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Abstract

There are multiple tests of homogeneity of binomial proportions in the statistics literature. However,
when working with sparse data, most test procedures may fail to perform well. In this article we review
nine classical and recent testing procedures, including the standard Pearson and likelihood ratio tests;
exact conditional and unconditional tests; tests based on moment matching chi-squared approximations;
a recently proposed test based on a normal approximation in an asymptotic framework for sparse data;
and a recent test based on higher order moment corrections using an Edgeworth approximation. For each
test we review its theoretical underpinning, and show how to calculate the P-value. Most of the P-values
can be readily calculated in a statistical computing software package such as R. We compare type I error
probability and power via simulation. As expected, none of the procedures uniformly outperforms the
others in terms of type I error probability and power, but we can make some recommendations based
on our empirical results. In particular, we indicate scenarios in which certain otherwise reasonable test
procedures can perform inadequately.

Keywords: Chi-squared approximation; Edgeworth series; Exact test; Moment-matching approximation;
Nuisance parameter; Power study.

1. Introduction

We consider the problem of testing the homogeneity hypothesis for k binomial populations of possibly unequal
sample sizes based on observing one data point on each of the k populations. That is, our data consist of
X1, . . . ,Xk which are distributed such that

Xi ∼ Binomial(ni,πi), independently, for i = 1, . . . ,k, (1)

where n1, . . . ,nk are known, and 0 6 π1, . . . ,πk 6 1 are unknown. The null hypothesis of homogeneity is to be
tested against a general alternative; thus we wish to test

H0 : π1 = · · ·= πk ≡ π against H1 : πi 6= π j for some i 6= j, (2)
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where the common value π under H0 is not specified. Throughout, we let α denote the nominal level of the test,
and we let n+ = ∑

k
i=1 ni and X+ = ∑

k
i=1 Xi.

There is an extensive literature on this basic testing problem, especially in the case of k = 2 (i.e., a 2× 2
contingency table) where, for instance, Upton (1982) evaluated 22 different tests. Starting with the likelihood
ratio and Pearson’s chi-squared tests (Neyman and Pearson, 1928; Pearson, 1900; Wilks, 1935), various modi-
fications of them have been suggested (Farrington, 1996; McCullagh, 1985; Paul and Deng, 2012). Some new
tests have also been developed, especially in the case of sparse data situations, (Nass, 1959; Potthoff and Whit-
tinghill, 1966; Xu, 2011) since the standard tests can perform poorly in sparse data scenarios (Xu, 2011). Sparse
data situations can arise when some of the ni’s are small or when some of the πi’s are close to zero or one.

The scope of applications of the above testing problem is equally vast. The literature of statistical meta-
analysis (e.g., Hedges and Olkin, 1985; Hartung, Knapp and Sinha, 2008) dwells upon testing homogeneity of
the underlying effect sizes with proportion as a very important and useful component. The sparse data scenario
arises when dealing with rare outcomes such as a rare disease or death in medical experiments. In a different
context, statistical agencies may be interested in creating and releasing synthetic microdata for public use in
order to provide useful information to the public while protecting confidentiality of respondents. In a synthetic
data set, some or all of the original data values are replaced by random draws from an appropriate distribution
for the purpose of statistical disclosure control; we refer to Drechsler (2011), Raghunathan, Reiter, and Rubin
(2003), Reiter (2003), and Rubin (1993) for details. Generation of synthetic count data in cross-classified con-
tingency tables can be based on an ANOVA type log-linear model for cell probabilities along with a multinomial
assumption for the joint distribution of the cell counts (Klein and Creecy, 2010). Bhapker and Koch (1968) and
Bishop, Fienberg, and Holland (1975) discuss many aspects of model selections in this context, including choice
and interpretation of interaction terms in these models. While a fully saturated log-linear model provides little
flexibility, under the independence model, interaction terms are set to zero. This precisely corresponds to the ho-
mogeneity of associated cell probabilities across rows or columns in the contingency table, and suggests testing
of homogeneity of proportions across rows or columns before using the independence model. The simplest case
of homogeneity of binomial proportions arises when testing for absence of interaction in a k× 2 dimensional
contingency table.

The primary focus of this article is to provide a comprehensive comparison by simulation among the available
tests in terms of type I error probability and power in sparse data settings. The outline of the rest of the article is
as follows. We review several test procedures in Section 2. In Section 3 we compare the procedures empirically
based on type I error probability and power, and offer some guidance based on these results. We provide some
concluding remarks in Section 4. The Appendix contains tables that summarize the simulation results.

2. Test Procedures

In this section we review several procedures for testing the hypotheses (2). We first note that the likelihood
function for (π1, . . . ,πk) under the model (1) is

L(π1, . . . ,πk;X1, . . . ,Xk) =
k

∏
i=1

(
ni

Xi

)
π

Xi
i (1−πi)

ni−Xi , 0 6 πi 6 1, (3)

and the likelihood function for π under the restriction of the parameter space defined by the null hypothesis H0
is

L0(π;X1, . . . ,Xk) =

[
k

∏
i=1

(
ni

Xi

)]
π

X+(1−π)n+−X+ , 0 6 π 6 1. (4)

Thus, under model (1), the maximum likelihood estimator of πi is π̂i = Xi/ni for i = 1, . . . ,k, and under the null
hypothesis H0, the maximum likelihood estimator of π is π̂ = X+/n+.
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Tests of Homogeneity of Binomial Proportions

2.1. Standard chi-squared and likelihood ratio tests

Pearson’s chi-squared test (Pearson, 1900) and the usual likelihood ratio test (Neyman and Pearson, 1928; Wilks,
1935) are two standard tests of the hypotheses (2); the test statistics are defined, respectively, by

TP ≡ TP(X1, . . . ,Xk) =
k

∑
i=1

{
(niπ̂i−niπ̂)

2

niπ̂
+

[ni(1− π̂i)−ni(1− π̂)]2

ni(1− π̂)

}
=

k

∑
i=1

ni(π̂i− π̂)2

π̂(1− π̂)
, (5)

TL ≡ TL(X1, . . . ,Xk) =−2log
[

L0(π̂;X1, . . . ,Xk)

L(π̂1, . . . , π̂k;X1, . . . ,Xk)

]
= 2

k

∑
i=1

Xi log
(

π̂i

π̂

)
+2

k

∑
i=1

(ni−Xi) log
(

1− π̂i

1− π̂

)
. (6)

Pearson’s chi-squared test rejects H0 if TP is large and the likelihood ratio test rejects H0 if TL is large. Under the
null hypothesis, for fixed k and large ni, the asymptotic distributions of both TP and TL are chi-squared on k−1
degrees of freedom, and their difference converges in probability to zero (Agresti, 2002). Therefore, letting tP
and tL denote the observed values of TP and TL, respectively, the P-values for Pearson’s chi-squared test and the
likelihood ratio test are Pr{χ2

k−1 > tP} and Pr{χ2
k−1 > tL}, respectively. These tests are justified by an asymptotic

theory in which k is fixed and the ni’s are large; therefore they may not perform well in sparse data settings with
small cell counts (Haberman, 1988; Mielke, Berry, and Johnston, 2004; Xu, 2011). In fact, when data are sparse,
we may not be able to compute TL as defined in (6) since it is likely that at least one π̂i will equal zero or one.

Below we review several alternative test procedures that have appeared in the literature.

2.2. Exact tests

In the sparse data setting where the asymptotic framework of the standard chi-squared and likelihood ratio tests
generally does not hold, exact tests provide a natural alternative. These tests are referred to as exact because they
use an exact finite sample distribution of the test statistic as opposed to an approximation. We refer to Agresti
(1992, 2001, 2002) for an in-depth presentation and discussion of exact methods of inference. Here we will
describe a conditional and an unconditional exact procedure for testing (2) using the Pearson statistic TP defined
in (5). Throughout we let tP denote the observed value of TP.

Conditional test. Under the null hypothesis, it readily follows from (4) that X+ is a sufficient statistic for π

and hence the conditional distribution of X1, . . . ,Xk given X+ is free of π . The probability mass function of this
conditional distribution is given by (Agresti, 2002)

pc(x1, . . . ,xk |X+) =
(∏k

i=1 ni!)(X+)!(n+−X+)!
(n+)!∏

k
i=1[xi!(ni− xi)!]

, for (x1, . . . ,xk) ∈AX+ , (7)

where AX+ = {(a1, . . . ,ak) ∈ B : ∑
k
j=1 a j = X+}, B = B1×·· ·×Bk, and Bi = {0,1, . . . ,ni}, i = 1, . . . ,k. Then

an exact test can be obtained using the P-value defined by Pr{TP > tP |X+} where this probability is computed
with respect to the conditional probability distribution (7), i.e.,

Pr{TP > tP |X+}= ∑
{(x1,...,xk)∈AX+ :TP(x1,...,xk)>tP}

pc(x1, . . . ,xk |X+). (8)

Published by Atlantis Press 
Copyright: the authors 

210



M. Klein and P. Linton

When k = 2, this procedure is a two-sided version of Fisher’s exact test. Unless k and the ni’s are small,
the probability (8) is difficult to compute due to the large number of atoms in the sample space AX+ , but we
can approximate it via Monte Carlo (Robert and Casella, 2005). For instance, in R (R Development Core
Team, 2011) there is a function called r2dtable which generates a random sample from the distribution (7)
using the algorithm of Patefield (1981). If (x(1)1 , . . . ,x(1)k ), . . . ,(x(m)

1 , . . . ,x(m)
k ) denote m random vectors drawn

independently from the distribution (7), then a Monte Carlo estimator of (8) is

P̂r{TP > tP |X+}=
1
m

m

∑
j=1

I
[
TP

(
x( j)

1 , . . . ,x( j)
k

)
> tP

]
(9)

where I[A] is the indicator of the event A. Mehta, Patel, and Senchaudhuri (1988) show that importance sampling
can be used to obtain an improved Monte Carlo estimator.

Unconditional test. Under the null hypothesis, the joint distribution of (X1, . . . ,Xk) is given by

pu(x1, . . . ,xk |π) =

[
k

∏
i=1

(
ni

xi

)]
π∑

k
i=1 xi(1−π)n+−∑

k
i=1 xi , 0 6 π 6 1, (10)

which depends on the unknown parameter π . Using TP as the test statistic, an exact unconditional test can be
obtained by defining the P-value as supπ∈[0,1] Pr{Tp > tp} where the probability is computed with respect to the
distribution (10) and thus depends on π , i.e.,

sup
π∈[0,1]

Pr{Tp > tp}= sup
π∈[0,1]

{
∑

{(x1,...,xk)∈B:TP(x1,...,xk)>tP}
pu(x1, . . . ,xk |π)

}
. (11)

This test was introduced by Barnard (1945, 1947) in the case of k = 2 (later, Barnard (1949) wrote in favor
of Fisher’s exact test over his unconditional test). When either k or the ni’s are large, the above probability
is difficult to compute due to the large number of atoms in B, and hence the P-value is extremely difficult to
compute due to the presence of supπ∈[0,1].

Remark. The question of whether one should use the conditional or unconditional test is controversial. There
is much debate on this issue in the statistical literature, especially for the case of k = 2, and we refer to Little
(1989) for a discussion. The debate generally involves issues of statistical philosophy that go beyond power
and type I error probability comparisons. But in terms of empirical comparisons, Suissa and Shuster (1985)
compared the type I error probability and power of the conditional and unconditional tests when k = 2, using
the statistic Zu = n1/2(π̂2− π̂1)/[π̂2(1− π̂2)+ π̂1(1− π̂1)]

1/2 for the unconditional test, and assumed n = n1 = n2
and a one-sided alternative hypothesis. Under these conditions, Suissa and Shuster (1985) derived a method for
computing the unconditional P-value and found the unconditional test to be more powerful than Fisher’s exact
test. Mehta and Hilton (1993) considered the case of k = 3, and compared the conditional and unconditional
tests based on the Pearson statistic TP when n = n1 = n2 = n3. They concluded that while the unconditional test
appeared to hold a power advantage over the conditional test when k = 2, when k = 3 the power advantage of
the unconditional test rapidly diminishes for moderately large values of the common sample size n.

2.3. Test of Nass (1959)

Nass (1959) considered an adjustment to the standard chi-squared test to improve the approximation for sparse
data. This approach approximates the conditional distribution of TP given X+, under the null hypothesis. Under
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the null hypothesis, the distribution of c×TP is approximated by a chi-squared density on v degrees of freedom,
where c and v are chosen so that the conditional mean and variance of c×TP match the mean and variance of
the approximating chi-squared distribution. In our setting of independent binomial sampling, the approximation
is defined by c×TP |X+ ∼ χ2

v , where c and v are determined such that

E(c×TP |X+) = v, Var(c×TP |X+) = 2v,

or equivalently,
c = 2E(TP |X+)/Var(TP |X+), v = cE(TP |X+). (12)

Under the null hypothesis, the mean and variance of TP, conditional on X+, were derived by Haldane (1940) and
simplified by Dawson (1954) into the following form:

E(TP |X+) =
(k−1)n+

n+−1
,

Var(TP |X+) =
2n+

n+−3
(ρ−σ)(µ− τ)+

n2
+

n+−1
στ,

where

ρ =
n+−2
n+−1

, µ =
(k−1)(n+− k)

n+−1
, σ =

n+
X+

+ n+
n+−X+

−4

n+−2
, τ =

n+ ∑
k
i=1 n−1

i − k2

n+−2
.

Thus the P-value of the test is computed as Pr{χ2
v > ctp} with c and v defined by (12).

2.4. Test of Potthoff and Whittinghill (1966)

Potthoff and Whittinghill (1966) derived a test procedure based on the following argument. First, they suppose
that π is known, and the alternative hypothesis specifies the distribution of X1, . . . ,Xk such that

π1, . . . ,πk ∼ iid ∼ Beta[πa,(1−π)a],

and conditionally on (π1, . . . ,πk), the variables X1, . . . ,Xk are distributed as in (1). Then a locally most powerful
test (locally in the sense that a is such that the variance of the Beta[πa,(1−π)a] distribution is small) rejects the
null hypothesis for large values of the statistic

V(π) = ∑
k
i=1 Xi(Xi−1)

π
+

∑
k
i=1Yi(Yi−1)

1−π
,

where Yi = ni − Xi for i = 1, . . . ,k. The distribution of V(π) under the null hypothesis is approximated as
e(π)V(π)+ f (π)∼ χ2

v(π), and the constants e(π), f (π) and v(π) are chosen such that

v(π) = E {e(π)V(π)+ f (π)} ,
2v(π) = Var{e(π)V(π)+ f (π)} ,
8v(π) = E {e(π)V(π)+ f (π)−E[e(π)V(π)+ f (π)]}3 ,
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i.e., the mean, variance, and third central moment of e(π)V(π)+ f (π) match those of the approximating χ2
v(π)

distribution. This results in

e(π) =
N

2γ(π)N +∑
k
i=1 ni(ni−1)(ni−2)

,

f (π) = e(π)(e(π)−1)N,

N =
k

∑
i=1

ni(ni−1), (13)

γ(π) =
1

4π(1−π)
−1,

v(π) = e(π)2N.

To handle the case of unknown π , Potthoff and Whittinghill (1966) obtained a test by setting π equal to the
value which minimizes V(π); the resulting values of π and V(π) are

πmin =

[
∑

k
i=1 Xi(Xi−1)

]1/2[
∑

k
i=1 Xi(Xi−1)

]1/2
+
[
∑

k
i=1Yi(Yi−1)

]1/2 ,

V(πmin) =


[

k

∑
i=1

Xi(Xi−1)

]1/2

+

[
k

∑
i=1

Yi(Yi−1)

]1/2


2

.

The P-value of the test is thus computed as Pr{χ2
v(πmin)

> e(πmin)V(πmin)+ f (πmin)}, where of course, e(πmin),
V(πmin), f (πmin), and v(πmin) are fixed at their observed values in the probability computation.

2.5. Adjustment to the Potthoff and Whittinghill (1966) test using the method of Berger and Boos (1994)

In the context of testing a general composite hypothesis of the form H0 : ψ = ψ0 in the presence of nuisance
parameters θθθ , Berger and Boos (1994) suggested the following approach based on maximization of a suitable
P-value. Let P(θθθ) be a P-value based on some test of H0 for a specified value of θθθ , and let Cβ be a (1−β ) level
confidence set for θθθ under H0. It is demonstrated in Berger and Boos (1994) that the test which rejects H0 for
small values of

Pβ = sup
θθθ∈Cβ

P(θθθ)+β (14)

provides a valid test of H0. An application of this general procedure to the Potthoff and Whittinghill (1966) test
can be formulated as follows. Under the null hypothesis of homogeneity of binomial proportions, the common
proportion π is a nuisance parameter, and its (1−β ) level large sample confidence interval based on the entire

data can be computed from the fact that under H0, Pr
{
−zβ/2 <

√
n+(π̂−π)√
π(1−π)

< zβ/2

}
≈ 1−β for large n+, where

zβ/2 = Φ−1(1−β/2) and Φ(s) =
∫ s
−∞

e−u2/2du/
√

2π is the standard normal cumulative distribution function.
Solving these inequalities for π readily yields the approximate (1−β ) level confidence interval Cβ = {π : π̂L 6
π 6 π̂U} where

π̂L =
π̂ +

z2
β/2

2n+
− zβ/2

√
π̂(1−π̂)

n+
+

z2
β/2

4n2
+

1+
z2

β/2
n+

, π̂U =
π̂ +

z2
β/2

2n+
+ zβ/2

√
π̂(1−π̂)

n+
+

z2
β/2

4n2
+

1+
z2

β/2
n+

.
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We note that several other confidence intervals are also available for the binomial proportion; Cβ as defined
above is one of the intervals recommended by Brown, Cai, and DasGupta (2001).

For a given π , the P-value for the Potthoff and Whittinghill (1966) test described in Section 2.4 is

P(π) = Pr
{

χ
2
v(π) > e(π)V(π)+ f (π)

}
≈ Pr

{
N(0,1)>

e(π)V(π)+ f (π)− v(π)
[2v(π)]1/2

}
where the quantities e(π), f (π) and v(π) are defined in (13). The supremum value Pβ displayed in (14) is now
obtained by computing P(π) with the minimum value of Q(π) = e(π)V(π)+ f (π)−v(π)

[2v(π)]1/2 with respect to π ∈Cβ and

adding β . It is easy to verify that Q(π) simplifies to Q(π) = V(π)−N
[2N]1/2 , and we compute its minimum subject to

π ∈Cβ . Denoting this minimum value by Q∗
β

and following (14), it follows that the test based on the method of
Berger and Boos (1994) rejects H0 for small values of

Pβ = Pr
{

N(0,1)> Q∗
β

}
+β .

Obviously we choose only small values of β in applications.

2.6. Test of Xu (2011)

Xu (2011) proposed an unconditional test which was motivated as follows. First note that for i = 1, . . . ,k,

E[π̂i− π̂]2 =
n+−ni

nin+
π(1−π) under H0,

and

E
[

π̂i(1− π̂i)

ni−1

]
=

πi(1−πi)

ni
.

Thus defining

Ui = (π̂i− π̂)
2−
[

n+−ni

n+

][
π̂i(1− π̂i)

ni−1

]
, i = 1, . . . ,k,

it follows that E(Ui) = 0 under H0. Xu (2011) showed that

Var(Ui) =
2π2(1−π)2

ni(ni−1)
+O

(
1

n+

)
,

Cov(Ui,U j) = O
(

1
n+

)
for i 6= j,

and thus proposed the test statistic

TD =

√
k√
2

V
π̂(1− π̂)

where Vi =
√

ni(ni−1)Ui and V = k−1
∑

k
i=1Vi. Letting tD denote the observed value of TD, Xu (2011) pro-

poses to compute the P-value of the test as Pr{N(0,1) > tD}. The P-value computation is based on a normal
approximation under a sparse asymptotic framework in which k→ ∞ while the ni are bounded.
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2.7. Test of Paul and Deng (2012)

Extending work of Farrington (1996), Paul and Deng (2012) present a general method for testing goodness of
fit of a generalized linear model to sparse data. As discussed by Paul and Deng (2012), their method, which is
based on an Edgeworth approximation of the distribution of the modified Pearson χ2 statistic conditional on π̂ ,
can be used to test the hypotheses (2). The test statistic is the standardized quantity

Z =
X2
∗ −E(X2

∗ | π̂)
[Var(X2

∗ | π̂)]
1/2 ,

where X2
∗ is the modified Pearson statistic proposed by Farrington (1996). In our setting, the modified Pearson

statistic takes the form:

X2
∗ = X2− 1−2π̂

π̂(1− π̂)

k

∑
i=1

(π̂i− π̂).

The conditional distribution of the test statistic Z under the null hypothesis is approximated by the Edgeworth
series:

Pr{Z > z | π̂} ≈ 1−Φ(z)+φ(z)
{
(z2−1)ρ3(X2

∗ | π̂)/6+(z3−3z)ρ4(X2
∗ | π̂)/24

+(z5−10z3 +15z)ρ2
3 (X

2
∗ | π̂)/72

}
. (15)

As usual, φ(s) = e−s2/2/
√

2π and Φ(s) =
∫ s
−∞

φ(u)du denote the standard normal probability density and cu-
mulative distribution functions, respectively. The Edgeworth series involves ρ3(X2

∗ | π̂) and ρ4(X2
∗ | π̂) which are

the standardized conditional third and fourth cumulants of X2
∗ , respectively, under the null hypothesis. That is,

if κ j(X2
∗ | π̂) denotes the jth cumulant of X2

∗ conditional on π̂ , then

ρ j(X2
∗ | π̂) =

κ j(X2
∗ | π̂)

[κ2(X2
∗ | π̂)] j/2 , j = 3,4, . . . .

Paul and Deng (2012) provide the following approximate expressions for the first four conditional cumulants of
X2
∗ under the null hypothesis:

κ1(X2
∗ | π̂) = k

(
1− 1

k
+

1
n+

)
,

κ2(X2
∗ | π̂) = 2(k−1)

(
1− 1

k

k

∑
i=1

1
ni

)
,

κ3(X2
∗ | π̂) = 8(k−1)

[
1− 1

k

k

∑
i=1

5ni−4
n2

i
+

1
2kπ̂(1− π̂)

k

∑
i=1

ni−1
n2

i

]
,

κ4(X2
∗ | π̂) = 48(k−1)

k

∑
i=1

(
1− 1

ni

)[
n2

i −17ni +31
n2

i
+

3ni−7
n2

i π̂(1− π̂)
+

1
6n2

i π̂2(1− π̂2)

]

+
12k2(1−2π̂)2

(
1− 2

k ∑
k
i=1

1
ni

)2

π̂(1− π̂)n+
.

Finally, with z denoting the observed value of the test statistic Z, the P-value is computed by evaluating the right
hand side of (15) using the expressions above for the cumulants. This test is designed under a sparse asymptotic
framework as mentioned at the end of Section 2.6. The higher order corrections are designed to improve the
approximation for moderate values of k.
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3. Empirical Comparison of the Tests

In Section 2 we introduced nine different tests for the hypotheses (2). In this section we use simulation to evaluate
and compare seven of these tests based on type I error probability and power. We conducted all simulations using
the statistical computing software R (R Development Core Team, 2011). Below we list the seven tests included
in the comparison, and we give a short name for each test. The short name is used to refer to each test in the
following discussion, and in Tables 1 - 12 which summarize the simulation results.

1. Pearson: Pearson’s chi-squared test presented in Section 2.1.

2. ExactC: Exact conditional test presented in Section 2.2.

3. Nass: Test of Nass (1959) presented in Section 2.3.

4. PW: Test of Potthoff and Whittinghill (1966) presented in Section 2.4.

5. PWBB: Test of Potthoff and Whittinghill (1966) adjusted using the method of Berger and Boos (1994) as
presented in Section 2.5.

6. Xu: Test of Xu (2011) presented in Section 2.6.

7. PD: Test of Paul and Deng (2012) presented in Section 2.7.

We have not included the likelihood ratio test in the comparison because we cannot compute the likelihood ratio
test statistic TL as defined in (6) if at least one π̂i equals zero or one (which is likely in a sparse data situation).
We have not included the exact unconditional test due to the computational difficulty in calculating the P-value
(11) as discussed in Section 2.2.

In our empirical study we consider twelve different settings where each is of the form:

πi = π0, for i = 1, . . . ,k−1,

πk = π0 +δ .

The values of π0, k, and n1, . . . ,nk used in the twelve simulation settings are as follows.

Setting 1. π0 = 0.05, k = 3, n1 = n2 = n3 = 10

Setting 2. π0 = 0.05, k = 3, n1 = n2 = 10, n3 = 60

Setting 3. π0 = 0.05, k = 3, n1 = n2 = 60, n3 = 10

Setting 4. π0 = 0.05, k = 3, n1 = n2 = n3 = 60

Setting 5. π0 = 0.001, k = 8, ni = 20×2i−1

Setting 6. π0 = 0.001, k = 8, ni = 20×28−i

Setting 7. π0 = 0.001, k = 8, n1 = · · ·= n8 = 2560

Setting 8. π0 = 0.016, k = 8, ni = 20×2i−1

Setting 9. π0 = 0.001, k = 40, ni = 20×2(i−1) mod 8
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Setting 10. π0 = 0.001, k = 40, ni = 20×2(40−i) mod 8

Setting 11. π0 = 0.001, k = 40, n1 = · · ·= n40 = 2560

Setting 12. π0 = 0.008, k = 40, ni = 20×2(i−1) mod 8

For each of the seven tests, we use Monte Carlo simulation to estimate the probability of rejecting the null
hypothesis in each of the settings 1 - 12. These probabilities are computed for several values of δ ; and we report
the probabilities for settings 1 - 12 in Tables 1 - 12, respectively. In all cases, the nominal level of the test is
taken as α = 0.05, and 10000 iterations are used to obtain the Monte Carlo estimates of type I error probability
and power. For the ExactC test, in settings 1 and 2 we compute the P-value directly using (8). In the remaining
settings 3 - 12, direct computation of the P-value as defined in (8) is difficult due to larger values of k and/or
the ni’s; therefore, in these settings, we obtain the P-value using the Monte Carlo estimator (9) with m = 10000
iterations. Notice that in each table, the first row, which corresponds to δ = 0, gives the probability of type
I error for a particular value of the common π . As we move down the rows of each table δ increases, and
hence we would expect the power to increase because in this way we move further from the null hypothesis of
homogeneity. In any particular iteration of the simulation, if the observed value of X+ equals 0 or n+, then we
do not reject the null hypothesis under any test. Below is a summary of the findings of the simulation study.

1. In setting 1 where we have sparse data and a very small k, we see that all seven tests have type I error
probability well below α = 0.05. While none of the tests perform ideally in setting 1, we notice here that the
probability of type I error and power of the three tests ExactC, PW, and PWBB is similar and well below that of
the other four tests. In this setting, the performance of the four tests Pearson, Nass, Xu, and PD is comparable.

2. As expected, we find that the Pearson test exhibits inadequate performance in some sparse data settings
where some of the other tests do perform adequately. Specifically, in settings 5, 6, 9, 10, and 12, the Pearson test
has probability of type I error in the range of (0.09, 0.20), and hence is well above the nominal level of α = 0.05.

3. In all settings, we find that the PW and PWBB tests have probability of type I error below the nominal
level α = 0.05. In fact, in most of the settings, the probability of type I error is substantially below the nominal
level; hence the test seems to be extremely conservative. Furthermore, in settings 2, 3, 4, 6, and 10, PW and
PWBB tend to have extremely low power in comparison to several of the other tests. The test PWBB offers only
a slight improvement over PW; generally PW and PWBB perform quite similarly. In spite of these drawbacks,
it is interesting that in settings 9 and 12 the tests PW and PWBB have lower type I error probability and tend to
have higher power than the other tests.

4. In settings 5 and 6, the PD test exhibits inadequate performance because the type I error probability
is 0.661 and 0.6537, respectively, which obviously is substantially above the nominal level of α = 0.05. In
the settings 2, 3, 9, and 10, we find that PD has type I error probability of 0.1432, 0.0860, 0.0983, 0.09073,
and each is well above the nominal level. It is interesting to notice that each setting where we have noticed
an increased type I error probability for the PD test is one with unequal ni’s. On the other hand, the PD test
performs adequately in settings 7, 8, 11, and 12; settings 8 and 12 also have unequal ni’s.

5. We note that theoretically, the ExactC test is similar to the Nass test. The difference between the two tests,
as presented in Sections 2.2 and 2.3, is that the ExactC test computes the P-value directly using the conditional
distribution (7), while the Nass test uses (12) to obtain a scaled chi-squared distribution that approximates (7),
and then computes the P-value with respect to this approximating distribution. Thus, as one would expect, in
each of our simulation settings we find that the ExactC and Nass tests generally yield similar performance and
both maintain their level at or below the nominal α = 0.05. In settings 1 - 4, we find that the probability of type
I error is slightly closer to α = 0.05 under the Nass test in comparison with the ExactC test; and also in these
settings the power of the Nass test is slightly higher than that of the ExactC test. Notice that in settings 1 - 4, k
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is quite small, and hence the discrete distribution (7) has a small sample space which makes it difficult for the
test to achieve size α = 0.05. On the other hand, in setting 5 the ExactC test performs slightly better than the
Nass test in terms of both type I error probability and power. In the remaining settings 6 - 12, the performance
of the ExactC and Nass tests is nearly identical, indicating that Nass’s (1959) chi-squared approximation of (7)
works well in these settings. Generally the performance of the ExactC and Nass tests is adequate in the settings
we considered.

6. We find that the Xu test performs adequately in each of the simulation settings in terms of both type I
error probability and power, though the test tends to be conservative in some settings (e.g., settings 1 - 6). Even
in these settings, the power of the Xu test still tends to compare favorably (though it is not always the best) with
several of the other test procedures.

7. Since the ExactC, Nass, and Xu tests each tend to perform adequately in the chosen simulation settings,
a comparison of the three tests seems appropriate. We have already noted that the ExactC and Nass tests are
similar to each other. The choice between the Xu test versus either ExactC or Nass is not so clear, as none
dominates the other in power or type I error probability. For instance, in settings 2, 5, 8, 9, and 12, the Xu test
has a power advantage over both the ExactC and Nass tests; in settings 3, 6, and 10, the ExactC and Nass tests
have a power advantage over the Xu test; and in settings 4, 7, and 11, the ExactC, Nass, and Xu tests all perform
similarly. To complement these findings, it is interesting to observe that in settings 2, 5, 8, 9, and 12, one of
the populations with the largest ni differs from the rest; in settings 3, 6, and 10, one of the populations with the
smallest ni differs from the rest; and in settings 4, 7, and 11, all ni’s are equal. These observations may help to
provide some guidance as to when the Xu test is preferable to the ExactC and Nass tests or vice versa.

4. Concluding Remarks

In this article we have reviewed nine procedures for testing the hypothesis of homogeneity of k binomial pro-
portions. In Section 2 we presented the theoretical underpinning of each test, and showed how to calculate each
P-value. In Section 3 we used simulation to assess and compare seven of these tests on the basis of type I error
probability and power. Through the simulation studies, we located sparse data scenarios in which the otherwise
reasonable tests Pearson, PW, PWBB, and PD, performed inadequately. We noted that the ExactC, Nass, and
Xu tests exhibited adequate performance in all simulation settings that we considered, and we provided some
guidance regarding the choice between these three tests in sparse data situations. As expected, we found the
ExactC and Nass tests to have similar performance, but some distinctions emerged between these two tests and
the Xu test.
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Appendix: Tables Summarizing Simulation Results

Table 1: Rejection probabilities in setting 1; π0 = 0.05, k = 3, n1 = n2 = n3 = 10
δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0145 0.0014 0.0145 0.0014 0.0014 0.0145 0.0145
0.05 0.0349 0.0054 0.0353 0.0053 0.0054 0.0349 0.0353
0.10 0.0888 0.0237 0.0901 0.0225 0.0237 0.0888 0.0901
0.15 0.1761 0.0622 0.1784 0.0601 0.0622 0.1761 0.1786
0.20 0.2651 0.1218 0.2708 0.1170 0.1218 0.2651 0.2711
0.25 0.3702 0.1982 0.3808 0.1888 0.1982 0.3702 0.3818
0.30 0.4912 0.3042 0.5080 0.2897 0.3041 0.4912 0.5084
0.35 0.5947 0.4136 0.6161 0.3935 0.4133 0.5947 0.6175
0.40 0.6888 0.5289 0.7107 0.5084 0.5286 0.6888 0.7125
0.45 0.7751 0.6436 0.7985 0.6184 0.6430 0.7751 0.8003
0.50 0.8433 0.7466 0.8649 0.7266 0.7465 0.8433 0.8670
0.55 0.8963 0.8252 0.9139 0.8071 0.8249 0.8963 0.9153
0.60 0.9381 0.8932 0.9518 0.8776 0.8931 0.9381 0.9541

Table 2: Rejection probabilities in setting 2; π0 = 0.05, k = 3, n1 = n2 = 10, n3 = 60
δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0676 0.0286 0.0452 0.0013 0.0022 0.0183 0.1432
0.05 0.0102 0.0058 0.0097 0.0002 0.0002 0.0093 0.0292
0.10 0.0116 0.0110 0.0119 0.0000 0.0000 0.0671 0.1124
0.15 0.0770 0.0753 0.0806 0.0000 0.0000 0.2164 0.2960
0.20 0.2352 0.2205 0.2549 0.0000 0.0000 0.3959 0.4979
0.25 0.4392 0.3988 0.4820 0.0000 0.0000 0.5877 0.6868
0.30 0.6665 0.6177 0.7039 0.0002 0.0004 0.7643 0.8303
0.35 0.8292 0.8006 0.8472 0.0016 0.0052 0.8770 0.9104
0.40 0.9262 0.9188 0.9372 0.0112 0.0326 0.9495 0.9659
0.45 0.9697 0.9722 0.9755 0.0550 0.1189 0.9797 0.9864
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Table 3: Rejection probabilities in setting 3; π0 = 0.05, k = 3, n1 = n2 = 60, n3 = 10
δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0533 0.0356 0.0433 0.0045 0.0141 0.0352 0.0860
0.05 0.1397 0.1075 0.1236 0.0077 0.0179 0.0901 0.1261
0.10 0.2635 0.2152 0.2413 0.0158 0.0298 0.1785 0.2125
0.15 0.4040 0.3551 0.3840 0.0334 0.0592 0.3025 0.3320
0.20 0.5377 0.4907 0.5199 0.0681 0.1060 0.4274 0.4578
0.25 0.6723 0.6323 0.6575 0.1137 0.1679 0.5753 0.6036
0.30 0.7760 0.7433 0.7654 0.1811 0.2501 0.6894 0.7156
0.35 0.8565 0.8308 0.8463 0.2548 0.3370 0.7839 0.8048
0.40 0.9102 0.8961 0.9057 0.3570 0.4472 0.8657 0.8820
0.45 0.9475 0.9391 0.9450 0.4577 0.5555 0.9194 0.9282

Table 4: Rejection probabilities in setting 4; π0 = 0.05, k = 3, n1 = n2 = n3 = 60
δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.0414 0.0318 0.0435 0.0110 0.0147 0.0405 0.0611
0.02 0.0651 0.0539 0.0682 0.0243 0.0282 0.0636 0.0893
0.04 0.1284 0.1100 0.1324 0.0566 0.0689 0.1264 0.1618
0.06 0.2306 0.2073 0.2356 0.1282 0.1490 0.2287 0.2735
0.08 0.3659 0.3393 0.3697 0.2306 0.2616 0.3640 0.4111
0.10 0.4946 0.4677 0.4993 0.3470 0.3876 0.4934 0.5466
0.12 0.6357 0.6106 0.6393 0.4814 0.5230 0.6349 0.6798
0.14 0.7400 0.7201 0.7435 0.6117 0.6517 0.7392 0.7800
0.16 0.8306 0.8140 0.8328 0.7196 0.7568 0.8299 0.8609
0.18 0.9001 0.8883 0.9019 0.8171 0.8489 0.8996 0.9197
0.20 0.9451 0.9370 0.9459 0.8871 0.9106 0.9446 0.9578

Table 5: Rejection probabilities in setting 5; π0 = 0.001, k = 8, ni = 20×2i−1

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.1096 0.0410 0.0359 0.0068 0.0098 0.0211 0.6661
0.001 0.0702 0.0300 0.0286 0.0003 0.0015 0.0236 0.4297
0.002 0.0515 0.0211 0.0194 0.0019 0.0075 0.0949 0.2987
0.003 0.0638 0.0243 0.0221 0.0220 0.0530 0.2434 0.3534
0.004 0.1226 0.0418 0.0328 0.0858 0.1681 0.4499 0.5194
0.005 0.2531 0.0999 0.0760 0.2176 0.3397 0.6532 0.7022
0.006 0.4254 0.2162 0.1720 0.3976 0.5322 0.8017 0.8329
0.007 0.6037 0.3844 0.3207 0.5883 0.7096 0.9004 0.9171
0.008 0.7372 0.5509 0.4886 0.7230 0.8166 0.9496 0.9585
0.009 0.8525 0.7067 0.6526 0.8416 0.9023 0.9773 0.9817
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Table 6: Rejection probabilities in setting 6; π0 = 0.001, k = 8, ni = 20×28−i

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.1144 0.0482 0.0428 0.0057 0.0068 0.0212 0.6537
0.01 0.2703 0.2143 0.2111 0.0092 0.0112 0.0423 0.6796
0.02 0.4135 0.3680 0.3649 0.0102 0.0127 0.0838 0.7006
0.03 0.5178 0.4768 0.4754 0.0115 0.0171 0.1395 0.7307
0.04 0.6173 0.5837 0.5839 0.0186 0.0259 0.2173 0.7579
0.05 0.6833 0.6564 0.6564 0.0275 0.0372 0.2757 0.7674
0.06 0.7410 0.7185 0.7202 0.0348 0.0476 0.3571 0.7977
0.07 0.7922 0.7750 0.7760 0.0459 0.0662 0.4251 0.8218
0.08 0.8319 0.8163 0.8180 0.0693 0.0907 0.4973 0.8529
0.09 0.8687 0.8574 0.8574 0.0927 0.1241 0.5623 0.8688

Table 7: Rejection probabilities in setting 7; π0 = 0.001, k = 8, n1 = · · ·= n8 = 2560
δ Pearson ExactC Nass PW PWBB Xu PD

0.0000 0.0424 0.0420 0.0462 0.0187 0.0281 0.0532 0.0462
0.0005 0.0645 0.0643 0.0687 0.0324 0.0483 0.0776 0.0687
0.0010 0.1348 0.1347 0.1388 0.0788 0.1048 0.1512 0.1388
0.0015 0.2523 0.2549 0.2598 0.1757 0.2123 0.2788 0.2598
0.0020 0.4030 0.4030 0.4098 0.3097 0.3534 0.4289 0.4099
0.0025 0.5555 0.5580 0.5636 0.4612 0.5104 0.5817 0.5639
0.0030 0.6852 0.6851 0.6917 0.5984 0.6438 0.7080 0.6919
0.0035 0.7943 0.7938 0.7988 0.7264 0.7615 0.8104 0.7989
0.0040 0.8673 0.8669 0.8700 0.8166 0.8441 0.8784 0.8703
0.0045 0.9251 0.9250 0.9271 0.8938 0.9102 0.9320 0.9272

Table 8: Rejection probabilities in setting 8; π0 = 0.016, k = 8, ni = 20×2i−1

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.0635 0.0489 0.0457 0.0058 0.0101 0.0486 0.0458
0.002 0.0531 0.0428 0.0408 0.0071 0.0129 0.0547 0.0520
0.004 0.0677 0.0537 0.0494 0.0185 0.0312 0.0909 0.0862
0.006 0.1050 0.0837 0.0781 0.0518 0.0765 0.1606 0.1528
0.008 0.1796 0.1503 0.1421 0.1194 0.1657 0.2763 0.2665
0.010 0.2874 0.2490 0.2396 0.2241 0.2910 0.4178 0.4061
0.012 0.4283 0.3849 0.3753 0.3660 0.4435 0.5645 0.5542
0.014 0.5861 0.5389 0.5313 0.5332 0.6142 0.7215 0.7106
0.016 0.7184 0.6784 0.6743 0.6688 0.7421 0.8252 0.8177
0.018 0.8302 0.8011 0.7959 0.7988 0.8540 0.9068 0.9023
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Table 9: Rejection probabilities in setting 9; π0 = 0.001, k = 40, ni = 20×2(i−1) mod 8

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.1932 0.0491 0.0531 0.0169 0.0274 0.0411 0.0983
0.001 0.1702 0.0394 0.0413 0.0882 0.1099 0.0658 0.0917
0.002 0.2007 0.0536 0.0532 0.3112 0.3554 0.2026 0.2179
0.003 0.2877 0.0825 0.0826 0.6037 0.6431 0.4403 0.4495
0.004 0.4616 0.1758 0.1730 0.8297 0.8519 0.7001 0.7041
0.005 0.6540 0.3320 0.3270 0.9391 0.9489 0.8651 0.8658
0.006 0.8142 0.5312 0.5251 0.9838 0.9867 0.9500 0.9500
0.007 0.9098 0.7143 0.7107 0.9956 0.9967 0.9844 0.9846
0.008 0.9644 0.8430 0.8397 0.9990 0.9994 0.9959 0.9958
0.009 0.9897 0.9368 0.9357 0.9997 0.9997 0.9988 0.9988

Table 10: Rejection probabilities in setting 10; π0 = 0.001, k = 40, ni = 20×2(40−i) mod 8

δ Pearson ExactC Nass PW PWBB Xu PD

0.00 0.1826 0.0495 0.0524 0.0214 0.0319 0.0411 0.0973
0.01 0.3273 0.1260 0.1330 0.0229 0.0316 0.0588 0.1115
0.02 0.4566 0.2073 0.2162 0.0174 0.0301 0.1013 0.1479
0.03 0.5534 0.2948 0.3068 0.0219 0.0327 0.1673 0.2075
0.04 0.6262 0.3673 0.3764 0.0219 0.0353 0.2326 0.2723
0.05 0.6938 0.4410 0.4526 0.0254 0.0391 0.2992 0.3308
0.06 0.7552 0.5126 0.5204 0.0286 0.0418 0.3717 0.3998
0.07 0.7948 0.5737 0.5842 0.0376 0.0534 0.4412 0.4673
0.08 0.8393 0.6349 0.6430 0.0459 0.0649 0.5100 0.5327
0.09 0.8665 0.6865 0.6948 0.0544 0.0755 0.5672 0.5881
0.10 0.8939 0.7276 0.7346 0.0615 0.0860 0.6241 0.6398
0.11 0.9160 0.7719 0.7791 0.0691 0.0947 0.6823 0.6965
0.12 0.9305 0.8053 0.8112 0.0917 0.1190 0.7230 0.7358
0.13 0.9458 0.8404 0.8464 0.1083 0.1436 0.7681 0.7796
0.14 0.9592 0.8648 0.8671 0.1262 0.1619 0.8032 0.8132
0.15 0.9639 0.8817 0.8858 0.1471 0.1856 0.8328 0.8403

Table 11: Rejection probabilities in setting 11; π0 = 0.001, k = 40, n1 = · · ·= n40 = 2560
δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.0479 0.0456 0.0487 0.0329 0.0420 0.0569 0.0472
0.001 0.0904 0.0865 0.0910 0.0672 0.0801 0.1038 0.0900
0.002 0.2769 0.2712 0.2780 0.2369 0.2604 0.2968 0.2756
0.003 0.5503 0.5440 0.5519 0.5111 0.5335 0.5752 0.5484
0.004 0.7704 0.7664 0.7713 0.7391 0.7573 0.7846 0.7695
0.005 0.9059 0.9043 0.9064 0.8913 0.9002 0.9146 0.9053
0.006 0.9717 0.9715 0.9720 0.9660 0.9701 0.9750 0.9716
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Table 12: Rejection probabilities in setting 12; π0 = 0.008, k = 40, ni = 20×2(i−1) mod 8

δ Pearson ExactC Nass PW PWBB Xu PD

0.000 0.0911 0.0495 0.0529 0.0272 0.0395 0.0567 0.0470
0.001 0.0868 0.0464 0.0488 0.0382 0.0512 0.0595 0.0490
0.002 0.0931 0.0481 0.0516 0.0604 0.0783 0.0738 0.0591
0.003 0.1085 0.0617 0.0658 0.1285 0.1562 0.0978 0.0805
0.004 0.1339 0.0734 0.0778 0.2175 0.2541 0.1432 0.1230
0.005 0.1711 0.1047 0.1093 0.3375 0.3824 0.2055 0.1787
0.006 0.2405 0.1544 0.1616 0.4880 0.5304 0.2983 0.2669
0.007 0.3186 0.2142 0.2230 0.6313 0.6707 0.4055 0.3728
0.008 0.4179 0.2899 0.3009 0.7516 0.7824 0.5265 0.4887
0.009 0.5230 0.3929 0.4017 0.8440 0.8685 0.6340 0.6051
0.010 0.6338 0.5137 0.5245 0.9115 0.9259 0.7408 0.7185
0.011 0.7371 0.6272 0.6361 0.9545 0.9646 0.8287 0.8076
0.012 0.8047 0.7089 0.7159 0.9762 0.9820 0.8874 0.8714
0.013 0.8801 0.8114 0.8188 0.9901 0.9927 0.9353 0.9240
0.014 0.9290 0.8766 0.8823 0.9954 0.9965 0.9654 0.9593
0.015 0.9609 0.9260 0.9299 0.9984 0.9986 0.9836 0.9802
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