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The log-logistic distribution (also known as the Fisk distribution in economics) is widely used in survival

analysis when the failure rate function presents a unimodal shape. In this paper, we introduce the Zografos-

Balakrishnan log-logistic distribution, which contains the log-logistic distribution as a special model and has

the four common shapes of the hazard hate function. We present some properties of the new distribution and

estimate the model parameters by maximum likelihood. An application to a real data set shows that the new

distribution can provide a better fit than other classical lifetime models such as the exponentiated Weibull dis-

tribution.
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1. Introduction

Zografos and Balakrishnan [26] and Ristic and Balakrishnan [24] proposed different families of

univariate distributions generated by gamma random variables. For any baseline cumulative dis-

tribution function (cdf) G(x), and x ∈ R, Zografos and Balakrishnan [26] defined the Zografos-

Balakrishnan-G (ZB-G) distribution with probability density function (pdf) f (x) and cdf F(x) (for

a > 0) given by

f (x) =
1

Γ(a)
{− log[1−G(x)]}a−1 g(x) (1.1)
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and

F(x) =
γ (a,− log [1−G(x)])

Γ(a)
=

1
Γ(a)

∫ − log[1−G(x)]

0
ta−1e−tdt, (1.2)

respectively, where g(x) = dG(x)/dx, Γ(a) =
∫

∞

0 ta−1 e−tdt denotes the gamma function, and

γ(a,z) =
∫ z

0 ta−1 e−tdt denotes the incomplete gamma function. The corresponding hazard rate func-

tion (hrf) is

h(x) =
{− log[1−G(x)]}a−1 g(x)

Γ(a,− log [1−G(x)])
, (1.3)

where Γ(a,z) =
∫

∞

z ta−1 e−tdt denotes the complementary incomplete gamma function. On the other

hand, Ristic and Balakrishnan [24] defined the Ristic-Balakrishnan-G (RB-G) distribution for x ∈
R, a > 0 with pdf and survival function given by

f (x) =
1

Γ(a)
{− logG(x)}a−1 g(x) and F̄(x) =

1
Γ(a)

∫ − logG(x)

0
ta−1 e−tdt,

respectively. In this paper, we shall work only with the family (1.1). The ZB-G distribution has the

same parameters of the G distribution plus an additional shape parameter a > 0. If X is a random

variable with pdf (1.1), we write X ∼ ZB-G(a). Each new ZB-G distribution can be obtained from

a specified G distribution. For a = 1, the G distribution is a basic exemplar of the ZB-G distribution

with a continuous crossover towards cases with different shapes (for example, a particular combina-

tion of skewness and kurtosis). Zografos and Balakrishnan [26] motivated the ZB-G model as fol-

lows. Let X(1),X(2), . . . ,X(n) be lower record values from a sequence of i.i.d. random variables from a

population with pdf g(x). Then, the pdf of the nth lower record value is given by (1.1). A logarithmic

transformation of the parent distribution G transforms the random variable X with density (1.1) to a

gamma distribution. That is, if X has the density (1.1), then the random variable Z =− log[1−G(X)]

has a gamma distribution G(a,1) with density π(z;a) = za−1e−z/Γ(a), z > 0. The opposite is also

true, if Z has a gamma G(a,1) distribution, then the random variable X = G−1(1−e−z) has a ZB-G

distribution (1.1). Nadarajah et al. [23] derived some mathematical properties of (1.1) and (1.2)

in the most simple, explicit and general forms for the ZB-G distributions. They obtained general

expressions for shape and asymptotic properties of (1.1), (1.2) and (1.3), quantile function, ordi-

nary and incomplete moments, moment generating function (mgf), mean deviations, Bonferroni

and Lorenz curves, asymptotic distribution of the extreme values, Shannon entropy, Rényi entropy,

reliability and some properties of the order statistics.

In this paper, we use the generator suggested by Zografos and Balakrishnan [26] to define a

new model, so-called the Zografos-Balakrishnan log-logistic (ZBLL) distribution, which genera-

lizes the log-logistic (LL) distribution. In addition, we investigate some structural properties of
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the new model, discuss maximum likelihood estimation of its parameters and derive the observed

information matrix. The proposed model is much more flexible than the LL distribution and can

be used effectively for modeling positive real data. The rest of the paper is organized as follows.

In Section 2, we define the new distribution and derive useful expansions. In Section 3, explicit

expressions for the ordinary and incomplete moments, generating and quantile functions, mean

deviations, Rényi entropy and reliability are derived. Characterizations of the ZBLL model are

described in Section 4. The order statistics are investigated in Section 5. Estimation of the model

parameters by the method of maximum likelihood is presented in Section 6. An application to a

real data set is illustrated in Section 7. Finally, some conclusions and future work are addressed in

Section 8.

2. The ZBLL model and useful expansions

The pdf and cdf of the LL distribution are (for x,α,β > 0)

g(x; α, β ) =
β

αβ
xβ−1

[
1+
( x

α

)β]−2
, G(x; α, β ) = 1−

[
1+
( x

α

)β]−1
, (2.1)

respectively, where α > 0 is a scale parameter and β > 0 is a shape parameter. This distribution

is widely used in practice and it is an alternative to the log-normal distribution since it presents

a failure rate function that increases, reaches a peak after some finite period and then declines

gradually. Some properties and applications of the LL distribution were addressed by Kleiber and

Kotz [15] and Ashkar and Mahdi [1]. Its moments are given by (Tadikamalla, [25])

E(T s) = α
sB
(

1− s
β
,1+

s
β

)
=

sπαβ−1

sin(sπβ−1)
,s < β ,

where B(a,b) =
∫ 1

0 wa−1(1−w)b−1dw is the beta function. Inserting equations (2.1) into (1.1) and

(1.2) gives the pdf and cdf of the ZBLL distribution (for x > 0)

f (x) =
β

αβ Γ(a)
xβ−1

[
1+
( x

α

)β]−2{
log
[
1+
( x

α

)β]}a−1
(2.2)

and

F(x) =
γ

(
a, log

[
1+
( x

α

)β
])

Γ(a)
=

1
Γ(a)

∫ log
[
1+( x

α )
β
]

0
ta−1e−tdt, (2.3)

respectively. The LL distribution is a basic exemplar for a= 1. Plots of the ZBLL density and hazard

rate functions for selected parameter values are displayed in Figures 1 and 2, respectively. We note

that the ZBLL hrf can be increasing, decreasing, bathtub and unimodal, whereas the LL hrf is only

unimodal. A random variable X having density function (2.2) is denoted by X ∼ ZBLL(a,α,β ).

Published by Atlantis Press 
Copyright: the authors 

227



M. W. A. Ramos et al.

(a) (b) (c)

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

x

f(
x
)

a = 7, α = 2
a = 5, α = 4
a = 4, α = 5
a = 4, α = 3

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

x

f(
x
)

β = 1.5
β = 2.5
β = 3.5
β = 5.5

0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

x

f(
x
)

a = 1.5, α = 3.5, β = 7.5
a = 1.7, α = 2.0, β = 7.0
a = 1.0, α = 1.0, β = 1.0
a = 5.0, α = 0.7, β = 6.0

Fig. 1. The ZBLL density function for some parameter values: (a) β = 10; (b) a = 1.5 and α = 1.5.
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Fig. 2. The ZBLL hazard rate function for some parameter values: (a) α = 0.5; (b) a = 0.30 and α = 0.8 ; (c) a = 1.2

and β = 1.1.

The explicit expressions derived throughout the paper can be easily handled in most computa-

tion software platforms such as Maple, Mathematica and Matlab. These platforms have currently

the ability to deal with analytic formula of formidable size and complexity. Established explicit

expressions to calculate statistical measures can be more efficient than computing them directly by
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numerical integration. The infinity limit in the sums can be substituted by a large positive integer

such as 20 or 30 for most practical purpose.

Some useful expansions for (1.1) and (1.2) can be derived using the concept of exponentiated

distributions. For an arbitrary baseline cdf G(x), a random variable is said to have the exponentiated-

G (“exp-G”) distribution with parameter a > 0, say X ∼exp-G(a), if its pdf and cdf are

ha(x) = aGa−1(x)g(x) and Ha(x) = Ga(x), (2.4)

respectively. The properties of exponentiated distributions have been studied by many authors in

recent years, see Mudholkar and Srivastava [19] for exponentiated Weibull, Gupta et al. [9] for

exponentiated Pareto, Gupta and Kundu [10] for exponentiated exponential, Nadarajah [21] for

exponentiated Gumbel, among several others. Nadarajah et al. [23] demonstrated that (1.1) can be

expressed as

f (x) =
∞

∑
k=0

bk ha+k(x), (2.5)

where

bk =

(k+1−a
k

)
(a+ k)Γ(a−1)

k

∑
j=0

(−1) j+k
(k

j

)
p j,k

(a−1− j)
,

where the constants p j,k can be calculated recursively by

p j,k = k−1
k

∑
m=1

(−1)m [m( j+1)− k]
(m+1)

cm p j,k−m

for k = 1,2, . . . and p j,0 = 1. Here, ha+k(x) denotes the pdf of the exp-G(a+ k) distribution. The

cdf corresponding to (2.5) is F(x) = ∑
∞
k=0 bk Ha+k(x), where Ha+k(x) denotes the cdf of the exp-

G(a+ k) distribution. So, several mathematical properties of the ZB-G distribution can be obtained

by knowing those of the exp-G distribution, see, for example, Mudholkar et al. [20], Gupta and

Kundu [11] and Nadarajah and Kotz [22], among others.

3. Properties of the ZBLL distribution

3.1. Moments

Hereafter, let Ya+k ∼ ELL(a+k) denotes the exponentiated log-logistic (ELL) random variable with

power parameter a+ k. The sth moment of X can be obtained from (2.5) as

E(X s) =
∞

∑
k=0

bk E(Y s
a+k),
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where the sth moment of Ya+k is given by (for s < β ) (Lemonte, 2012) E(Y s
a+k) = (a+ k)αs B(1−

s/β ,a+ k+ s/β ). Then, the sth moment of X can expressed as

E(X s) = α
s

∞

∑
k=0

(a+ k)bk B
(

1− s
β
,a+ k+

s
β

)
. (3.1)

The skewness and kurtosis measures can be calculated from the ordinary moments using well-

known relationships. Plots of the skewness and kurtosis for some choices of α and β as functions of

a, and for some choices of a and α as functions of β are displayed in Figure 3. These plots indicate

that there is a great flexibility of the skewness and kurtosis curves of the new distribution.

3.2. Quantile and generating functions

The quantile function for the ZB-G distribution can be expressed for (0 < u < 1) (Nadarajah et

al., [23]) as F−1(u) = G−1{1− exp[−Q−1(a,1− u)]}, where Q−1(a,u) is the inverse function of

Q(a,x) = 1− γ(a,x)/Γ(a), which is available in several statistical packages, and G−1(u) is the

quantile function of the baseline cdf G(x). Using the LL quantile function, the ZBLL quantile

function reduces to

F−1(u) = α{exp[Q−1(a,1−u)]−1}1/β , 0 < u < 1. (3.2)

Here, we derive a formula for the moment generating function (mgf) M(t) = E(et X) of X . From

equation (2.5), we obtain

M(t) =
∞

∑
k=0

(a+ k)bk ρ(t,a+ k−1),

where the function

ρ(t,a) =
∫

∞

−∞

exp(tx)G(x)a g(x)dx =
∫ 1

0
exp{t QG(u)}uadu

can be determined from the baseline quantile function QG(x) = G−1(x). Then, for β > 1, M(t) can

be expressed as

M(t) = αet
∞

∑
k=0

(a+ k)bk B
(

k+a+
1
β
,1− 1

β

)
. (3.3)

3.3. Incomplete Moments

These types of moments play an important role for measuring inequality, for example, income

quantiles and Lorenz and Bonferroni curves, which depend upon the incomplete moments of the

distribution. The rth incomplete moment of X is defined as mr(z) =
∫ z
−∞

xr f (x)dx. By inserting
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Fig. 3. Plots of the ZBLL skewness and kurtosis as functions of a for selected values of α and β and as functions of β

for selected values of a and α .

(2.5) in this integral, we obtain

mr(z) =
∞

∑
k=0

β (a+ k)bk zr+β (a+k)

[r+(a+ k)β ] 2F1

[
1+a+ k,a+ k+

r
β
,1+a+ k+

r
β
,−
( z

α

)β
]
, (3.4)

where 2F1 is the hipergeometric function defined by

2F1(a,b;c;x) =
∞

∑
k=0

(a)k(b)k

(c)k

xk

k!
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and (a)k = a(a+1) . . .(a+ k−1) denotes the ascending factorial.

The main application of the first incomplete moment is to derive the mean deviations about the

mean and about the median of X from the relations δ1(X) = E(|X − µ ′1|) = 2µ ′1 F (µ ′1)− 2m1 (µ
′
1)

and δ2(X) = E(|X −M|) = µ ′1− 2m1(M), respectively, where µ ′1 = E(X) comes from (3.1) with

s= 1, the median M comes from (3.2) as M =α{exp[Q−1(a,1/2)]−1}1/β , F(µ ′1) is easily obtained

from (2.3) and m1(·) is determined from (3.4) with r = 1.

The mean deviations are useful to obtain the Bonferroni (B) and Lorenz (L) curves which

have applications in several areas. For a positive random variable X , they are defined by B(π) =

m1(q)/(π µ ′1) and L(π) = m1(q)/µ ′1, where q = F−1(π) = Q(π) is computed from (3.2). The mea-

sures B(π) and L(π) are determined from equation (3.4) using m1(Q(π)).

3.4. Rényi Entropy

The entropy of a random variable X with density function f (x) is a measure of variation of the

uncertainty. The Rényi entropy is defined as IR(γ) = (1−γ)−1 log(
∫

∞

0 f γ(x)dx) for γ > 0 and γ 6= 1.

For a 6= 1, the Rényi entropy of the ZB-G distribution is given by (Nadarajah et al., [23])

IR(γ) = −
γ logΓ(a)
(1− γ)

+
1

(1− γ)
log

{
(a−1)γ

∞

∑
k=0

(
k− γa+ γ

k

)

×
k

∑
j=0

(−1) j+k p j,k

[γ(a−1)− j]

(
k
j

)
Mk

}
, (3.5)

where Mk =
∫

∞

0 G(x)[γ(a−1)+k] gγ(x)dx, and the constants p j,k are defined in Section 2. After some

algebra, we obtain (for a 6= 1)

IR(γ) =−
γ logΓ(a)
(1− γ)

+
1

(1− γ)
log

{
∞

∑
k=0

sk B
(

γ(β +1)−1
β

,
γ(βa−1)+βk+1

β

)}
, (3.6)

where

sk = (a−1)γ β
γ−1

α
γ(2aβ+2β−γ)+1

(
k− γa+ γ

k

) k

∑
j=0

(−1) j+k
(k

j

)
p j,k

[γ(a−1)− j]
.

The proof of (3.6) is given in Appendix A.

3.5. Reliability

Here, we derive the reliability, R = Pr(X2 < X1), when X1 ∼ ZBLL(a1,α,β ) and X2 ∼
ZBLL(a2,α,β ) are independent random variables. Probabilities of this form have many applica-

tions especially in engineering concepts. Let fi denote the pdf of Xi and Fi denote the cdf of Xi.
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Based on the representation (2.5) and the corresponding cdf, we can write

R =
∞

∑
j,k=0

c jk

∫
∞

0
Ha2+ j(x)ha1+k(x)dx =

∞

∑
j,k=0

c jkR jk, (3.7)

where

c jk =

(k+1−a1
k

)
(a1 + k)Γ(a1−1)

( j+1−a2
j

)
(a2 + j)Γ(a2−1)

Ik(a1) I j(a2),

Ik(a1) =
k

∑
i=0

(−1)i+k pi,k

(a1−1− i)

(
k
i

)
,

and R jk = Pr(Yj <Yk) is the reliability for the independent random variables Yj ∼ ELL(a2 + j) and

Yk ∼ ELL(a1 + k). Hence, the reliability of the ZBLL distribution is a linear combination of the

ELL reliabilities. For the special case a1 = a2, equation (3.7) reduces to R = 1/2. We can obtain

after some algebra

R =
∞

∑
j,k=0

(a1 + k)c jk α−β (a1+a2+ j+k+1)

(a1 +a2 + j+ k)
. (3.8)

The proof of (3.8) is given in Appendix B.

4. Characterization results

The problem of characterizing a distribution is an important problem which has recently attracted

the attention of many researchers. Thus, various characterizations have been established in many

different directions. In practice, an investigator will be vitally interested to know if their model fits

the requirements of their proposed distribution. To this end, the investigator relies on the charac-

terizations of the distribution which provide conditions under which the underlying distribution is

indeed the proposed distribution

Here, we present characterizations of the ZBLL distribution with pdf (2.2) in terms of: (i) a

simple relationship between two truncated moments; (ii) truncated moments of certain functions of

the nth order statistic; (iii) truncated moments of certain functions of the 1st order statistic. We cite

here the works of Galambos and Kotz [4], Kotz and Shanbhag [16], Glänzel et al. [7], Glänzel [5],

Glänzel and Win [8], Glänzel and Hamedani [6] and Hamedani [12–14] in these directions. Due to

the format of the ZBLL cdf , we believe characterizations in other directions may not be possible or

if possible will be quite complicated.

4.1. Based on the ratio of two truncated moments

Our first set of characterizations will employ an interesting result due to Glänzel [5] (Theorem 4.1

below).
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Theorem 4.1. Let (Ω,F,P) be a given probability space and let H = [a,b] be an interval for some

a< b (a =−∞ , b = ∞ might as well be allowed). Let X : Ω→H be a continuous random variable

with cdf F and let g and h be two real functions defined on H such that:

E [g(X) | X ≥ x] = E [h(X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η . Assume that g, h ∈C1 (H), η ∈C2 (H) and F is twice conti-

nuously differentiable and strictly monotone function on the set H. Finally, assume that the equation

hη = g has no real solution in the interior of H. Then, F is uniquely determined by the functions

g, h and η , namely

F (x) =C
∫ x

a

∣∣∣∣ η ′ (u)
η (u)h(u)−g(u)

∣∣∣∣exp [−s(u)] du,

where the function s is a solution of the differential equation s′ = η ′ h
η h − g and C is a constant chosen

to make
∫

H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments is

stable in the sense of weak convergence, in particular, let us assume that there is a sequence {Xn}
of random variables with distribution functions {Fn} such that the functions gn, hn and ηn (n ∈ N)
satisfy the conditions of Theorem 1 and let gn → g, hn → h for some continuously differentiable

real functions g and h. Let X be a random variable with distribution F . Under the condition that

gn(X) and hn(X) are uniformly integrable and that the family is relatively compact, the sequence Xn

converges to X in distribution if and only if ηn converges to η , where

η (x) =
E [g(X) | X ≥ x]
E [h(X) | X ≥ x]

.

This stability theorem makes sure that the convergence of distribution functions is reflected by

corresponding convergence of the functions g, h and η , respectively. It guarantees, for instance, the

“convergence” of characterization of the Wald distribution to that of the Lévy-Smirnov distribution

if α → ∞.

A further consequence of the stability property of Theorem 4.1 is the application of this theorem

to special tasks in statistical practice such as the estimation of the parameters of discrete distribu-

tions. For such purpose, the functions g, h and, specially, η should be as simple as possible. Since

the function triplet is not uniquely determined it is often possible to choose η as a linear func-

tion. Therefore, it is worth analyzing some special cases which helps to find new characterizations

reflecting the relationship between individual continuous univariate distributions and appropriate in

other areas of statistics.
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Remark 4.1. (a) In Theorem 4.1, the interval H need not be closed. (b) The goal is to have the

function η as simple as possible. For a more detailed discussion on the choice of η , we refer the

reader to Glänzel and Hamedani [6] and Hamedani [12–14].

Proposition 4.1. Let X : Ω → R+ be a continuous random variable and let h(x) = 2{
log
[
1+
( x

α

)β
]}1−a [

1+
( x

α

)β
]−1

and g(x) =
{

log
[
1+
( x

α

)β
]}1−a

for x > 0. The pdf of

X is (2.2) if and only if the function η defined in Theorem 4.1 has the form

η (x) =
[

1+
( x

α

)β
]
, x > 0.

Proof. Let X have pdf (2.2). Then,

[1−F (x)] E [h(X) | X ≥ x] =
1

Γ(a)

[
1+
( x

α

)β
]−2

, x > 0 ,

and

[1−F (x)] E [g(X) | X ≥ x] =
1

Γ(a)

[
1+
( x

α

)β
]−1

, x > 0,

where F is the cdf corresponding to the pdf f . Finally,

η (x)h(x)−g(x) =
{

log
[

1+
( x

α

)β
]}1−a

> 0 for x > 0.

Conversely, if η is given as above, we have

s′ (x) =
η ′ (x) h(x)

η (x) h(x)−g(x)
=

2β

αβ
xβ−1

[
1+
( x

α

)β
]−1

, x > 0,

and hence s(x) = log
{[

1+
( x

α

)β
]}2

, x ∈ R+. Now, in view of Theorem 4.1 (with C chosen

appropriately), X has pdf (2.2).

Remark 4.2. Clearly, there are other triplets (h,g,η) satisfying the conditions of Proposition 4.1.

Corollary 4.1. Let X : Ω → R+ be a continuous random variable and let h(x) = 2{
log
[
1+
( x

α

)β
]}1−a [

1+
( x

α

)β
]−1

for x ∈ R+. The pdf of X is (2.2) if and only if there exist

functions g and η defined in Theorem 4.1 satisfying the differential equation
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η ′ (x)2
{

log
[
1+
( x

α

)β
]}1−a [

1+
( x

α

)β
]−1

η (x)2
{

log
[
1+
( x

α

)β
]}1−a [

1+
( x

α

)β
]−1
−g(x)

=
2β

αβ
xβ−1

[
1+
( x

α

)β
]−1

, x > 0.

Remark 4.3. The general solution of the differential equation given in Corollary 4.1 is

η (x) =
[

1+
( x

α

)β
]2

−∫ g(x) β

αβ
xβ−1

[
1+
( x

α

)β
]−2{

log
[
1+
( x

α

)β
]}a−1

dx+D

 ,
for x ∈ R+, where D is a constant. One set of appropriate functions is given in Proposition 4.1 with

D = 0.

4.2. Based on truncated moment of certain functions of the nth order statistic

Let X1:n,X2:n, . . . ,Xn:n be n order statistics from a continuous cdf F. We state here a characterization

result based on certain functions of the nth order statistic. Our characterization of ZBLL here will

be a consequence of the following proposition, which is similar to the one appeared in our previous

work (Hamedani, [14]).

Proposition 4.2. Let X : Ω → (0,∞) be a continuous random variable with cdf F. Let ψ (x)

and q(x) be two differentiable functions on (0,∞) such that lim x→0 ψ (x) [F (x)]n = 0 and∫
∞

0
q ′(t)

[ψ(t)−q(t)]dt = ∞. Then, E [ψ (Xn:n) | Xn:n < t] = q(t) for t > 0 implies

F (x) = exp
{
−
∫

∞

x

q′ (t)
n [ψ (t)−q(t)]

dt
}
, x≥ 0. (4.1)

Remark 4.4. Taking, e.g., ψ (x) =
(

γ

[
α, log

(
1+
( x

α

)β
)])nα

and q(x) = 1
2 ψ (x) in Proposition

4.2, (4.1) will reduce to the cdf (2.3) .

4.3. Based on truncated moment of certain functions of the 1st order statistic

We state here a characterization result based on certain functions of the 1st order statistic. Our

characterization of ZBLL here , for α = 1, will be a consequence of the following proposition,

which is similar to the one appeared in our previous work (Hamedani, [14]).

Proposition 4.3. Le X : Ω → (0,∞) be a continuous random variable with cdf F. Let ψ1 (x)

and q1 (x) be two differentiable functions on (0,∞) such that lim x→∞ ψ1 (x) [1−F (x)]n = 0 and
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∫
∞

0
q′1(t)

[q1(t)−ψ1(t)]
dt = ∞. Then, E [ψ1 (X1:n) | X1:n > t] = q1 (t) (for t > 0) implies

F (x) = 1− exp
{
−
∫ x

0

q′1 (t)
n [ψ1 (t)−q1 (t)]

dt
}
, x≥ 0. (4.2)

Remark 4.5. Taking, e.g., ψ1 (x) = 2
(
1+ xβ

)n
and q1 (x) = 1

2 ψ1 (x) in Proposition 4.3, (4.2)

will reduce to the cdf (2.3) with α = 1.

5. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Suppose

X1,X2, . . . ,Xn is a random sample from the ZBLL distribution. Let Xi:n denote the ith order statistic.

From equation (2.5) and the corresponding cdf, the pdf of Xi:n becomes

fi:n(x) = K f (x)F i−1(x) {1−F(x)}n−i = K
n−i

∑
j=0

(−1) j
(

n− i
j

)
f (x)F j+i−1(x)

= K
n−i

∑
j=0

(−1) j
(

n− i
j

) [
∞

∑
r=0

br (a+ r)G(x)a+r−1 g(x)

][
∞

∑
k=0

bk G(x)a+k

] j+i−1

,

where K = n!/[(i−1)!(n− i)!]. Using the power series raised to a positive integer, we can write[
∞

∑
k=0

bk G(x)a+k

] j+i−1

=
∞

∑
k=0

f j+i−1,k G(x)a( j+i−1)+k,

where f j+i−1,0 = b j+i−1
0 and (for k = 1,2, . . .)

f j+i−1,k = (k b0)
−1

k

∑
m=1

[m( j+ i)− k]bm f j+i−1,k−m.

Hence,

fi:n(x) =
n−i

∑
j=0

∞

∑
r,k=0

m j,r,k ha( j+i)+r+k(x), (5.1)

where

m j,r,k =
(−1) j n!

(i−1)!(n− i− j)! j!
(a+ r)br f j+i−1,k

[a( j+ i)+ r+ k]
.

Equation (5.1) reveals that the density function of the ZBLL order statistics can be expressed as

a triple linear combination of ELL densities. So, several mathematical properties of Xi:n can be

obtained from the corresponding ELL properties.
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6. Maximum likelihood estimation

Here, we consider the estimation of the unknown parameters of the ZBLL distribution by the method

of maximum likelihood. Let x1, ...,xn be a random sample of size n from the ZBLL(a,α,β ) distri-

bution. The log-likelihood function for the vector of parameters θ = (a,α,β )T can be expressed

as

l(θ) = nlog(β )−nβ log(α)− log[Γ(a)]+(β −1)
n

∑
i=1

log(xi)−2
n

∑
i=1

(
1+

xi

α

)
+ (a−1)

n

∑
i=1

log
{

log
[

1+
(xi

α

)β
]}

.

The components of the score vector U(θ) are given by

Ua(θ) = −ψ (a)+
n

∑
i=1

log
{

log
[

1+
(xi

α

)β
]}

,

Uα(θ) = −
nβ

α
+2

n

∑
i=1

xi

α2 +
(−a+1)β

α

n

∑
i=1

(xi

α

)β
[

1+
(xi

α

)β
]−1{

log
[

1+
(xi

α

)β
]}−1

,

Uβ (θ) =
n
β
−nlog(α)+

n

∑
i=1

log(xi)+(a−1)
n

∑
i=1

(xi

α

)β

log
(xi

α

)[
1+
(xi

α

)β
]−1

×
{

log
[

1+
(xi

α

)β
]}−1

,

where ψ(·) is the digamma function.

The maximum likelihood estimate (MLE) θ̂ of θ is obtained by solving the nonlinear likelihood

equations Ua(θ) = 0, Uα(θ) = 0 and Uβ (θ) = 0. These equations cannot be solved analytically and

statistical software can be used to solve them numerically. For interval estimation and hypothesis

tests on the model parameters, we can calculate the 3× 3 observed information matrix J(θ) =

−{Urs}, where r,s = a,α,β , since its expectation requires numerical integration. The elements Urs

are listed in Appendix C.

7. Application

We provide one application to real data to demonstrate the potentiality of the ZBLL distribution. The

data represent the survival times of 121 patients with breast cancer obtained from a large hospital

in a period from 1929 to 1938 (Lee, [17]). The data are:

0.3,0.3,4.0,5.0,5.6,6.2,6.3,6.6,6.8,7.4,7.5,8.4,8.4,10.3,11.0,11.8,12.2,12.3,13.5,14.4,14.4,

14.8,15.5,15.7,16.2,16.3,16.5,16.8,17.2,17.3,17.5,17.9,19.8,20.4,20.9,21.0,21.0,21.1,23.0,

23.4,23.6,24.0,24.0,27.9,28.2,29.1,30.0,31.0,31.0,32.0,35.0,35.0,37.0,37.0,37.0,38.0,38.0,
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38.0,39.0,39.0,40.0,40.0,40.0,41.0,41.0,41.0,42.0,43.0,43.0,43.0,44.0,45.0,45.0,46.0,46.0,

47.0,48.0,49.0,51.0,51.0,51.0,52.0,54.0,55.0,56.0,57.0,58.0,59.0,60.0,60.0,60.0,61.0,62.0,

65.0,65.0,67.0,67.0,68.0,69.0,78.0,80.0,83.0,88.0,89.0,90.0,93.0,96.0,103.0,105.0,109.0,

109.0,111.0,115.0,117.0,125.0,126.0,127.0,129.0,129.0,139.0,154.0.

We shall compare the ZBLL distribution with some other lifetime models with four, three and

two parameters, namely:

• Kumaraswamy Log-Logistic (KLL) distribution (Cordeiro et al, [3]). Its pdf (for x > 0) is

given by

fKLL(x) =
abγ

αaγ
xaγ−1

[
1+
( x

α

)γ]−(a+1)
{

1−

[
1− 1

1+
( x

α

)γ

]a}b−1

;

• Beta Log-Logistic (BLL) distribution (Lemonte, [18]). Its pdf (for x > 0) is given by

fBLL(x) =
β

α B(a,b)
( x

α
)aβ−1[

1+( x
α
)β
]a+b ;

• Exponentiated Weibull (EW) distribution (Mudholkar and Srivastava, [19]), which has pdf

(for x > 0) given by

fEW (x) =
cθ

α

( x
α

)c−1
e−(

x
α )

c [
1− e−(

x
α )

c]θ−1
;

• Exponentiated Log-Logistic (ELL) distribution. Its pdf (for x > 0) is given by

fELL(x) =
aβ

αaβ
xaβ−1

[
1+
( x

α

)β
]−(a+1)

. (7.1)

Table 1 lists the MLEs of the model parameters and the values of the following statistics: Akaike

Information Criterion (AIC), Bayesian Information Criterion (BIC), Consistent Akaike Information

Criterion (CAIC), Cramér-von Mises (W ∗) and Anderson-Darling (A∗). The last two statistics are

described by Chen and Balakrishnan [2]. They are used to verify which distribution fits better to

the data. In general, the smaller the values of W ∗ and A∗, the better the fit. Let H(x;θθθ) be the cdf,

where the form of H is known but θθθ (a k-dimensional parameter vector, say) is unknown. To obtain

the statistics W ∗ and A∗, we can proceed as follows: (i) Compute vi = H(xi; θ̂θθ), where the xi’s are in

ascending order; (ii) Compute yi = Φ−1(vi), where Φ(·) is the standard normal cdf and Φ−1(·) its

inverse; (iii) Compute ui = Φ{(yi− ȳ)/sy}, where ȳ = n−1
∑

n
i=1 yi and s2

y = (n−1)−1
∑

n
i=1(yi− ȳ)2;

(iv) Calculate W 2 =∑
n
i=1{ui−(2i−1)/(2n)}2+1/(12n) and A2 =−n−n−1

∑
n
i=1{(2i−1) log(ui)+

(2n + 1− 2i) log(1− ui)}; (v) Modify W 2 into W ∗ = W 2 (1 + 0.5/n) and A2 into A∗ = A2 (1 +

0.75/n+2.25/n2).
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The computations were performed using the package AdequacyModel in R developed by the

authors Cı́cero Dias and Pedro Marinho. The figures of Table 1 indicate that the ZBLL model yields

the smallest value of the statistics W ∗ and A∗, and then it could be chosen as the best model among

these distributions. More details can be provided by a visual comparison in Figure 4 of the histogram

of the data and the fitted density functions of the ZBLL, BLL and EW distributions. The KLL model

does not fit the data well and the curve of the ELL model almost coincides with the curve of the

ZBLL model. Clearly, the ZBLL distribution provides a better fit to the histogram and hence it is

the best model to explain these data.

Table 1. MLEs (standard errors in parentheses) and the statistics W ∗ and A∗

Distributions Estimates A∗ W∗ AIC CAIC BIC

KLL (a, b, γ , α) 33.698 23.048 0.336 0.044 1.511 0.232 1189.937 1190.282 1201.120

(4.808) (13.979) (0.043) (0.020)

BLL (a, b, α , β ) 0.364 0.732 53.251 3.368 0.494 0.066 1171.861 1172.206 1183.045

(0.230) (0.482) (9.731) (1.716)

ZBLL (a, α , β ) 0.353 77.856 3.098 0.454 0.053 1167.063 1167.268 1175.450

(0.103) (12.562) (0.579)

EW (c, θ , α) 1.494 0.798 57.958 0.456 0.061 1163.759 1163.964 1172.146

(0.395) (0.334) (15.184)

ELL (a, α , β ) 0.321 70.715 3.401 0.455 0.053 1167.341 1167.546 1175.728

(0.094) (10.458) (0.658)

8. Concluding remarks

In this paper, we propose a new distribution which generalizes the log-logistic distribution. The new

model is called the Zografos-Balakrishnan log-logistic (ZBLL) distribution. The ZBLL distribution

can have increasing, decreasing, bathlub and unimodal hazard rate functions. It is very versatile to

fit lifetime data. We study some of its mathematical and statistical properties. We provide explicit

expressions for the ordinary and incomplete moments, quantile and generating functions, mean

deviations, Rényi entropy, reliability and some characterization results. The model parameters are

estimated by maximum likelihood and the observed information matrix is determined. The poten-

tiality of the new model is illustrated in an application using the script AdequacyModel in R. The

ZBLL model can provide better fits than other common lifetime models.
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Fig. 4. Fitted Distributions.

Appendix A - Rényi entropy

The Rényi entropy of the ZBLL random variable (for γ > 0 and γ 6= 1) is given by

IR(γ) =
1

(1− γ)
log
∫

∞

0
β γ x(β−1)γ

αβγ [Γ(a)]γ

[
1+
( x

α

)β
]−2γ {

log
[
1+
( x

α

)β
]}(a−1)γ

dx.

Using the expansion (for a 6= 1){
log
[

1+
( x

α

)β
]}(a−1)γ

= (a−1)γ
∞

∑
k=0

(
k− γa+ γ

k

) k

∑
j=0

(−1) j+k
(k

j

)
p j,k

[γ(a−1)− j]

×

{
1−
[

1+
( x

α

)β
]−1
}γa−γ+k

,

we can rewrite IR(γ) as

IR(γ) =
1

(1− γ)
log

{
(a−1)γ
[Γ(a)]γ

∞

∑
k=0

(
k− γa+ γ

k

) k

∑
j=0

(−1) j+k
(k

j

)
p j,k

[γ(a−1)− j]
Mk

}
,

where Mk comes after some algebra as

Mk = β
γ−1

α
γ(2aβ+2β−γ)+1 B

(
γ(β +1)−1

β
,
γ(βa−1)+βk+1

β

)
.
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Hence, we can obtain (3.6).

Appendix B - Reliability

From equation (2.5) and the corresponding cdf, we can write

R =
∞

∑
j,k=0

c jk

∫
∞

0
Ha2+ j(x)ha1+k(x)dx =

∞

∑
j,k=0

c jkR jk,

where c jk is defined in Section 3.5 and R jk = Pr(Yj <Yk) is the reliability between the independent

random variables Yj ∼ ELL(a2 + j) and Yk ∼ ELL(a1 + k). Hence, the reliability of the ZBLL

distribution is a linear combination of the ELL reliabilities. We have

Ha2+ j(x) =

[ ( x
α

)β

1+
( x

α

)β

]a2+ j

and ha1+k(x) =
β (a1 + k)

( x
α

)β (a1+k)−1

α

[
1+
( x

α

)β
]a1+k+1 ,

and then we can obtain R jk after some algebra and write

R =
∞

∑
j,k=0

c jk (a1 + k)α−β (a1+a2+ j+k+1)

(a1 +a2 + j+ k)
.

Appendix C - Observed information matrix

For p,m,q,r ∈ {0,1,2}, we define the transformed observation

Tp,m,q,r(xi) =
(xi

α

)pβ [
log
(xi

α

)]m
[

1+
(xi

α

)β
]−q {

log
[

1+
(xi

α

)β
]}−r

.

The elements of the observed information matrix for the parameters (a,α,β ) are given by:

Uaa =−ψ
′(a), Uaα =−βα

−1
n

∑
i=1

T1,0,1,1(xi), Uaβ =
n

∑
i=1

T1,1,1,1(xi),

Uαα =
nβ

α2 −4
n

∑
i=1

xi

α3 +βα
−2[(1−1)β +1]

n

∑
i=1

T1,0,1,1(xi)

−β
2
α
−2

n

∑
i=1

[T2,0,2,1(xi)+T2,0,2,3(xi)],

Uαβ = − n
α
− (a−1)βα

−1
n

∑
i=1

T1,1,1,1(xi)− α
−1

n

∑
i=1

T1,0,1,1(xi)

+βα
−1

n

∑
i=1

[T2,1,2,1(xi)+T2,1,2,2(xi)],

Uββ = − n
β 2 +(a−1)

n

∑
i=1

T1,2,1,1(xi)−
n

∑
i=1

[T2,2,2,1(xi)+T2,2,2,2(xi)],

where ψ ′(·) is the trigamma function.
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