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Abstract 

A P-adic Exact Scientific Computational Library (ESCL) for rational matrix operations has been developed over 

the past few years. The effort has been focusing on converting all rational number operations to integer calculation, 

and fully taking advantage of the fast integer multiplication of modern computer architectures. In this paper, we 

report our progress on parallel implementation of P-adic arithmetic by means of a multiple modulus rational system 

related to the Chinese remainder theorem. Experimental results are given to illustrate computational efficiency. 

Keywords: Parallel computing, computational efficiency, error-free, P-adic, multiple modulus rational system, 

Chinese remainder theorem 

 

1. Introduction 

For the past several years, we have been developing P-

adic Exact Scientific Computational Library (ESCL) for 

rational matrix operations. Based on Krishnamurthy [1, 

2] and Dixon [3] theories, we have established a finite 

P-adic sequence calculation system [4-7]. But there is a 

problem that for certain complex matrix operations, 

even with small matrix sizes, the new method requires a 

long P-adic sequence to guarantee against overflow [6]. 

The longer the P-adic sequences are, the longer the 

calculation will take, and computational efficiency 

becomes an issue. One solution to this problem is to 

adopt parallel computing. It is difficult to realize 

parallel computation directly in P-adic arithmetic due to 

its data structure. If we combine the multiple modulus 

rational systems [8] and the P-adic arithmetic, then 

parallel computation can be realized, which was called 

multiple P-adic arithmetic by Morrison [9]. A similar 

idea was also mentioned by Limongelli, Loidl [10] and 

Koc [11]. This paper will be focused on parallel 

implementation of multiple P-adic arithmetic applied to 

rational matrices using P-adic exact computation. 

Overflow detection will also be addressed. Finally, 

comparison tests and experimental results will be 

presented.   

International Journal of Networked and Distributed Computing, Vol. 1, No. 3 (August 2013), 124-133

Published by Atlantis Press 
Copyright: the authors 

124

willieb
Typewritten Text

willieb
Typewritten Text
Received 24 January 2013

willieb
Typewritten Text
Accepted 9 May 2013

willieb
Typewritten Text



2. Multiple Modulus Rational System (Extended 

Chinese Remainder Theorem) 

2.1 Chinese remainder theorem (CRT) 

Recalling the Theorem (Chinese remainder theorem) [2, 

12], if               is the residue representation of an 

integer   with respect to moduli            , where, 

   (     )    for    , define   ∏   
 
    and   

 by 
 

  
  

          , then the solution of the system is 

given by 

  ∑
 

  

  
   

 

   

       

If the given condition is | |  
 

 
 , the value of   can be 

identified by: 

  {
                                      

                         
 

For example: 

          
          
          

According to the Chinese remainder theorem, 

     
  

    
  

    
  

    

            

If given condition | |  
 

 
 ,  

     

2.2 Extended Chinese remainder theorem to 

rational numbers [8] 

The Chinese remainder theorem deals with integers. It 

shows how to transform a large integer into sequence of 

small integers. There is also a way to transform a 

fractional number with large numerator and/or 

denominator into a sequence of small integers. This 

method has been named as multiple module number 

systems [8], which we like to call it the extended 

Chinese remainder theorem. 

2.2.1. How to calculate rational module 

For a rational number 
 

 
 with            , the 

calculation of  
 

 
       (       ) is defined as 

                          

2.2.2. How to decode from the extended Chinese 

remainder theorem [11] 

If                is the residue representation of a 

rational number   with respect to moduli             

where    (     )    for    , then the decoding 

algorithm is given as follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.3. How to identify the bound of the 

representation of a fraction number from the 

extended Chinese remainder theorem 

The proof process will be the same as “Decoding to 

Rational Form” part in Dixon’s paper [3].  

Define   
 

 
           and             , 

according to Dixon’s theory that if   satisfies    √  

(          is a root of         ), we can use 

the decoding algorithm to get the rational number back. 

For example, we choose   
 

 
 and              

  to check the decoding process: 

          

          

          

 

Decoding algorithm 

Step 1:  Chinese remainder theorem 

 𝑝  ∏ 𝑝𝑖
𝑠
𝑖   

 For 𝑖    to 𝑠 

 Using extended Euclidean algorithm  

 to find 𝑝𝑖
  by 

𝑝

𝑝𝑖
𝑝𝑖

    𝑚𝑜𝑑 𝑝𝑖  

 End 

 𝑟   
𝑝

𝑝𝑖
𝑝𝑖

 𝑟𝑖
𝑠
𝑖   𝑚𝑜𝑑 𝑝 

Step 2:  Euclidean algorithm 

𝑢−  𝑝, 𝑢0  𝑟  
 𝑣−   ,𝑣0    

 𝑖     

While 𝑢𝑖  √𝑝 

  𝑞𝑖   𝑢𝑖−  𝑢𝑖  
  𝑢𝑖+  𝑢𝑖−  𝑞𝑖𝑢𝑖 
  𝑣𝑖+  𝑣𝑖−  𝑞𝑖𝑣𝑖  
  𝑖    

 End 

Rational solution: 

 𝑟       𝑖𝑢𝑖 𝑣𝑖  
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Step 1: 

Using the Chinese remainder theorem, we get, 

       ̅     

Step 2: 

 By the Euclidean algorithm, we get,  

 −      −    

 0      0    

           

          

          

          

The rational solution is, 

  
 

 
 

3. Implementation of the Extended Chinese 

Remainder Theorem with P-adic Arithmetic 

By the nature of the extended Chinese remainder 

theorem, it can be implemented on parallel computers. 

The idea can be demonstrated as follows: 

Rational number entries

M
o
d
u
le b

y
 P

1

M
o
d
u
le b

y
 P

2

M
o
d
u
le b

y
 P

3

…
…

M
o
d
u
le b

y
 P

n

M
ath

em
atic alg

o
rith

m
 

C
alcu

late in
 G

F
(P

1
)

C
alcu

late in
 G

F
(P

2
)

C
alcu

late in
 G

F
(P

3
)

…
…

C
alcu

late in
 G

F
(P

n
)

Decoding back to rational number

 

Fig. 1. Extend CRT parallel implementation chart 

But in practice, there is a disadvantage of direct 

application. For a rational number  
 

 
 and a prime  , if    

and   are not relatively prime, we cannot get the result 

of 
 

 
      . The way to solve this problem is to 

combine Hensel code calculation systems with the 

extended Chinese remainder theorem. 

3.1.  P-adic (Hensel code) arithmetic [1, 4-6] 

Any rational number can be coded into P-adic sequence 

by the following algorithm.  
 

 
              

   and         ,                     can be 

written as       
  

       . 

The conversion process is the following: 

 

 

 

 

 

 

The P-adic sequence with point position   will have the 

following form: 

1 2 1 0 1 2

0 1 2

0 1 2

.                0

                      .                0

                      .000          0

n na a a a a a a for n

a a a for n

a a a for n

   





 

Conventionally, we write P-adic sequence as 

1

0

   point position = 

point position means the position of 

i n i na a n

a

  
 

For example, taking p = 3, for 1/5 and 2/5 the 5-adic 

expansions are, 

1
.2012101210...

5
  

2
.1121012101...

5
  

3.1.1. Addition/Subtraction  

The addition of P-adic is similar to the binary numeral 

addition. The difference is that P-adic addition process 

is calculating from left to right.  

For example of computing 
 

 
 

 

 
 

 

 
 for p = 5. 

 

 
              

 

 
            

In the process, the position of point should be kept in 

alignment. 

Step 1.      𝑝   𝑎0 

Step 2.      𝑎   𝑝, go to Step 1 to get 𝑎 . 

Continue Step 1 and Step 2, to get 𝑎𝑖  
Finally, α  𝑝𝑛   𝑎𝑖𝑝

𝑖 
𝑖 0   𝑎𝑖−𝑛𝑝

𝑖 
𝑖 𝑛  
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.140404040

.322222222

.413131313
 

We can check that the 5-adic of 

 

 
             

Subtraction can be considered as addition,  

           

3.1.2. Multiplication/Division  

The multiplication of P-adic is also similar to the 
binary numeral multiplication. The difference is also 
that P-adic multiplication is calculating from left to 
right. The point position of the result equals to: 

point1 + point2. 

For example of 
 

 
 

 

 
 

 

  
 with p = 5: 

1
.231313131

3

1
.140404040

6





 

The multiplication can be shown: 

                              .2313131313131 · · · 
                          × .1404040404040 · · ·  
                  ------------------------------------------ 
                              2313131313131 · · · 
                                331313131313· · ·  
                                  00000000000 · · · 
                                     3313131313 · · · 
                                       000000000 · · · 
                                         33131313 · · · 
                                            0000000 · · · 
                                              331313 · · · 
                                                00000 · · · 
                                                  3313 · · · 
                                                    000 · · · 
                                                      33 · · · 
                           +                           0· · · 
                   -------------------------------------------------

-- 
                                .2103341103341 · · · 

Check the result with 5-adic representation: 

1
.21033411033411.....

18
  

Division can be carried out as a multiplication 
process. First we use recursive method to get the inverse 
of the dividend then do multiplication. The point 
position for division equals to: 

point1 - point2. 

3.1.3. Hensel code 

The encoded P-adic sequence is usually infinite. The 
way to choose a finite P-adic sequence used in exact 
rational computation is called Hensel code arithmetic 
[1]. The Hensel codes are closed with respect to basic 
arithmetic operations (ADD/SUBTRACT) and 
(MULTIPLY/DIVIDE). 

For each Hensel code         ,   means the prime, 
  means the length of the P-adic sequence,   means the 
finite P-adic sequence. 

3.2. Combining P-adic arithmetic with the 

extended Chinese remainder theorem 

P-adic arithmetic can be combined with the extended 

Chinese remainder theorem to do exact computing. It 

was called multiple P-adic algorithm [9]. In each GF(  ) 

we can use finite P-adic sequence to do calculation, the 

flow chart is the following: 
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Fig. 2. Extended CRT combined with P-adic arithmetic for parallel 

implementation 

The decoding process: 

If               ,    is the Hensel code P-adic 

sequence with       0                           
respect to prime             . 

Published by Atlantis Press 
Copyright: the authors 

127



 

 

The residue representation                can be given 

as: 

                  ∑    
 

 

  0

 

where      
    

      
  . 

For example, if we choose the prime set as 

{2147483647, 2147483629, 2147483587} (the largest 

prime numbers smaller than square root of 2 to 64 

power, 64-bit CPU architecture,              ), 

we wish to obtain the reflexive general inverse of matrix 

A, given in the following example. For each GF( ) 

calculation, we choose the P-adic length as 2. The 

computation process is the following: 

The entry rational matrix, 

  [
  

      
  

] 

After modulo operations by   ,   ,   , we have the 

following P-adic matrices, 

             , 

   
 [

        
                                              

        
] 

              

   
 [

        
                                            

        
] 

              

   
 [

        
                                           

        
] 

Parallel calculation of each    under P-adic arithmetic to 

get the reflexive general inverse, the results: 

              

              

 [
                                               
                                               

] 

              

              

 [
                                              
                                              

] 

              

              

 [
                                               
                                               

] 

Decoding from the extended Chinese remainder 

theorem is the following: 

             [
         
         

]. 

4. Practical Considerations for the 

Implementation of Multiple P-adic Algorithm 

4.1. Advantages of multiple modulus arithmetic 

 There are three advantages of multiple P-adic algorithm 

as stated below.  

4.1.1.  Avoid the denominator problem 

For rational number 
 

 
 and prime  , if    and   are not 

relatively prime, we cannot calculate 
 

 
      . Because 

  is a prime, if    and   are not relatively prime, 

           . We can still get the finite P-adic 

sequence of  
 

 
, just the point position will be equal to  . 

4.1.2.  Increase the representation range 

With             ,   ∏   
 
   , for multiple module 

arithmetic, the bound for the representation of 

denominator and/or numerator will be  √  (   

        is a root of         ). While for 

multiple P-adic algorithm with each P-adic length is  , 

the bound will be  √  ,    ∏   
  

   . 

4.1.3.  Parallel data structure  

One of the important issues of finite P-adic arithmetic is 

to choose the P-adic sequence length    If the initial   is 

not long enough, Hensel code overflow will happen [6]. 

The P-adic sequence length   needs to be increased and 

the calculated results have to be discarded. On the other 

hand, for the multiple P-adic algorithm, when overflow 

happens, the calculated results can be kept. One should 

merely choose another prime    to continue the 

calculation, then combine the previously calculated 

results to convert back to the rational number by the 

extended Chinese remainder theorem. 

By the “natural” structure of the extended Chinese 

remainder theorem, multiple P-adic arithmetic can be 

realized through parallel computation. 

4.2. Choosing a prime  

How to choose the prime set             ? According 

to the theory, for a fixed   value, the larger    you 
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choose, the larger the bound that will result. But for 

computer architectures with 32 bit or 64 bit CPUs, when 

using the existing integer classes, the largest    should 

be chosen with respect to 46337 or 2147483647 to 

assure overflow protection [4]. This means that for a 32-

bit CPU architecture,         , while for a 64-bit 

CPU architecture,              . 

4.3. Overflow detection [6] 

Extended CRT overflow: For the extended CRT 

systems with the prime set           when a rational 

number  
 

 
        set                         , 

satisfies |   |   √    ∏   
 
    (           is a 

root of         ), the rational number, whose set 

cannot be uniquely recovered by the inverse 

transformation. We call this situation extended CRT 

overflow. One way to detect the overflow is to predict 

the bound, then decide the size of the prime set 

            by Newman [12]. Another way to detect 

overflow is to provide some extra digits [6]. This 

method can detect the overflow by using the prime set 
         and the residue number set itself. In this 

method, each number set should have some extra digits 

used for verification, the length is kept by k. 

With prime set               +      +  , for any 

rational number x, we get the set 

                 +          +  , we record it as: 

                +      +   

During the overflow detection process, it will be treated 

as  

    0       +    + ⏟      
                 

  

Notation: Decoding(x, i) and Decoding(X, i) will be 

used to donate decoding rational number set x and 

matrix X into rational number and rational number 

matrix by first i digits.  

Overflow happened, if: 

                              

Overflow did not happen, if: 

                              

For example, taking prime set               

              

             

Let the last one digit as verification part, 

Decoding(x, 3) = 18/29 

Decoding(x, 4) = 18/29 

But, 

Decoding(y, 3) = -34/37 

Which is not equal to: 

Decoding(y, 4) = -85/179 

By the overflow detection method, x=18/29 is correct, 

and for y, overflow happened. 

This method has not been perfectly proved yet, but has a 

highly practical usage. If the prime set and verification 

part k is chosen properly, there will be no errors. With 

the values of prime set 

             +      +   increase, the possibility of 

error-happening decreases. For fixed prime set value, 

with the increase of verification part k, the possibility of 

error-happening also decreases. The experiments 1 to 3 

will give support to this property. 

Experiment 1: 

Each time, the prime set          is fixed,   is 

continuous series of prime numbers. For each prime set, 

we randomly generate 10,000 rational number 
 

 
             |   |       . The size of prime set 

is 10, including verification part k = 1. When 

Decoding(x, i) = Decoding(x, i+k), but Decoding(x, 

i) 
 

 
, it is record as one error.  

 

Fig. 3. Verification park k = 1, sequence length fixed, the error 
percentage 
vertical axis: error percentage 
horizontal axis: the value of    

From Fig. 3, we can see when       , the error 

percentage is extremely low. If         , the error 

percentage goes to zero.  
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Experiment 2: 

Each time, the prime set          is fixed with the 

    ,    is continuous series of prime numbers. For 

each prime set, we randomly generate 10,000 rational 

numbers  
 

 
             |   |       . The size of 

prime set is growing with 1 for each time, with 

verification part k = 1. When Decoding(x, i) = 

Decoding(x, i+k), but Decoding(x, i) 
 

 
, it is record as 

one error.  

Fig. 4. Verification park k = 1, sequence length growing, the error 
percentage 
vertical axis: error percentage 
horizontal axis: the length of prime set 

From Fig. 4, when the size of prime set is greater than 

38, the error percentage goes to zero. 

Experiment 3: 

Each time, the prime set          is fixed with the 

    ,    is continuous series of prime numbers. For 

each prime set, we randomly generate 10,000 rational 

numbers  
 

 
             |   |       . The size of 

prime set is fixed with 30, and for each time, the 

verification part is growing with 1. When Decoding(x, i) 

= Decoding(x, i+k), but Decoding(x, i) 
 

 
, it is record 

as one error. 

Fig. 5. Sequence length fixed with the verification part growing, 
the error percentage 
vertical axis: error percentage 
horizontal axis: the length of k 

From Fig. 5, when the verification part is greater than 4, 

the error percentage goes to zero.  

In the above experiments 2 and 3, we chose small 

primes to show the effects of prime set size and 

verification size. In practice, we chose the largest 

primes possible based on the CPU architecture. For 64-

bit CPU architecture, we can choose primes close to 

2147483647. Then the prime set size that we should 

select needs to be multiple of number of CPU cores, and 

the verification part should be as small as possible, 

usually just to be1.   

4.4. Parallel programming  

The modern computer architecture utilizes multiple 

cores in the CPU. The parallel tasking design can 

significantly improve the efficiency of any computation. 

The multiple P-adic arithmetic has the natural property 

to realize parallel computation. The programming 

design can be described by the flowing flow chart: 
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Fig. 6. Multiple P-adic arithmetic implementation flow chart 
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The number of tasks, which will be the same as   from 

            , can be chosen with respect to the 

number of CPU cores to improve the efficiency. 

5. Implementation of Multiple P-adic Arithmetic 

on Matrix 

Our experiments were carried out on a typical laptop 

with Intel Core i5-2500 CPU as a parallel environment. 

The CPU has 4 cores for parallel processing. 

5.1. Moore-Penrose inverse [2] 

This algorithm is based on the Hermite theory [2], it is 

expressed as, 

 +             
−    

 + means the Moore-Penrose inverse of A (of order 

   ).    
− of          means the reflexive g-

inverse of  . 

Experiment 4: 

We generated random matrices with size from 3 by 3 to 

40 by 40, each element 
 

 
 satisfies |   |    . For 

Multiple P-adic arithmetic algorithm,      for  

               and for each p the sequence length is 

5. While for P-adic arithmetic, the sequence is 60. For 

each matrix size, we generated 30 simples. Both 

algorithms are used to calculate the Moore-Penrose 

inverse. 

We use NTL [15] to represent larger integers for the  

 experiments. The speed up is defined as:  

Speed-up Rate  
 −    

          −    
  

5.2. Polynomial method to calculate    [7, 13] 

For the calculation of    , the polynomial method  is: 

Transform a     matrix A into Lower Hessenberg 

form H, and get the transforming matrix T, 

 −      

Convert the lower Hessenberg matrix H to Frobenius 

form according to the formula of Wilkinson [3], 

 −      

Form a diagonal matrix D that is supposed to transform 

the matrix so that the sub-diagonal consists of 1s, 

 −      

After the three transforming steps, we get the Frobenius 

canonical form G, invertible matrix W and its inverse 

matrix   − , for which   −   −  −  − , W=TCD. 

Mostly,   will have the structure as the following: 

  

[
 
 
 
 
  0
    

   
    − 

   − ]
 
 
 
 

 

According to the Cayley-Hamilton theorem, 

    0          −  
 −  

And it follows that any power of A can be expressed in 

terms of         − : 

   ∑     
 

 − 

  0

 

Then    can be implied as the following: 

    ∑
    

  
 ∑

  

  
[∑     

 

 − 

  0

]

 

  0

 

  0

 ∑ [∑   

  

  

 

  0

]    ∑       
 

 − 

  0

 − 

  0

 

where      and     are expressed as, 

      ∑    
     

Fig. 7.  Moore-Penrose Inverse 

vertical axis: the average implementation time in second 

horizontal axis: the matrix size 
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 0  −   −          

    −   −    −   −          

 

 

Experiment 5: 

We generated random matrices with size from 3 by 3 to 

40 by 40, each element 
 

 
 satisfies |   |    . For 

Multiple P-adic arithmetic algorithm,      for  

               and for each p the sequence length is 

5. While for P-adic arithmetic, the sequence is 60. For 

each matrix size, we generated 30 simples. Both 

algorithms are used to calculate         with 100 

iterations. 

From the above two experiments, we can find that on 

the 4 cores CPU (Intel Core i5- 2500), the multiple P-

adic arithmetic algorithm will speed up about 2 to 4 

times based on the matrix sizes compared with that of 

direct P-adic arithmetic.  

 

 

Fig. 8. Polynomial method to calculate     
vertical axis: the average implementation time in second 

horizontal axis: the matrix size 

6. Efficiency Analysis and Conclusions 

Experiment 6: 

We generated random matrices with size from 3 by 3 to 

40 by 40, each element 
 

 
 satisfies |   |    . For the 

multiple P-adic arithmetic algorithm,              for  

               and for each p the sequence length is 

5. While for P-adic arithmetic, the sequence is 

             . For each matrix size, we generated 30 

simples. Both algorithms are used to calculate the 

Moore-Penrose inverse. 

We get the average of speed up rate ( 
 −    

          −    
 ) 

for each size s as shown in Figures 9 and 10. 

 

From Fig. 9, we can see that with the increase of the 

integer sequence length for multiple P-adic and P-adic 

sequences, we will have more advantage of the multiple 

P-adic arithmetic.  The reason is that as the length 

increase, the time complexity for P-adic arithmetic is 

     , while for Multiple P-adic arithmetic is     . 

 

 
Fig. 10. Speed up rate for s equal to 4, 5 and 8 

vertical axis: speed up rate value 

horizontal axis: the matrix size 

The CPU architecture can be an important part of the 

speeding up. From Fig. 9 and Fig. 10, we can see that if 

the length is a multiple of the number of CPU cores, the 

speed up is outstanding; while when the length is not a 

divisible number by CPU cores, such as 5 for a CPU 
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with four cores, the speed-up will be poor. Also, as the 

matrix sizes grow, the speed-up factor becomes even 

more significant.  
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