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In this paper, we investigate the distributed parallel Support Vector Machine training strategy, and then propose a 

BSP-Based Support Vector Regression Machine Parallel Framework which can implement the most of distributed 

Support Vector Regression Machine algorithms. The major difference in these algorithms is the network topology 

among distributed nodes. Therefore, we adopt the Bulk Synchronous Parallel model to solve the strongly connected 

graph problem in exchanging support vectors among distributed nodes. In addition, we introduce the dynamic 

algorithms which can change the strongly connected graph among SVR distributed nodes in every BSP’s super-step. 

The performance of this framework has been analyzed and evaluated with KDD99 data and four DPSVR 

algorithms on the high-performance computer. The results prove that the framework can implement the most of 

distributed SVR algorithms and keep the performance of original algorithms. 

Keywords: parallel computing; bulk synchronous parallel; support vector regression machine (SVR); regression 

prediction. 

1. Introduction 

In modern learning theory, time efficiency and the 

accuracy of results are always the goals to pursue. With 

the coming of big data era, traditional support vector 

regression machine (SVR) [1] training algorithms take a 

lot of time. In order to improve learning speed of SVR 

under large-scale data and keep global optimal, 

distributed parallel learning technology is an inevitable 

way. So the distributed parallel support vector 

regression machine (DPSVR) training algorithms 

appear. However, since the DPSVR training problem is 

a stochastic problem, there is no perfect algorithm to 

solve the general problem. 

Support vector machine (SVM)[2] is supervised 

learning model that analyzes data and recognizes 

patterns. Owing to its good quality to solve the problem 

of high dimensional model construction with limited 

samples and its capability of generalization, SVM is 

widely used for classification and regression analysis. In 

1996, SVR was proposed by Vapnik, and it has 

important theoretical significance and application value 

for function fitting problem. But there exists a 

constrained quadratic programming problem to be 

solved, the drawback of SVM is the complexity of 

implementation. 

A lot of speedup implementations of the quadratic 

programming algorithm for SVM have been proposed 

International Journal of Networked and Distributed Computing, Vol. 1, No. 3 (August 2013), 134-143

Published by Atlantis Press 
Copyright: the authors 

134

willieb
Typewritten Text
Received 16 April 2013

willieb
Typewritten Text
Accepted 15 June 2013

willieb
Typewritten Text

willieb
Typewritten Text



Hong Zhang, Yongmei Lei 

 

 

such as chunking [3] and Sequential Minimal 

Optimization [4].  

Another effective solution is parallel training 

strategy. Parallel training strategy is more suitable for 

SVM, by splitting the problems into smaller sub-

problems. There are two kinds of parallel training 

strategy: task parallel and data parallel. Task parallel 

mainly splits the matrix in quadratic programming 

algorithm to parallel process [5]. The data parallel splits 

the training set and it is easy to be used in distributed 

applications. Therefore, the data parallel SVM also has 

been known as distributed parallel support vector 

machine (DPSVM). 

Some DPSVM algorithms [6][7] which find SVs  in 

local processing nodes and gather them in a master data 

processing node to form a new SVM training dataset to 

produce training model. But their solutions are local 

optimum, not global optimum. Caragea[8] improved 

this algorithm by allowing the master data processing 

node to send SVs back to the distributed data processing 

nodes and do it repeatedly to achieve the global 

optimum. Then, for the sake of accelerating DPSVM, 

Graf [9] had come up with an algorithm that 

implemented distributed nodes into cascade top–down 

network topology, namely, cascade SVM. This 

algorithm increases the number of SVM sub-problem to 

be processed, but it reduces the average processing scale 

of these problems. In general, the cascade SVM is the 

fastest DPSVM algorithm. However, some researchers 

[10][11] improved this structure to obtain more 

satisfying results in specified cases. And the basic idea 

of these improved algorithms is to change the network 

topology among distributed nodes. In 2008, Yumao Lu 

[12] proved that the global optimal of DPSVM can be 

achieved iteratively if and only if its network topology 

is strongly connected graph. 

Since there is no perfect DPSVR algorithm to solve 

the general problem, a parallel framework which can 

implement the most of DPSVR algorithms is a good 

solution to speed up to solve the general SVR problem.  

Therefore, in order to find the parallel framework, a 

parallel model should be introduced to solve the 

problem of communication along the network topology. 

Malewicz[13], in Google, proposed a framework for 

processing large graphs that is expressive and easy to 

program. The framework is called Pregel which is 

inspired by Bulk Synchronous Parallel (BSP) model 

[14].  

By integrating SVR theory and DPSVM evolution 

process with the BSP model, we propose a BSP-Based 

Support Vector Regression Machine Parallel 

Framework. It can implement the most of DPSVM 

algorithms. 

This paper is organized as follows. Support vector 

regression problem is introduced and formulated in Sect 

2. In sect 3, there is a brief introduction of Bulk 

Synchronous Parallel model. Then we would present 

BSP-Based Support Vector Regression Machine 

Parallel Framework in Sect 4, followed by our 

experiments and results in Sect 5. We discuss some 

issues and conclude this paper in Sect 6. 

2. Brief View of Support Vector Regression 

The main characteristic of SVR is that instead of 

minimizing the observed training error, SVR attempts to 

minimize the generalized error bound to achieve 

generalized performance [15]. The generalized error 

bound is combination of the training error and a 

regularization term which controls the complexity of the 

hypothesis space. 

Compared to the statistical regression procedures, 

SVR shows strong robustness in the regression problem 

by introducing insensitive loss function. The model 

produced by SVR depends on a subset of the training 

data, because the cost function for building the model 

ignores any training data close to the model prediction 

within a threshold ε. 

2.1. Linear Support Vector Regression 

Consider the problem [16][17] of approximating the 

following data set: 

1 1{(x , y ),..., (x , y )},x ,n

l lD R y R            (1) 

With a linear function: 

(x) , , ,bf w x b w X R                       (2) 

 where <,> denotes the dot product and binary group 
(x , y )i i represents a training sample of the training set D, 

and parameter l represents the size of the training set. In 

ε-SVR, the goal is to search for an optimal linear fitting 

function f(x) that estimates the values of output 

variables with deviations less than or equal to ε from the 

actual training data. The optimal regression function [18] 

is: 

Minimize  
2

1

*(ξ ξ
1

|| w | )|
2

l

i

i iC


                         (3) 
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Where ξ i and 
*ξ i are relaxation variables introduced to 

satisfy constraints on the function. Therefore, SVR fits a 

function to the given data by not only minimizing the 

training error but also by penalizing complex fitting 

functions. This penalty is acceptable only if the fitting 

error is larger than ε. The ε-insensitivity loss 

function  ,i iy f x x


 is defined by: 

    
ε

y x ,x max 0, y x , x εi i i if f           (5) 

As presented in Figure 1, the ε-insensitive loss 

function can be visualized as a tube equivalent to the 

approximation accuracy that surrounds the training data. 

The primal function, namely the optimization problem 

given by (3) can be solved more easily in its dual 

formulation. The key idea is to construct a Lagrange 

function from the objective function and constraints by 

introducing a dual set of variables. The new dual 

objective function can be formulated as follows:  

2

1 1

* *

1 1

*

* *

ξ ξ α ε ξ , b
1

( ) ( )
2

( ) ( )α ε ξ , b

l l

i

i i

l l

i i i i

i

i i i i

i i

i

i

y w x

y w x

L w C
 

 

  

     

    

   

 

 

i

i

(6) 

Where L is the Lagrange function and i ,
*

i , αi  and 
*αi are non-negative Lagrange multipliers. The partial 

derivatives of L with respect to the primal variables (w, 

b, ξ i , 
*ξ i )  vanish at the optimum (actually a saddle 

point). 

 
l

*

i i

i 1

L
α α 0

b 


  


                                        (7) 

 
l

*

i i i

i 1

L
w α α x 0

w 


   


                           (8) 

i i

i

L
C α η 0

ξ


   


                                         (9) 

* *

i i*

i

L
C α η 0

ξ


   


                                      (10) 

Substituting (7), (8), (9) and (10) into (6) generates 

the following dual optimization problem: 

  

   

* *

, 1

* *

1 1

1
α α α α x x

2

ε α α y α α

l

i i j j i

i

j

l l

i i i i i

j

i i

Maximize


 

   

   



 

         (11) 

Subject to  

 

*

1

*,

α α 0

α α 0,

l

i i

i

i

i C




 


 

                               (12) 

After solving the dual problem the optimal decision 

can be obtained: 

   *

1

x α α <x , x> bi i i

i

l

f


                               (13) 

Equation (13) is called the support vector expansion. 

Computation of b is done by exploiting the KKT 

conditions which state that the product between dual 

variables and constraints vanishes at the optimal 

solution. This lead to: 

 

 
i i i i

* *

i i i i

α ξ ε y w, x b 0

α ξ ε y w, x b 0

     


    

               (14) 

And 

 

 
i i

* *

i i

C α ξ 0

C α ξ 0

  


 

                                                (15) 

Based on (14) and (15), it can be concluded that only 

samples (x , y )i i  with 
 *

i C  lie outside the ε-

insensitive tube. Furthermore, 
* 0i i   shows that a set 

of dual variables *   i i  are never both nonzero. And for 

the 
 *

(0,C)i  ,
 *

0i  , the second term in (14) must 

vanish.  

Based on (11), the Lagrange multipliers may be 

nonzero if  ,i iy f x x   which indicates that all Lagrange 

multipliers inside the ε-tube vanish. On the other hand, 

the second term in formulas (14) is nonzero for 
 ,i iy f x x   , which implies that the multipliers have to 

be zero to satisfy the KKT conditions. This 

demonstrates that the SVR uses only a fraction of the 

training data to express the original data and 

approximate the target function [15]. 

 

Fig. 1.  Soft margin loss setting for a linear SVR[18]. 

Published by Atlantis Press 
Copyright: the authors 

136



Hong Zhang, Yongmei Lei 

 

 

2.2. Nonlinear Support Vector Regression 

As for the nonlinear regression problem, they are more 

common and useful in practical application. The key 

and fundamental idea to solve this problem is to use the 

kernel function. Kernel functions can project the data 

into a higher dimensional feature space to improve the 

capability of the linear machine to represent the 

nonlinear relationship that exists in the original input 

space. Furthermore using the kernel function also can 

get rid of the complexity of dot product operation in 

high dimensional space. This leads to the following 

optimization problem to determine the flattest function 

in the feature space: 

  

   

* *

, 1

* *

1 1

1
α α α α K(x x

2

ε α α

)

y α α

i j

i

l

i i j j i j

l l

i i i

i

i i

Maximize


 

   

   



 

       (16) 

Subject to  

 

*

1

*,

α α 0

α α 0,

l

i i

i

i

i C




 


 

                                 (17) 

The corresponding optimal decision function of (9) 

is shown as follows: 

   *

1

x α α K(x , x) b
l

i i i

i

f


                                  (18) 

A function can be used as a kernel function if and 

only if it satisfies the Mercer’s condition. 

From the above, we can see that SVR problem is a 

constrained quadratic programming problem. It is rather 

slow and computationally expensive for quadratic 

programming to converge to a solution. Therefore, we 

should introduce a parallel model to accelerate the 

computational procedure and the model should have the 

ability to process the network topology among 

distributed parallel nodes. 

3. Bulk Synchronous Parallel Model 

The BSP [19] model provides a simple framework for 

the design and programming of all kinds of general 

purpose parallel systems. Algorithms designed for such 

a model should be relatively easy to analyze and result 

in predictable, portable and efficient programs. 

A BSP computation proceeds in a series of global super-

steps. A super-step consists of three components, as the 

figure shows below: 

 Concurrent computation: several computations take 

place on every participating processor. Each 

process only uses values stored in the local memory 

of the processor. The computations are independent 

in the sense that they occur asynchronously of all 

the others. 

 Communication: The processes exchange data 

between themselves. This exchange takes the form 

of one-sided Put and Get calls, rather than two-

sided Send and Receive calls. 

 Barrier synchronization: When a process reaches 

the barrier, it waits until all other processes have 

finished their communication actions. 

The concept and idea of super-step in BSP model 

inspired us to take the BSP model into DPSVR. 

Because of the DPSVR algorithms using feedbacks 

to get global optimal, the communication network 

topology can be regarded as strong connected graph. So 

the BSP model solves the communication problem in 

our framework. 

4. BSP-Based Support Vector Regression 

Machine Framework 

4.1. Framework Description 

For the purpose of improving learning speed of SVR 

problem and overcoming the training difficulties under 

large-scale data, distributed parallel learning technology 

is an inevitable way. Simultaneously, because of the 

DPSVR algorithms which get global optimal using 

feedback and iteration, the communication network 

topology can be regarded as a strong connected graph. 

Therefore, the BSP model is adopted to solve the 

communication problem in DPSVR algorithms. 

Consequently, we proposed this framework on the basis 

of the SVR algorithm, strong connected graph theory 

and the BSP model. 

The framework could solve most of DPSVR 

algorithms, such as cascade SVR algorithm [8][9][10], 

gather SVR algorithm [7]. What’s more, it can solve 
 

Fig. 2.  Three components of a super-step[20]. 
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other DPSVR algorithms as long as the communication 

network topology of the algorithm among distributed 

nodes is a strong connected graph. The same as BSP 

model, our framework consists of a lot of super-steps. 

The concept of super-step in our framework is a unit 

of parallel iteration. It also contains three steps. First 

step, we use parallel training algorithm which based on 

data space decomposition to train SVR sub-problems in 

several nodes. Then, we pass the result set of SVs to 

some other nodes along the edge of strong connected 

graph. At last, we compare the difference between the 

SVs generated by super-step n and the SVs from super-

step n-1 with a given value in each node. If the 

difference is less than the given value, we would judge 

that the node votes for halt. The framework adopts the 

master-slave model to collect all of the halt information 

to judge whether the whole task is finished or needs a 

next super step. 

The framework takes the training samples and graph 

of network topology among the nodes as the input. In 

order to achieve initial training samples load balancing, 

we use rolling iterative strategy to divide the whole of 

training sample set.  

If the graph input is a dynamic change, the user need 

implement the dynamic graph-change API. The 

dynamic graph need contain a loop to cyculate in order 

to guarantee the graph being a strong connected graph. 

And the number of super-step in a loop period is used in 

deciding whether the task is finished or not. It will be 

shown with cascade SVM algorithm in Sect 5. The 

static strong connected graph can be seen as a special 

dynamic strong connected graph which the loop period 

of super-step is 1. The advantage of dynamic strong 

connected graph is that it can reduce the number of 

processing nodes. Take the example of 3-tier cascade 

SVR algorithm, it would take 15 nodes to process in 

static strong connected graph, but it only needs 8 nodes 

in dynamic version. It has been shown as follows:  

4.2. Strategy of Implementation Framework  

The BSP-Based Support Vector Regression Machine 

Parallel Framework is made up of master node and 

slave nodes. Each node is responsible for training the 

corresponding sub-task, passing the SVs derived from 

the sub-task and judging local task whether halt or not. 

And the regression model will be generated by the 

master node when master node collects the whole 

judging results and decides to terminate the task. The 

processing steps of framework are defined as follows: 

 Step1: Masker node gets the input data including 

training samples and the graph of network topology 

among the distributed nodes (static or dynamic); 

 Step2:  Each node reads corresponding training 

samples; 

 Step3: Each node reads the graph of network 

topology and dynamic changes the strong 

connected graph if it is necessary; 

 Step4: Each node generates the corresponding 

training sub-data; 

 Step5: Each node trains sub-data and obtains final 

decision function and support vectors; 

 Step6: Each node delivers the SVs along the edge 

of strong connected graph; 

 Step7: Each node gathers the SVs from other nodes. 

 Step8: Each node eliminates repetition SVs, and the 

remaining SVs would be added to next super-step 

training sub-data; 

 Step9: Each node judges whether halt or not 

according to difference between the SVs generated 

at this time and last time. 

 Step10: Masker node gathers the halt information 

from all nodes and decides if the task is finished or 

not. If not, go to Step 3 to do next super step; 

 Step11: Master node would generate regression 

model if the task is finished. 

The step 1 and step 2 are the initialization of the 

framework. The step 3 to step 9 constitute a super step, 

each super-step is a parallel computing process. After 

each super-step, the parallel framework will judge 

whether the result of this super-step is the global 

optimum. 

And, compared to the time complexity of computing 

sub-task 3 3( / )O N M , the time complexity of 

communication among distributed nodes O(NM)  is 

much more less. N is the size of training set, M is the 

number of computing nodes. In general, N is far more 

than M. So the framework could keep the performance 

of original algorithms when training set is in large scale. 

The flow diagram of framework is showed below: 

0 2 3 4 5 6 71

0 2 4 6

0 4

0

0 2 3 4 5 6 71

8 9 10 11

12 13

14

Dynamic cascade DPSVR 

topology graph

Static cascade DPSVR 
topology graph  

Fig. 3.  Static cascade DPSVR and Dynamic cascade DPSVR 

topology graph. 
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5. Experiment and Analysis 

5.1. Experiments Description 

The framework is implemented by C, C++ and MPI 

parallel library, and we employ four kinds of cross-

compiler including g++, gcc, mpic++, mpicc [21][22].  

The experiment data is from KDD99 [23], KDD99 are 

the safety audit datasets announced by Columbia 

University IDS laboratory led by professor Stolfo, 

which is from 1998 MITLL IDS datasets, and only 

include network traffic data. Since the KDD99 original 

dataset is too large (734MB) [23], considering the 

convenience of the experiment, [7][22] has selected part 

of datasets as experiment data from the original KDD99. 

Here, we use one datasets of them to experiment. The 

dataset details show in Table 1. 

Table 1.  Experimental Dataset. 

Dataset 

Name 

The Total 

Number of 

Records 

The Number 

of Normal 

Records 

The Number 

of Abnormal 

Records 

The Size 

of Dataset 

Dataset 190578 69865 120713 19.4 MB 

 

Experiment is implemented by two steps: 

 Step1: Parallel training datasets Dataset in different 

number of nodes and different algorithms, then we 

can obtain corresponding regression model; 

 Step2: Test each above-mentioned regression 

model by using testing dataset Dataset and give the 

corresponding testing result of each model; 

The graphs of network topology in algorithm used in 

the experiment are ring graph, full connected graph, 

gather graph, cascade graph. Taking 8 nodes as example, 

the graphs shows below: 

Dynamic change 
the strong 

connected graph

Dynamic change 
the strong 

connected graph
……

Dynamic change 
the strong 

connected graph

Computing 
sub-task

Computing 
sub-task

……
Computing 

sub-task

Obtain support 
vectors

Obtain support 
vectors

……
Obtain support 

vectors

Gather support 
vectors

Gather support 

vectors
……

Gather support 

vectors

SVs SVs SVsSVs SVs SVs SVsSVs

Eliminate 
repetition SVs

Eliminate 
repetition SVs

……
Eliminate 

repetition SVs

Judge halt Judge halt …… Judge halt

 Master node P0 decide if 
the task is finished or not?

Generate 
regression model

Yes

Dynamic change 
the strong 

connected graph

Dynamic change 
the strong 

connected graph
……

Dynamic change 
the strong 

connected graph

nonono no

The  training  samples and 
strong connected graph as 

input

The average distribution of 
sample set

Dynamic change 
the strong 

connected graph

Dynamic change 
the strong 

connected graph
……

Dynamic change 
the strong 

connected graph

 Master node P0 decide if 
the task is finished or not?

Generate 
regression model

Yes

nonono no

…… …… …… ……

Super Step 
1 ~ N-1

Super Step 
N

Super Step 
N+1

Node P0

generating sub-data

Node P1

generating sub-data ……
Node Pn-1

generating sub-data

 

Fig. 4.  BSP-Based Support Vector Regression Machine 

Framework. 
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Fig. 6.  Ring topology graph. 
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Fig. 5.  Ring topology graph. 
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Moreover, we present the expansibility and the 

dynamic changeability of our parallel framework in 

gather topology graph and cascade topology graph. It 

provides the graph-change API for changing the graph 

dynamic with the number of super-step. The graph has 

been expressed in programming language in the form of 

adjacency matrix. The value equals 1 in adjacency 

matrix position (i, j) means that node i would transmit 

SVs to node j in this super-step. Take the example of 8 

nodes cascade topology graph. In super-step 1, the 

adjacency matrix of cascade topology graph is: 

1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

C

 
 
 
 
 
 
 
 
 
 
 
 
 

 

And, in the super-step 2, the adjacency matrix of 
cascade topology graph has changed to: 

2

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Then, in the super-step 3, the adjacency matrix of 

cascade topology graph has changed to:  

3

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 
 
 
 
 
 
 

 

In the super-step 4, the adjacency matrix of cascade 

topology graph has changed to: 

4

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C

 
 
 
 
 
 
 
 
 
 
 
 
 

 

After reached and finished 4C  and it will go back to 
1C , it will loop this procedure. 

5.2. Experiments Results and Analysis 

In our study, we get the training time in the learning 

process through BSP-Based Support Vector Regression 

Machine Framework. According to the training dataset 

shown in Table 1, Table 2 gives final training results 

and the corresponding testing results of Step 2. In the 

experiments we choose Radial Basis Function kernel 

and set the parameters as follows. We set Penalty 

parameter C=1, kernel parameter σ=0.1 and Tolerance 

parameter ε=0.1[6]. In order to evaluate the 

performance of tests quantitatively evaluation indicators 

are defined as follows: 

 Detection Precision (DT): the correct number of 

detected records / the total number of records; 

 False Positive (FP): the number of records which 

are normal records being mistaken abnormal 

records / the number of normal records; 

0 2 3 4 5 6 7

0

1

 

Fig. 7.  Gather topology graph (dynamic). 
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Fig. 8.  Cascade topology graph (dynamic). 
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 False Negative (FN): the number of records which 

are abnormal records being mistaken normal 

records / the number of abnormal records. 

 Super-step N: the number of super-step has been 

executed during the training problem. 

The normal records are these normal TCP 

connection records. And the abnormal records are those 

network attack records. 

Results of the experiments demonstrate that the 

BSP-Based Support Vector Regression Machine 

Parallel Framework can implement most of DPSVR 

algorithms and have the ability to dynamically change 

the network topology. It is also proved that the 

framework has strong extensibility, and it is easy to 

program and test for new DPSVR algorithms. 

Table 2. Performances of training set Dataset    s:/seconds 

Nodes Algorithm Type Training Time /s DT FP FN Super-Step N 

1 Serial 667.75 0.9833 0.0017 0.0253 1 

4 Ring graph 650.17 0.9850 0.0019 0.0256 4 

4 Full connected graph 328.88 0.9833 0.0017 0.0253 2 

4 Gather graph 350.15 0.9833 0.0017 0.0253 3 

4 Cascade graph 351.74 0.9833 0.0017 0.0245 4 

8 Ring graph 942.07 0.9825 0.0018 0.0266 8 

8 Full connected graph 257.15 0.9833 0.0018 0.0251 2 

8 Gather graph 269.38 0.9833 0.0017 0.0253 3 

8 Cascade graph 268.55 0.9827 0.0017 0.0263 5 

12 Ring graph 1172.24 0.9823 0.0017 0.0269 12 

12 Full connected graph 247.24 0.9837 0.0019 0.0247 2 

12 Gather graph 258.47 0.9835 0.0018 0.0250 3 

12 Cascade graph 196.04 0.9828 0.0018 0.0260 5 

 

Table 2 shows that the result is global optimum 

when the input graph is strong connect graph. Because 

ring graph algorithm need to travel the whole graph, it 

performs less well in figure 9. And other algorithms 

have reduced the training time as the number of nodes 

increasing. The cost time of one super-step depends on 

 

Fig. 10.  Training time per super-step of 4 algorithms. 

 

Fig. 9.  Training time of 4 algorithms.. 
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the maximum time from all nodes. Therefore, in full 

connected graph SVR algorithm and gather graph SVR 

algorithm the SVs from all nodes will be added to one 

node at a super-step, the scale of training data in one 

node may be much bigger than the initial data. 

Consequently, the full connected graph SVR algorithm 

and gather graph SVR algorithm perform worse than 

cascade SVR algorithm in our dataset. And, the figure 

10 about training time per super-step also demonstrates 

it. With the number of nodes increasing, the training 

time does not decrease notably. It is also because of the 

training data from other nodes is equal or more than the 

initial local training data. This indicated that the parallel 

number of computing nodes is not the more the better. 

The number may be related to the ratio between the size 

of training set and the size of result SVs, the way that 

training set distributed, and so on. 

6. Discussion and Conclusions 

Above all, we have proposed a BSP-Based Support 

Vector Regression Machine Parallel Framework that is 

able to solve large-scale SVR training problems and it is 

free to choose appropriate DPSVR algorithm. Only if 

the graph input is a strong connect graph, the framework 

will output the global optimum. What’s more, we have 

implemented the API of graph-change to dynamic 

change the graph. It would be used to load balancing 

and other expansion.  

The results of experiment prove that our framework 

could adapt to most of DPSVR algorithms. Meanwhile, 

it could get the high precision in the regression and keep 

a good speedup of original algorithm. 

Furthermore, from the experiment result, we can 

comprehend that the time efficiency about DPSVR 

algorithm is related to the number of super-step and the 

maximum time in every super-step. The number of 

super-step depends on the strategy to terminate the task 

and the condition to halt in each node. The problem of 

maximum time in every super-step is about load 

balancing.  

Even though there is no perfectly DPSVR algorithm 

to solve the general SVR problem, we have the 

possibility to use this parallel framework to dynamically 

solve the general problem. 

Since the DPSVR algorithm’s time efficiency is in 

relation to the maximum time cost in every super-step 

and the number of super-step, our further research is 

going to investigate the load balancing between the 

super steps. For example, the framework running 

cascade algorithm will choose appropriate nodes and 

quantity to merge. In addition, we will explore the 

relationship between the appropriate number of nodes 

and the ratio between the size of training set and the size 

of result SVs. 
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