
Device driver development of an external human interaction device for the
Android

Naoto Ogawa 1 , Shuichi Oikawa 2

1 Department of Computer Science, University of Tsukuba,
1-1-1 Tennodai,

Tsukuba, Ibaraki 305-8573, Japan
E-mail: nogawa@cs.tsukuba.ac.jp

2 Division of Information Engineering, Faculty of Engineering,
Information and Systems , University of Tsukuba

E-mail: shui@cs.tsukuba.ac.jp

Abstract

Recently, many people have used Smartphones. The feature of Smartphones is that they are equipped with
a mobile operating system (OS) for the control of sensors and modules. In this situation, we can connect
external human interaction devices with the Smartphone. Our objective is to know how the external human
interaction device affects to the OS. In this paper, we implement the programs for connecting the Wii
Remote to the Android. Furthermore, we evaluate the performance of our programs and benchmark the
Android while running our programs. We intend to shift our environment to the virtualized environment.

Keywords: device driver; Android; Linux; Bluetooth; Wii Remote;

1. Introduction

These days, the user of smart phones is increasing
in all over the world1. Few people used the Smart-
phone at 2008, while now, 70% of cellular phones
are Smartphones. Moerever, the rate of spread is ex-
pected to reach 80% by the end of 2016.

One feature of the Smartphones is that they em-
ploy a mobile operating system (OS), such as iOS or
Android. Another feature of Smartphones is that it is
equipped with in number of sensor modules that in-
clude GPS, Bluetooth, acceleration sensor, direction
sensor, luminance sensor and so on. Because it has
many modules and it also can connect the kinds of
external devices, a large amount of data come from

modules and/or external devices to the smart phones,
so smart phones must process these data. These data
are too large, so if we don’t process these data ef-
fectively, the application crash at worst. There is
no study how we can process data from the external
device effectively and how external devices can be
connected with Android.

The objective of this study is to examine how the
data from the external device affect the Android and
how time the input event complete. For our objec-
tive, we connect the external device with the An-
droid and handle the Android by the external device.

We implement programs to get the data from the
Wii Remote and use this data to make input event to
the Android. We get the each processing time of the

International Journal of Networked and Distributed Computing, Vol. 1, No. 3 (August 2013), 159-166

Published by Atlantis Press
Copyright: the authors

159

willieb
Typewritten Text
Received 16 April 2013

willieb
Typewritten Text
Accepted 25 June 2013

willieb
Typewritten Text

willieb
Typewritten Text

Naoto Ogawa, Shuichi Oikawa

input event by using this program.
There is no profiling software on our environ-

ment now, so we also prepare profiling software for
our environment.

Furthermore, we plan to migrate our execution
environment to the virtualized environment.

2. Related Works

Benchmarking for the Android system already
exists23, but these studies are about Dalvik virtual
machine. Therefore, these studies are different in
the point of, not for sensor devices.

The study using the sensors of the Android plat-
form is present4. This study pays attention to the
data from the sensor itself and don’t present the in-
fluence of the Android system.

The studies using the Wii Remote as a human in-
teraction device are present567, but the platform of
these studies are not Android system.

The study using the external device as a hu-
man interaction device is present8. This study uses
Kinect16. The Kinect is enable to detect the distance
and the picture by using the sensor. In this study,
they make input an event with human gesture.

The investigation of input interface using accel-
eration sensor of the Android is present9. In this
investigation, the data from the acceleration sensor
makes input event. This study is different from our
study in the point of that they don’t use the external
device.

3. Execution Environment

We set up the following environment to get data
from the external device and handle these data.

3.1. OS

We choose Android11 as an embedded operating
system on Smartphone because Android is an open
source software, and it is Linux based operating sys-
tem so we can use some software for Linux. The
version we selected is 4.0.4 (Ice Cream Sandwich).

3.2. Board

We choose Pandaboard-ES12 for the target board.
Pandaboard-ES is a single-board computer based on
the OMAP4460 developed by Texas Instruments.
The features of Pandaboard-ES are a dual-core
1.2GHzCPU and 384MHz GPU, 1GB low power
DDR2 RAM, on-board 10/100 Ethernet, 802.11
b/g/n, Bluetooth v2.1, general purpose expansion
header, and so on. Some Smartphones use the
OMAP4460, so this board is similar to the Smart-
phone. Figure1 is the appearance of Pandaboard-ES.

Fig. 1. Pandaboard-ES

3.3. Wii Remote

We choose the Wii Remote14 as an external de-
vice to connect with the Android. Wii Remote is
a standard controller for Nintendo Wii13. The Wii
is a home video game console released by Nintendo.
This controller connects to the console by Bluetooth.
We will use this controller to operate Android on
Pandaboard-ES. Figure2 is the appearance of Wii
Remote.

Fig. 2. Wii Remote

Published by Atlantis Press
Copyright: the authors

160

Device driver development of an external human interaction device for the Android

The other device like Wii Remote exists. This
product is Zeemote JS1H15 that is made by BUF-
FALO INC. This device connect with the Android
by Bluetooth, but it uses Serial Port Profile (SPP)
for the connection. This method emulates a serial
cable to provide a simple substitute. On the other
hand, the Wii Remote uses the Human Interface De-
vice Profile (HID). This method is for connecting
input device like a mouse or keyboard.

4. Implementation

We implement a program to use Wii Remote for han-
dling the Android. This program is based on Wi-
iuse. Wiiuse is a C library to connect Wii Remote by
Bluetooth. This program enable to get the data from
the Wii Remote and Nunchuk if connected, but this
library is for Linux and Windows, so we can’t use
this library on the Android originally. Thus, we must
make a change to the library to use on the Android.

The Android NDK is a tool set that enables to
make Android applications or executable program
from C and/or C++ source files. We enable to use
Wiiuse by using this tool and preparing the required
libraries. We prepare libraries about Bluetooth10.

We use Android Debug Bridge (adb) to connect
with the board and a PC. After connecting, we can
use the shell of the Android from the PC’s terminal.
We execute the Wiiuse on the shell from the PC. Fig-
ure3 is the system configuration diagram.

Fig. 3. system configuration diagram

We would like to use the Wii Remote to handle
the Android, but Wiiuse can only connect with Wii

Remote and get data from the Wii Remote. Thus, we
must implement an input function to the Android.
Table 1 is the table from the Wii Remote button to
the keyboard and mouse. BTN LEFT corresponds
to mouse left click event and BTN RIGHT corre-
sponds to the mouse right click event.

Table 1. Wii Remote correspond table
Wii Remote Keyboard

⇑ KEY UP
⇓ KEY DOWN
⇐ KEY LEFT
⇒ KEY RIGHT
A KEY ENTER
1© KEY SEARCH
2© KEY ESC

HOME KEY HOME
C BTN LEFT
Z BTN RIGHT

Joystick mouse cursor

We implement the input method in three ways.
First method use shell command, second method
uses Linux libraries and third method use device
driver.

We can use mouse function if we use the second
or third method.

4.1. Shell Command

Android shell has input command. This command
makes keyboard input event. This command is used
like this

input keyevent EVENT CODE
If you would like to make the ENTER key input

event, you should just type like this on the shell
input keyevent 66
These EVENT CODEs are defined in Android’s

source code.
Because NDK contain C libraries, we can use

functions for executing shell commands in the C
source. We duplicate the process. Duplicated pro-
cess executes the input command. This command
generates Virtual Machine (VM) and execute the
Java program on the VM. This Java program makes
key input event and sends key input event to the An-
droid application. The other process waits for the

Published by Atlantis Press
Copyright: the authors

161

Naoto Ogawa, Shuichi Oikawa

first process to be completed. One input process is
completed now. This program polls till next input
comes. Figure4 shows the summary of this program.

Fig. 4. use shell command

4.2. Linux Libraries

We implement another version. This version makes
virtual input device. Android prepares user input
module, so we use this module. We open uinput17

device file to use this module and write device type
we would like to generate to this file. In this case, the
type is keyboard and mouse. ’ioctl’18 function ma-
nipulates the underlying device parameters of spe-
cial files. We write some kinds of events that we
will generate to this file by using the ioctl function
because the Linux standard device driver does not
pass the input event to the application if this device
file doesn’t have information about the events that
this device can generate. Now we are completing
creating virtual input device.

We can generate input event by writing the rele-
vant value to the virtual input device file. When this
program gets data from the Wii Remote, this pro-
gram makes key input event by writing the virtual
input device file. One input process is completed
now.

However, we couldn’t use HOME button be-
cause Android doesn’t get KEY HOME from the
keyboard, so we change the configuration file to get
KEY HOME from the keyboard. Figure5 shows the
summary of this program.

Fig. 5. use ioctl function

4.3. Device Driver

We implement another version. This version makes
the device driver for Wii Remote. Our Android pre-
pares insmod and rmmod commands so we can use
kernel module on this Android. Device driver for
Ubuntu is already existing, but we cannot use this
driver on the Android. Thus, we implement a de-
vice driver based on it for the Android. When we
load this driver, a character device is generated at
’/dev/wm’. We generate input event by writing to
this character device file. The type of input event is
similar to the virtual input device version.

This driver can make the input event but can’t get
data from the Wii Remote, so we must prepare a pro-
gram which gets the data from the Wii Remote. We
change virtual device program not to write virtual
input device but to write ’/dev/wm’. Figure6 shows
the summary of this program.

Fig. 6. use Wii Remote device driver

Published by Atlantis Press
Copyright: the authors

162

Device driver development of an external human interaction device for the Android

5. Evaluation

5.1. One Input Time

We measure the time to complete one key input
event on each version. We use a gettimeofday func-
tion to get time. We get time before generating the
input event. This is the start time. We get time when
the input event is completed. This is the end time.
We determine that the value obtained by subtracting
the start time from end time is the execution time.
Table 2 shows the execution time of each button
and Figure7 is the graph to compare the execution
time of three versions. We get each execution time
ten times and calculate each average execution time.
The row of Average means the average execution
time of each method. Figure7 is logarithmic graph
and time are represented at a microsecond rate.

Table 2. each button input time

Method
Button

UP DOWN LEFT RIGHT ONE TWO A

Device driver 15.56 16.16 20.76 12.84 21.97 15.88 17.10
Virtual device 17.73 18.00 22.90 20.13 24.09 21.68 21.06

Input command 65.30*103 63.96*103 66.66*103 64.00*103 70.22*103 70.48*103 66.71*103

1"

10"

100"

1000"

10000"

100000"

UP
"

DO
WN

"
LE
FT
"

RIG
HT
"
ON
E"
TW
O" A"

Input"command"

Virtual"device"

Device"driver"

Fig. 7. compare three versions

The execution time of the input version is about
ten thousand times the execution time of the other
versions of all buttons. The input version is too
late so when we use the Wii Remote to handle the
Android and hit buttons repeatedly, the application
doesn’t work as we mentioned immediately. We get
stressed in this situation.

On the other hand, the virtual device version and
device driver version are so fast. As you see the Ta-
ble 2, all execution time is under one millisecond
and device driver version is a little faster than the
virtual device version. We don’t feel stress when we
use the Wii Remote as an input device.

We examine the input command version in detail
to discover where does occupy the majority of the
execution time. We measure the time of the process
waiting. We get start time before fork function and
end time after the waiting process is restarted. We
determine the value obtained by subtracting the start
time from the end time as the fork time. Table 3
shows the total execution time, the fork time and the
others time. Figure8 is the graph comparing the fork
time and the others time.

Table 3. each total processing time and fork time of the input
command version

UP DOWN LEFT RIGHT ONE TWO A
total time(us) 625549 637848 656005 672271 772614 789551 786346
fork time(us) 625366 637024 654876 671692 771881 780337 785980
the others(us) 183 824 1129 579 733 214 366

1"

10"

100"

1000"

10000"

100000"

1000000"

UP
"

DO
WN

"
LE
FT
"

RIG
HT
"
ON
E"
TW
O" A"

total"

fork"

the"others"

Fig. 8. compare occupied time of the fork and the others

As you see, fork time occupies almost all execu-
tion time, but we cannot judge whether the process
generated by the fork function or input command oc-
cupies almost all the time.

Published by Atlantis Press
Copyright: the authors

163

Naoto Ogawa, Shuichi Oikawa

We measure the time of input command itself on
the shell. We use the time command to measure
the time. This command gets the execution time the
command, but this command gets only two decimal
places. Table 4 is the result.

Table 4. each processing time of input command on the shell

UP DOWN LEFT RIGHT ONE TWO A
time(s) 0.64 0.64 0.62 0.63 0.69 0.70 0.72

The each execution time of Table 4 almost corre-
sponds to Table 2. This result suggests that the input
command occupies almost all execution time of the
input command version.

5.2. Top Command

To examine how these three program occupies the
cpu time, we perform ’top’ command while running
each program. Table 5 is the result.

Table 5. top command results

Input Methd Device driver Input command Virtual input device
Average(%) 0.1460 6.000 24.13

This result suggests that the virtual input de-
vice method uses more CPU time than device driver
method, so we predict that virtual input device
method has a bad influence on the Android system.
We think that virtual input device method uses three
threads in the program and manage virtual input de-
vice file, so this program use much CPU time than
other method.

5.3. Java Whetstone

To examine how the sensor and the program affect
on the Android system, we perform Java Whet Stone
benchmark. In this case, the sensor is Bluetooth
module. This Java Whetstone Benchmark is writ-
ten by Roy Longbottom. This application provides
a result of speeds of the eight test loop in the bench-
mark and MWIPS that means Millions of Whetstone
Instructions Per Second. The speed is represented
by Millions of Floating Point Instructions Per Sec-
ond (MFLOPS) and Million Operations Per Second
(MOPS). While running this benchmark, we connect
the Wii Remote to the Android but don’t handle the

Wii Remote, so input event isn’t generated. Figure9
is the each method result of the Java Whet Stone
benchmark.

0"

50"

100"

150"

200"

250"

300"

350"

400"

N1
"flo
at(
MF
LO
PS
)"

N2
"flo
at(
MF
LO
PS
)"

N3
"if(
MO

PS
)"

N4
"fix
pt(
MO

PS
)"

N5
"co
s(M

OP
S)"

N6
"flo
at(
MF
LO
PS
)"

N7
"eq
ua
l(M
OP
S)"

N8
"ex
p(M

OP
S)"

MW
IPS
"

Without"Bluetooth"

Device"Driver"

input"command"

Virtual"device"

Fig. 9. Java Whet Stone results

The results are almost same. Virtual input device
version is a little worse. This result agrees with our
prediction.

6. OProfile

We make ’OProfile’ available at Android on the
Pandaboard-ES. OProfile is a system-wide profiler
for Linux system. OMAPpedia 19 provide the way
to use OProfile at Android on the Pandaboard-ES,
but we can’t use OProfile in that way. In our envi-
ronment, we can’t use hardware event counter, so we
use timer interruption to profile the programs. We
execute ’opcontrol’ command to get profiling infor-
mation on the target board. To see the result of the
profiling, we have to pull the result of the profiling of
the target system to the host computer running Linux
because we have to execute ’opreport’ command to
see the result. However, we can’t execute it on the
Android. This command can’t execute if the ver-
sion of the ’opcontrol’ command and the ’opreport’
command are different. In our environment, these
versions are different. We make change the opreport
to be available in our environment, and now we can
use opreport. Figure10 is the profiling result of the

Published by Atlantis Press
Copyright: the authors

164

Device driver development of an external human interaction device for the Android

virtual input device method. ’wiiuse5’ is the pro-
gram name of the virtual device method.

Fig. 10. OProfile result of virtual device method

We can see many libraries in this figure, but we
can’t find which libraries do correspond with our
program.

7. Virtualization Expansion

We shift our execution environment to a virtualized
environment. We have evaluated the performance of
our programs and the Android on the Pandaboard-
ES. Now we can run the Android on the virtual ma-
chine monitor (VMM). We choose ’KVM20’ as a
VMM. Figure11 shows the virtualized environment
we intend to construct. We run the Linux and the
Android on the VMM. The Linux get the data from
the Wii Remote through Host OS and VMM. The
Linux sends some data to the Android to handle the
Android. In this situation, we will evaluate the per-
formance of the Android.

Linux�

VMM�

Android�

Host�

Wii0
Remote0�

Fig. 11. virtualized environment

8. Discussion

We implement the methods to handle data from an
external device and measure the execution time at
each method. Significant difference appears in the
execution time. The method that use input command
is so late that it is not practical. On the other hand,
the other methods are so fast that it can use as an
input method. This result is as we expected because
the methods that use ioctl or device driver are a sin-
gle process and runs on the real machine, whereas
the method that use the input command duplicate
the process and generate VM. Therefore, we can say
that it is obvious that the methods using ioctl or de-
vice driver are faster than the method using input
command.

Comparing ioctl and device driver, ioctl use more
CPU time than device driver. This cause is that ioctl
use three threads to handle the data from the Wii
Remote. On the other hand, the device driver ver-
sion uses two threads. Furthermore, the ioctl must
manage virtual input device in its process while de-
vice driver version doesn’t have to manage Wii Re-
mote device driver. Android manages Wii Remote
device driver. We consider using short CPU time is
scalable. Thus, we predict we can connect other de-
vices while connecting the Wii Remote using device
driver method.

Furthermore, we consider that when you connect
an external device to the Android and handle data

Published by Atlantis Press
Copyright: the authors

165

Naoto Ogawa, Shuichi Oikawa

from the device, you should implement the program
to handle the data with C and/or C++.

We estimate that the Android increasingly spread
from now on and the demand for connecting the ex-
ternal device with the Android increase.

9. Conclusion

9.1. Summary

In this paper, We connect the Android with the Wii
Remote to get the data from the external device. We
implement input methods in three ways. First one
makes another process in the program, and use shell
function to make input event. Second one uses C li-
brary to make input event from the data on the Wii
Remote. Third method use device driver for the Wii
Remote. We implement this device driver. Compar-
ing three methods, the second and third one use short
time to complete a keyboard input event. Compar-
ing the second one and the third one, the third one
uses short CPU time than second one. So we think
the third one is the best method to use an external
device for handling the Android.

We think connecting Wii Remote with the An-
droid hardly have a bad influence by reason of our
benchmark.

9.2. Future Works

We think that our implementation has three points
that should be improved.

1. Our device driver requires the daemon which
runs on the user space for getting the data
from the Wii Remote. This still requires con-
text switching, so we do change our device
driver to run in the kernel completely.

2. Our Android has no debug symbols, so we
can’t get detailed information about our pro-
grams. We will compile the Android with de-
bug symbols.

3. Virtualized environment has not been com-
pleted yet. Thus we will construct a virtual-
ized execution environment.

1. Sangwon Lee and Senmi Lee, Diffusion of Smart-
phone in Global Telecommunication Markets,
PTC’12, 2012-01-17

2. Cheng-Min Lin, Benchmark Dalvik and Native Code
for Android System , IEICE Technical Report Inno-
vations in Bio-inspired Computing and Applications
(IBICA), 2011 Second International Conference on,
16-18 Dec,2011

3. Takashi Majima et al., CPU Load Analysis Using
Dalvik Bytecode on Android, IEICE Technical Report
109(475), 125-132, 2010-03-26

4. Tomonori Arakaki et al.,Trial Manufacture of the
Hadoop-based LifeLog System using the Android Ter-
minal, IPSJ SIG Technical Report.UBI, 2011-UBI-
32(5), 1-4, 2011-11-17

5. OKAWA Takashi et al., Development of three-
dimensional graphic viewer software using game-
device Wii R©Remote and medical image displaying,
Medical Imaging and Information Sciences, 28(2), 46-
50, 2011

6. Tomohisa Ogawa and Jiro Katto, Percussion Instru-
ment Interface Using Wii Remote Controller, IPSJ SIG
Technical Report.HCI, 2011-HCI-143(1), 1-6, 2011-
05-20

7. Sugimoto Masaki et al., Input Method of Japanese
Sentence by Using Wiimote, ITE Technical Report,
35(16), 59-62, 2011-03-08

8. keiji Sakata and Takao Takahashi, Development of
learning system using noncontact input device, IPSJ
SIG Technical Report.CE, 2011-CE-112(1), 1, 2011-
12-10

9. Fukunaga Hibiki et al.,Investigation of Input Interface
using Android Device embedded Acceleration Sensor,
Proceedings of the ... Society Conference of IEICE
2011 Communication(2), 436, 2011-08-30

10. Bluez:http://www.bluez.org/
11. Android: http://www.android.com/
12. Pandaboard-ES: http://pandaboard.org/
13. Nntendo Wii: http://www.nintendo.com/wii
14. Wii Remote: http://android.ccpcreations.com/wiicontroller
15. Zeemote:http://www.zeemote.com/
16. Kinect:http://www.xbox.com/en-US/KINECT
17. uinput:http://thiemonge.org/getting-started-with-

uinput
18. ioctl:http://man7.org/linux/man-

pages/man2/ioctl.2.html
19. OMAPpedia http://omappedia.org/wiki/Android Debugging
20. KVM http://www.linux-kvm.org/

Published by Atlantis Press
Copyright: the authors

166

