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Data mining in a social can yield interesting perspectives to understanding human behavior or detecting topics or 
communities. However, it is difficult to gather the data related to a specific topic due to the main characteristics of 
social media data: large, noisy, and dynamic. To collect the data related to a specific topic efficiently, we propose a 
new algorithm that selects better seeds with limited resources. Furthermore, we compare two data sets collected by 
the algorithm and existing approaches. 
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1. Introduction 

In recent years, online social network sites, such as 
Facebook, Twitter, Blogger, LinkedIn, and MySpace, 
have changed the way people communicate each other. 
People share information, report news, express opinions 
and update their real-time status on the online social 
network sites. With the increasing popularity of the 
online social network sites, a huge amount of data is 
being generated from them in real time. Analyzing the 
data in social media can yield interesting perspectives to 
understanding individual and human behavior, detecting 
hot topics, and identifying influential people, or 
discovering a group or community.1,2  

Twitter is an online social network site based on text 
message of up to 140 characters, which generates 340 
million tweets and handles 1.6 billion search queries per 
day as of 2012. It also provides Application 
Programming Interface (API) to allow researchers and 
data analyzers to access a variety of data in Twitter.  
Numerous researchers have paid attention on gathering 
and analyzing the data to detect issues, such as detecting 
earthquakes3 and influenza using Twitter or 
recommending tags to users.4  

However, it is impossible to gather plenty of data 
without automated data processing. For that reason, 
many researchers have developed their own data 
collecting tools from diverse of social media sites.5,6,7 
We also proposed a data collecting tool which enables 
data seekers to gather data from Twitter for a specific 
topic.8 Nevertheless, it has been an issue to gather the 
data related to a specific topic that data seekers are 
interested in due to the main characteristics of social 
media data sets: data is large, noisy, and dynamic. 

Among the many considerations to gather the data 
related to a specific topic, there is no doubt that 
selecting seed nodes used for staring point of data 
gathering process is the most important step to gather 
more relative data for a specific topic. In the previous 
research, we used manual seed selection process by 
experts,9 which has potential for selecting seed nodes 
that have relatively low influence on a topic in a social 
network. Thus, we propose an algorithm to find suitable 
seed nodes, which can maximize the efficiency of data 
gathering process to collect more topic-related data 
from Twitter. The algorithm considers user influences 

and activities to find the best initial seed nodes 
dynamically with limited resources and time. 

The remainder of this paper is constructed as 
follows: In Section 2, the related works that have done 
so far are summarized. Section 3 introduces the design 
specifications and explains details of the algorithm. 
Section 4 presents the results of data gathering and 
compares two data sets collected by the algorithm and 
an existing method respectively. The last part, Section 5 
concludes the work by summarizing this paper and the 
future research direction. 

2. Related Research 

2.1. Automated Twitter Data Collecting Tool 

In the previous research, we presented a java-based data 
gathering tool, which is characterized by following 
features (see Ref. 9). Firstly, it continuously and 
automatically collects data from Twitter. Secondly, it 
allows us to start the data collecting process from 
multiple seed nodes. Thirdly, it handles a multitude of 
authorized keys to increase the total number of Twitter 
API calls. Fourthly, it stores collected data into database 
for analysis. Finally, it supports intuitive user interface 
to interact with users. Although it is able to gather a 
huge amount of data from Twitter for a specific topic, 
initial seed-nodes are selected by users manually. If 
initial seed nodes that are not related to the topic are 
selected, lots of noisy data will be gathered from the 
social network, which makes data-analysis difficult. For 
that reason, we need initial seed node selection 
algorithm based on user’s influence to gather data 
related to a specific topic. 

2.2. Measuring user influence in Twitter 

Cha et al. measured the influence of users in Twitter 
using three interpersonal activities: in-degree, retweets, 
and mentions.10 In-degree influence is the number of 
followers of a user, which indicates the size of audience 
for that user. Retweet influence is the number of 
retweets contacting one’s name, which indicates the 
ability of that user to generate content with pass-along 
value. Mention influence is the number of mentions 
containing one’s name, which indicates the ability of 
that user engage others in a conversation.  While they 
showed that user influence can be measured by three 
perspectives, they analyzed the influence based on the 
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4. Experiments 

In this section, we present an evaluation of the 
performance of building the Twitter dataset with the 
Twitter data gathering tool with our influential node 
selecting algorithm on the real Twitter network. The 
following sub sections show an experimental test bed 
and the result of test. 

4.1. An experimental test bed 

 Keywords: The presidential election of the United 
States of America was held at the end of 2012. 
There is no doubt that the presidential election is 
the most popular event in the U.S.A. The name of 
one of the candidates, Obama, has been chosen as a 
keyword to build a new dataset for a popular event 
to analyze user’s behavior in Twitter about 
elections in the future. 

 Dataset: Dataset will be built from real Twitter 
network in real-time. Two different types of data 
gathering approaches will be used. One approach is 
using the seed analysis algorithm we proposed in 
this paper, and another method is to start gathering 
process from an initial node manually selected by a 
data analysis specialist. Particularly, the specialist 
chooses possible seed candidates from Twitter 
accounts, such as BarackObama, MittRomney, VP, 
TheDemocrats, and etc. From the candidate list, 
one of Twitter account is selected for each attempt. 
For instance, Obama’s Twitter account is picked as 
an initial node for first attempt because Twitter 
users following Obama tend to post tweets about 
Obama more than otherwise. Then, Target users are 
arbitrarily selected from all of Obama followers for 
each attempt to generalize result of data collection. 

4.2. Experimental Results 

Data gathering results by two different types of data 
gathering approaches are illustrated in Table 1 and 
Table 2. Each data gathering approach attempts five-
times to see if the algorithm performs evenly with 
different sets of candidates of initial node. As shown in 
two table records, the average portion of keyword-
related tweets in the dataset built by our approach is 
much larger than another approach (9.88% keyword-
related tweets in our approach compared to average of 
only 1.27% keyword-related tweets in the manual pick 
approach). In other words, this result means that data 

collection from qualified seed node and follower nodes 
collects more keyword-related tweets than otherwise. 

Table 1. Data gathering results from seed analysis algorithm 

Attempts 
Total 

number of 
tweets 

The number of 
keyword-

related tweets 
(%) 

The number of 
no keyword-

related tweets 
(%) 

1 14,149 1,906 (13.47%) 12,243 (86.53%) 

2 12,045 758 (6.29%) 11,287 (93.71%) 

3 11,615 1,109 (9.55%) 10,506 (90.45%) 

4 10,779 1,152 (10.68%) 9,627 (89.32%) 

5 10,115 875 (8.66%) 9,240 (81.46%) 

Average 11,741 1,160 (9.88%) 10,581 (90.12%) 

Table 2. Data gathering results from selecting an initial node 
by manual pick 

Attempts 
Total 

number of 
tweets 

The number 
of keyword-

related tweets 
(%) 

The number of 
no keyword-

related tweets 
(%) 

1 11,847 13 (0.11%) 11,834 (99.89%) 

2 11,666 17 (0.15%) 11,649 (99.85%) 

3 14,082 27 (0.19%) 14,055 (99.81%) 

4 13,087 409 (3.13%) 12,678 (96.87%) 

5 10,549 309 (2.93%) 10,240 (97.07%) 

Average 12,246 155 (1.27%) 12,091 (98.73%) 

 
To perceive the statistical significance of differences 

between data gathering results from two different 
algorithms, we applied the Chi-square test to the data 
gathered by two different data gathering approaches and 
derived the results, as shown in the Table 3 and Fig. 5. 
The result of the Chi-square test shows that there is less 
than 0.001% chance that this deviation is due to chance 
alone. This implies that the algorithm we developed 
gathers significantly more data than gathering data from 
an initial seed selected by manual pick. 

Table 3. Result of Chi-square test to data gathered by two 
different data gathering approaches 

Approach 
Keyword-related Not-keyword-related 

Freq. % Freq. % 

Seed 
Analysis 

1,160 88.2% 10,581 46.7% 

Selected by 
Specialist 

155 11.8% 12,091 53.3% 

Total 1,315 100% 22,672 100% 
a. χ2 = 858.40; Degree of freedom = 1; Probability < 0.001 
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