halving to guarantee a
non-negative estimate of τ2.

3. Numerical Study

In a numerical study, we investigate the properties
of the residual heterogeneity estimators Section 2
and their influence on the regression parameter es-
timates. Motivated by real data examples2,13, we do
not generate the data from the model (1) or (2), re-
spectively, but only analyze the data in this model.
For generating the data, we use a binomial-normal
hierarchical model. Let pTi and pCi be the suc-
cess probabilities in the treatment (T) and control
(C) group, respectively, in the ith study, i = 1, . . . ,k.
We consider the relative risk as effect size of inter-
est for comparing treatment versus control. Then
θi = ln(pTi)− ln(pCi) is the study-specific logarith-
mic (log) relative risk. Let us consider one covariate
xi, then θi should follow a normal distribution with
mean α +βxi and variance τ2.

In the numerical study, we fix α = 0 and β =
−0.37; the value of the slope parameter is motivated
by the real data example in (Ref. 13). The values
of xi are drawn from N (0,0.32). We choose the
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mean equal to 0 because the covariate is often cen-
tered around its mean to give the intercept α a mean-
ingful interpretation in the model. We fix the suc-
cess probabilities in the control groups to pCi = 0.15,
i = 1, . . . ,k, which is the mean success probability of
the control groups in (Ref. 13). The considered val-
ues of the residual heterogeneity τ2 range from 0 to
0.5 by 0.05. The sample sizes in the studies are al-
ways balanced, that is, nTi = nCi = ni, and drawn ei-
ther from a uniform discrete distribution between 10
and 30 (small sample sizes) or from a uniform dis-
crete distribution between 100 and 300 (large sam-
ple sizes). We report the results for k = 10 and
k = 30 studies. In total, we consider 44 scenarios.

In summary, the binomial-hierarchial model for
generating the data is given by

YTi ∼ Bin(nTi, pTi)
YCi ∼ Bin(nCi, pCi)
pCi = 0.15
pTi = min{pCi exp(α +βxi +ai);0.9999}
θi = ln(pTi)− ln(pCi) = α +βxi +ai

ai ∼N (0,τ2)

Note that, to guarantee pTi ∈ (0,1), we truncate
pCi exp(α + βxi + ai) at 0.9999. After generating
nTi, nCi, pTi, and pCi, we generate the number of suc-
cesses YTi and YCi from binomial distributions. Then

θ̂i = ln
(

YTi

nTi

)
− ln

(
YCi

nCi

)
with

σ̂
2
i =

1
YTi
− 1

nTi
+

1
YCi
− 1

nCi
.

The numerical study is carried out using the
statistic software R (Ref. 14). Each estimated bias
and mean squared error of the estimators is based on
2,000 simulation runs. Each estimated confidence
coefficient is based on 10,000 simulation runs.

In the following sections, we report the funda-
mental results of the numerical study. We use the
abbreviations HE, DL, ML, REML, SJ, and MP
standing for Hedges-type estimator, DerSimonian-
Laird-type estimator, maximum likelihood estima-
tor, restricted maximum likelihood estimator, Sidik-
Jonkman-type estimator, and Mandel-Paule-type es-
timator. Also we will use these abbreviations when

the corresponding residual heterogeneity estimator
is used in estimating a regression parameter or cal-
culating a confidence interval for a regression pa-
rameter.

3.1. Properties of the Estimators of Residual
Heterogeneity

In Figure 1, the biases of the residual heterogeneity
estimators are displayed for k = 10 and k = 30 stud-
ies with small and large sample sizes, respectively.

For k = 10 studies and small sample sizes, SJ
always has a positive bias, which is decreasing for
increasing τ2 and lies roughly between 0.35 and 0.2.
All the other estimators have positive bias for small
τ2 and negative bias for larger τ2. The biases of
these estimators as functions of the residual hetero-
geneity parameter are all decreasing for increasing
τ2. HE is positively biased up to roughly τ2 = 0.2
and then negatively biased. MP, DL, and REML are
positively biased close to zero and then all are neg-
atively biased. Within this group of estimators, MP
performs best. ML has the largest negative bias.

For k = 30 studies and small sample sizes, we
obtain practically the same results as for k = 10 stud-
ies. ML has again the largest negative bias but the
amount of bias is less than for k = 10 studies. HE is
now positively biased only close to τ2 = 0 and then
negatively biased. The amount of bias of HE is less
than the biases of MP, DL, and REML. With respect
to bias, given small sample sizes, HE seems to per-
form best followed by MP, DL, and REML. ML can-
not be recommended because of its downward bias.
SJ is not suitable for small sample sizes.

By increasing the sample sizes, the amount of
biases decreases as expected. All the biases of the
estimators, except ML, tend to be close to zero. For
k = 10 studies, REML seems to be perform best fol-
lowed by MP and DL, where DL is negatively biased
for large τ2 and MP positively biased for larger τ2.
SJ and HE are always positively biased, where the
amount of bias is larger with HE than SJ when the
residual heterogeneity is large. For k = 30 studies,
MP seems to be perform best followed by REML.
DL and ML are negatively biased, HE and SJ again
positively biased.

In Figure 2, mean squared errors (MSE) of the
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Figure 1: Biases of the residual heterogeneity estimators HE (solid line), DL (dashed), ML (dotted), REML
(dotdash), SJ (longdash), and MP (twodash) for k = 10 and k = 30 studies with small and large sample sizes
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Figure 2: Mean squared errors (MSE) of the residual heterogeneity estimators HE (solid line), DL (dashed), ML
(dotted), REML (dotdash), SJ (longdash), and MP (twodash) for k = 10 and k = 30 studies with small and large
sample sizes
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residual heterogeneity estimators are displayed for
k = 10 and k = 30 studies with small and large sam-
ple sizes, respectively.

For small sample sizes, SJ shows a different be-
havior than the other five estimators. Given k = 10
studies, the MSE of SJ is roughly constant over the
range of considered heterogeneity values. Up to
τ2 = 0.35, SJ has the largest MSE of all estimators.
Looking at the other five estimators, the MSEs are
all increasing with increasing residual heterogeneity
τ2. HE clearly has the largest MSE in this group
and, for large values of τ2, even a larger MSE than
SJ; the other four estimators nearly have identical
MSEs. For k = 30 studies, the MSE’s of all esti-
mators are smaller than for k = 10 studies. SJ has
now decreasing MSE with increasing τ2, and, up
to τ2 = 0.3, SJ has the largest MSE of all estima-
tors. The other five estimators again have increasing
MSEs with increasing τ2. In most cases, ML has the
largest MSE in this group, and for τ2 > 0.2, HE has
the smallest MSE.

For large sample sizes, all the estimators pos-
sess increasing MSE with increasing residual het-
erogeneity. For k = 10 and k = 30, HE has the
largest MSE, while all the other estimators have
practically identical MSEs. For k = 10 and large
values of τ2, ML and DL have smaller MSEs than
the other estimators. Increasing the number of stud-
ies from k = 10 to k = 30 leads to smaller MSEs of
the estimators.

3.2. Properties of the Estimators of Regression
Parameters

In the second step of our numerical study, we inves-
tigate the impact of the residual heterogeneity esti-
mators on the properties of the regression parameter
estimators. Interestingly, we do not observe substan-
tial differences between the properties of the regres-
sion parameter estimates using the different residual
heterogeneity estimators.

For small sample sizes, all the intercept estima-
tors are positively biased. The biases are all increas-
ing for increasing τ2. SJ always yields the small-
est bias, ML always the largest. The biases of the
other four methods lie in between and are virtually
identical. With increasing number of studies, the bi-

ases of the other four methods approach the bias of
ML identifying SJ clearly as the less biased estima-
tor. For large τ2, the bias can be up to 0.2. For
large sample sizes, the magnitude of the biases is, as
expected, smaller and less than 0.04 even for large
values of τ2. All the methods produce practically
identical biases. With respect to MSE, all methods
yield nearly identical MSEs for k = 10 and k = 30
studies indicating that the variability of SJ may be
larger than the variability of the other methods.

For the slope parameter, the biases are mostly
positive and up to 0.05 given small sample sizes.
Again SJ yields the smallest bias and all other meth-
ods produce nearly identical biases. For large sam-
ple, the biases of all methods are nearly identical and
around zero. With respect to MSE, SJ has the largest
MSE with small sample sizes indicating again that
the variability of SJ is larger compared to the other
estimators. The MSEs of the other methods are prac-
tically identical. With large samples sizes, all esti-
mators yield virtually identical MSEs.

3.3. Properties of the Confidence Intervals of
Regression Parameters

Using Eq. (3), we investigate the actual confidence
coefficients of the confidence interval on the slope
parameter β given a two-sided nominal level of
95%. In Table 1, the results are displayed for small
sample sizes in k = 10 and k = 30 studies.

Looking at the results, we can first state that
given a method and a fixed value of τ2 there is prac-
tically no difference between the estimated confi-
dence coefficients for k = 10 and k = 30 studies.
Generally, the estimated confidence coefficients de-
crease for increasing τ2. SJ produces always very
conservative confidence intervals even for large val-
ues of τ2. For small values of τ2, all methods yield
conservative confidence intervals. For larger values,
first ML tends to produce liberal confidence inter-
vals. In the group, HE, DL, REML, and MP, HE pro-
duces always the largest estimated confidence coef-
ficient for a fixed value of τ2 and shows no tendency
to become liberal. MP has (nearly) always the sec-
ond largest estimated confidence in this group and
shows a tendency to become liberal only for large
values of τ2 with k = 10 studies. DL behave similar
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to MP, and REML performs a little worse than MP
and DL being a bit liberal for large values of τ2.

Table 2 contains the results for large sample
sizes. At a first glance, we see that the number of
studies has an effect on the actual confidence coeffi-
cients. For k = 10 studies, the estimated confidence
coefficient are obviously significantly less than for
k = 30 studies. For k = 10 and residual heterogene-
ity present, all the methods produce very liberal con-
fidence intervals except SJ for τ2 = 0.05. ML yields
the worst results followed by DL especially for large
values of τ2. HE and MP, like for small sample sizes,
produce similar results closely followed by REML.
For τ2 > 0.1, where all the confidence intervals are
liberal, SJ has always the largest estimated confi-
dence coefficient. When no residual heterogeneity
is present, all the methods yield conservative confi-
dence intervals with SJ the most conservative one.

For k = 30 studies, all the methods again yield
conservative confidence when no residual hetero-
geneity is present with SJ again the most conserva-
tive one. SJ remains a bit conservative for τ2 6 0.2
but for τ2 > 0.2 attains the nominal level. Second
best method is HE with a slight tendency to be lib-
eral for small values of τ2. But even for small val-
ues of τ2, HE is better than the remaining meth-
ods. MP closely follows HE as third best. ML is
again the worst method when residual heterogeneity
is present.

4. Concluding Remarks

Meta-regression has become a commonly used tool
for investigating whether study characteristics may
explain heterogeneity of results among studies in a
meta-analysis. However, such explorations of het-
erogeneity are prone to misleading false-positive re-
sults. It is unclear how many covariates can be re-
liably investigated, and how this might depend on
the number of studies, the extent of the heterogene-
ity and the relative weights awarded to the different
studies.15

In this paper we have investigated six different
residual heterogeneity estimators in random-effects
meta-regression, four based on different residual
sum of squares and two based on likelihood ap-

proaches. Estimators of residual heterogeneity are
often used to quantify the reduction of heterogene-
ity due to the covariate(s). In our numerical study,
we have seen that the estimators behave quite dif-
ferently. Sidik-Jonkman-type and Hedges-type es-
timator tend to be positively biased even for large
sample sizes. Consequently, quantifying the re-
duction of heterogeneity with these two estimators
may lead to a different conclusion in comparison
to, for instance, the DerSimonian-Laird-type estima-
tor, which turned out to be negatively biased. For
large samples sizes, the Mandel-Paule-type estima-
tor seems to be nearly unbiased and is thus an at-
tractive alternative to the already in the R package
metafor implemented estimators.

With respect to confidence intervals on the re-
gression parameters, we have seen that most of
the confidence intervals are liberal for large sample
sizes. To overcome this problem, the confidence in-
tervals proposed in (Ref. 5) could be used.

Finally, let us recall that we have used a
binomial-hierarchical model for generating the data
but used model (2) for analyzing the data. Model
(2) can be derived a the marginal model from a
normal-normal hierarchical model. Our data genera-
tion process was motivated by the real data example
and then we applied the standard analysis. Clearly,
such data could also be analyzed using Bayesian
approaches.16
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Appendix A

Uniqueness of Mandel-Paule-type estimator

Theorem 1. (Khatri, 1966): If KT X = 0, where
KT has maximum row rank, and V is positive def-
inite then K(KTV K)−1KT = P for P = V−1 −
V−1X(XTV−1X)−XTV−1.

Using Theorem 1 we can write

PT
3 Λ
−1P3 = Λ

−1−Λ
−1X

(
XT

Λ
−1X

)−1
XT

Λ
−1

= K(KT
ΛK)−1KT

with KT X = 0 and KT has maximum row rank. This
leads to the quadratic from

Q(τ2) = θ̂
T PT

3 Λ
−1P3θ̂ = θ̂

T K(KT
ΛK)−1KT

θ̂

= ε
T (KT (τ2Ik + ∆̂)K)−1

ε

= ε
T (τ2KT K +KT

∆̂K)−1
ε

with ε = KT θ̂ . Following Magnus and Neudecker
(1988, p. 151), we obtain

dQ(τ2)
dτ2 = ε

T
(

d
dτ2

(
τ

2KT K +KT
∆̂K
)−1
)

ε

= −ε
T
(

τ
2KT K +KT

∆̂K
)−1

KT K

×
(

τ
2KT K +KT

∆̂K
)−1

ε

= −η
T KT Kη < 0,

since KT K is positive definite ,

with η =
(

τ2KT K +KT ∆̂K
)−1

ε 6= 0. Conse-

quently, Q(τ2) is strictly monotone decreasing in the
nonnegative residual heterogeneity parameter τ2 and
the Mandel-Paule-type estimator is unique.

Appendix B

R code for computing Mandel-Paule-type estimator
Knapp, Biggerstaff, and Hartung (2006) as

well as Viechtbauer (2007) proposed an (1− α)-
confidence interval on τ2 defined by

CI(τ2) =
{

τ
2|χ2

k−p,α/2 6 Q(τ2) 6 χ
2
k−p,1−α/2

}
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with χ2
ν ,κ the κ-quantile of the χ2-distribution with

ν degrees of freedom. Since Q(τ2) is monotone de-
creasing in τ2, see Appendix A, the bounds of the
confidence interval can be determined by solving the
following two equations:

Lower bound: Q(τ2
LB) = χ

2
k−p,1−α/2 ;

Upper bound: Q(τ2
UB) = χ

2
k−p,α/2.

The computation of this interval, also called Q-
profiling confidence interval, is implemented in
the R function confint.rma.uni of the R package
metafor.

For computing the Mandel-Paule-type estimator,
one has to solve the equation Q(τ2

MP) = k− p, where
k− p is the mean of the χ2-distribution with k− p
degrees of freedom. Since the mean of χ2

k−p is
greater than the median of χ2

k−p, we first compute
which quantile of χ2

k−p is equal to the mean, say
χ2

k−p;q, q > 0.5. The level of the confidence interval
is the 1−α = 2× (q− 0.5) and the Mandel-Paule

estimator is then the lower bound of the Q-profiling
confidence interval at level (1−α).

The R code for computing the Mandel-Paule es-
timator is given below.
MP <- function(rma.uni.object){
# no. of studies
k <- rma.uni.object$k
# no. of columns of X
p <- rma.uni.object$p
# level of the confidence interval in %
level <- 100*(2*(pchisq(k-p,k-p)-.5))
# upper bound of the Q-profiling c.i.
tau.MP<-confint.rma.uni(rma.uni.object,

level=level)[1,2]
return(tau.MP) }
Prerequisite: An rma.uni.object must exist, that is,
one has already conducted a random-effects meta-
analysis or meta-regression. Note that always the
Q-profiling confidence interval is calculated irre-
spective of the (residual) heterogeneity estimator
used for carrying out the meta-analysis or meta-
regression.
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Table 1: Actual coverage probabilities (in %) for the confidence intervals on β using different heterogeneity
estimators with different values of τ2 and sample sizes between 10 and 30 from k = 10 studies at nominal level
of 95%

Number of studies k = 10
Method τ2 = 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

HE 98.17 98.15 97.72 97.26 96.82 96.66 96.21 95.66 94.95 94.96 94.72
DL 97.98 97.99 97.45 97.01 96.39 96.37 95.82 95.40 94.73 94.68 94.46
ML 97.90 97.79 97.24 96.66 96.05 95.78 94.98 94.33 93.34 93.35 92.87

REML 97.95 97.90 97.28 96.91 96.30 96.14 95.56 95.08 94.30 94.42 94.04
SJ 99.32 99.42 99.23 99.09 98.87 98.78 98.63 98.60 98.30 98.11 98.13
MP 98.01 97.98 97.48 97.06 96.41 96.42 95.85 95.43 94.79 94.64 94.57

Number of studies k = 30
Method τ2 = 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

HE 98.39 97.92 97.70 97.23 96.97 96.51 96.10 95.39 95.57 95.14 95.39
DL 98.24 97.73 97.37 96.99 96.57 95.93 95.44 94.80 95.10 94.69 95.01
ML 98.22 97.66 97.29 96.72 96.20 95.35 94.65 94.06 93.97 93.70 93.84

REML 98.22 97.68 97.26 96.79 96.35 95.56 94.97 94.45 94.67 94.32 94.51
SJ 99.62 99.44 99.43 99.25 99.07 99.07 98.84 98.76 98.73 98.46 98.46
MP 98.24 97.73 97.37 97.03 96.59 95.98 95.56 94.93 95.15 94.79 95.04

Table 2: Actual coverage probabilities (in %) for the confidence intervals on β using different heterogeneity
estimators with different values of τ2 and sample sizes between 100 and 300 from k = 10 studies at nominal
level of 95%

Number of studies k = 10
Method 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

HE 96.16 92.93 91.90 91.95 91.78 91.87 92.14 92.14 91.82 92.39 91.99
DL 96.03 92.71 91.59 91.65 91.35 91.02 91.26 91.06 90.70 91.20 90.31
ML 95.52 90.48 88.63 88.17 88.22 87.97 88.18 88.27 88.00 88.47 87.84

REML 95.99 92.60 91.60 91.66 91.44 91.30 91.68 91.61 91.27 91.79 91.26
SJ 98.26 96.19 94.46 94.14 93.67 93.31 93.40 93.06 92.66 93.14 92.60
MP 96.07 92.79 91.75 91.90 91.81 91.64 92.06 91.94 91.59 92.19 91.75

Number of studies k = 30
Method 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

HE 96.55 94.39 94.12 94.52 94.85 94.75 94.81 94.66 94.81 95.09 95.16
DL 96.23 94.17 93.45 93.56 93.82 93.64 93.59 93.63 93.17 93.28 93.35
ML 95.91 93.05 92.58 92.77 93.14 93.07 93.13 93.24 93.05 93.23 93.34

REML 96.15 94.05 93.47 93.79 94.09 93.96 94.07 94.04 93.97 94.20 94.28
SJ 98.66 96.91 95.66 95.44 95.58 95.18 95.10 94.86 94.94 95.08 95.20
MP 96.28 94.33 93.81 94.20 94.49 94.40 94.39 94.30 94.34 94.61 94.70
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