

Parallel Implementation of Exact Matrix Computation Using Multiple P-adic Arithmetic

Xinkai Li and Chao Lu

Department of Computer & Information Sciences

Towson University, 8000 York Rd

Towson, MD 21252, USA

E-mail: clu@towson.edu

Jon A. Sjogren

AFOSR/InPharmex LLC, Suite 715

2308 Mt. Vernon Ave.

Alexandria, VA 22301, USA

E-mail: jsjogren8424@yahoo.com

Abstract

A P-adic Exact Scientific Computational Library (ESCL) for rational matrix operations has been developed over

the past few years. The effort has been focusing on converting all rational number operations to integer calculation,

and fully taking advantage of the fast integer multiplication of modern computer architectures. In this paper, we

report our progress on parallel implementation of P-adic arithmetic by means of a multiple modulus rational system

related to the Chinese remainder theorem. Experimental results are given to illustrate computational efficiency.

Keywords: Parallel computing, computational efficiency, error-free, P-adic, multiple modulus rational system,

Chinese remainder theorem

1. Introduction

For the past several years, we have been developing P-

adic Exact Scientific Computational Library (ESCL) for

rational matrix operations. Based on Krishnamurthy [1,

2] and Dixon [3] theories, we have established a finite

P-adic sequence calculation system [4-7]. But there is a

problem that for certain complex matrix operations,

even with small matrix sizes, the new method requires a

long P-adic sequence to guarantee against overflow [6].

The longer the P-adic sequences are, the longer the

calculation will take, and computational efficiency

becomes an issue. One solution to this problem is to

adopt parallel computing. It is difficult to realize

parallel computation directly in P-adic arithmetic due to

its data structure. If we combine the multiple modulus

rational systems [8] and the P-adic arithmetic, then

parallel computation can be realized, which was called

multiple P-adic arithmetic by Morrison [9]. A similar

idea was also mentioned by Limongelli, Loidl [10] and

Koc [11]. This paper will be focused on parallel

implementation of multiple P-adic arithmetic applied to

rational matrices using P-adic exact computation.

Overflow detection will also be addressed. Finally,

comparison tests and experimental results will be

presented.

International Journal of Networked and Distributed Computing, Vol. 1, No. 3 (August 2013), 124-133

Published by Atlantis Press
Copyright: the authors

124

willieb
Typewritten Text

willieb
Typewritten Text
Received 24 January 2013

willieb
Typewritten Text
Accepted 9 May 2013

willieb
Typewritten Text

2. Multiple Modulus Rational System (Extended

Chinese Remainder Theorem)

2.1 Chinese remainder theorem (CRT)

Recalling the Theorem (Chinese remainder theorem) [2,

12], if is the residue representation of an

integer with respect to moduli , where,

 () for , define ∏

 and

 by

 , then the solution of the system is

given by

 ∑

If the given condition is | |

 , the value of can be

identified by:

 {

For example:

According to the Chinese remainder theorem,

If given condition | |

 ,

2.2 Extended Chinese remainder theorem to

rational numbers [8]

The Chinese remainder theorem deals with integers. It

shows how to transform a large integer into sequence of

small integers. There is also a way to transform a

fractional number with large numerator and/or

denominator into a sequence of small integers. This

method has been named as multiple module number

systems [8], which we like to call it the extended

Chinese remainder theorem.

2.2.1. How to calculate rational module

For a rational number

 with , the

calculation of

 () is defined as

2.2.2. How to decode from the extended Chinese

remainder theorem [11]

If is the residue representation of a

rational number with respect to moduli

where () for , then the decoding

algorithm is given as follows.

2.2.3. How to identify the bound of the

representation of a fraction number from the

extended Chinese remainder theorem

The proof process will be the same as “Decoding to

Rational Form” part in Dixon’s paper [3].

Define

 and ,

according to Dixon’s theory that if satisfies √

(is a root of), we can use

the decoding algorithm to get the rational number back.

For example, we choose

 and

 to check the decoding process:

Decoding algorithm

Step 1: Chinese remainder theorem

 𝑝 ∏ 𝑝𝑖
𝑠
𝑖

 For 𝑖 to 𝑠

 Using extended Euclidean algorithm

 to find 𝑝𝑖
 by

𝑝

𝑝𝑖
𝑝𝑖

 𝑚𝑜𝑑 𝑝𝑖

 End

 𝑟
𝑝

𝑝𝑖
𝑝𝑖

 𝑟𝑖
𝑠
𝑖 𝑚𝑜𝑑 𝑝

Step 2: Euclidean algorithm

𝑢− 𝑝, 𝑢0 𝑟
 𝑣− ,𝑣0

 𝑖

While 𝑢𝑖 √𝑝

 𝑞𝑖 𝑢𝑖− 𝑢𝑖
 𝑢𝑖+ 𝑢𝑖− 𝑞𝑖𝑢𝑖
 𝑣𝑖+ 𝑣𝑖− 𝑞𝑖𝑣𝑖
 𝑖

 End

Rational solution:

 𝑟 𝑖𝑢𝑖 𝑣𝑖

Published by Atlantis Press
Copyright: the authors

125

Step 1:

Using the Chinese remainder theorem, we get,

 ̅

Step 2:

 By the Euclidean algorithm, we get,

 − −

 0 0

The rational solution is,

3. Implementation of the Extended Chinese

Remainder Theorem with P-adic Arithmetic

By the nature of the extended Chinese remainder

theorem, it can be implemented on parallel computers.

The idea can be demonstrated as follows:

Rational number entries

M
o
d
u
le b

y
 P

1

M
o
d
u
le b

y
 P

2

M
o
d
u
le b

y
 P

3

…
…

M
o
d
u
le b

y
 P

n

M
ath

em
atic alg

o
rith

m

C
alcu

late in
 G

F
(P

1
)

C
alcu

late in
 G

F
(P

2
)

C
alcu

late in
 G

F
(P

3
)

…
…

C
alcu

late in
 G

F
(P

n
)

Decoding back to rational number

Fig. 1. Extend CRT parallel implementation chart

But in practice, there is a disadvantage of direct

application. For a rational number

 and a prime , if

and are not relatively prime, we cannot get the result

of

 . The way to solve this problem is to

combine Hensel code calculation systems with the

extended Chinese remainder theorem.

3.1. P-adic (Hensel code) arithmetic [1, 4-6]

Any rational number can be coded into P-adic sequence

by the following algorithm.

 and , can be

written as

 .

The conversion process is the following:

The P-adic sequence with point position will have the

following form:

1 2 1 0 1 2

0 1 2

0 1 2

. 0

 . 0

 .000 0

n na a a a a a a for n

a a a for n

a a a for n

   





Conventionally, we write P-adic sequence as

1

0

 point position =

point position means the position of

i n i na a n

a

  

For example, taking p = 3, for 1/5 and 2/5 the 5-adic

expansions are,

1
.2012101210...

5


2
.1121012101...

5


3.1.1. Addition/Subtraction

The addition of P-adic is similar to the binary numeral

addition. The difference is that P-adic addition process

is calculating from left to right.

For example of computing

 for p = 5.

In the process, the position of point should be kept in

alignment.

Step 1. 𝑝 𝑎0

Step 2. 𝑎 𝑝, go to Step 1 to get 𝑎 .

Continue Step 1 and Step 2, to get 𝑎𝑖
Finally, α 𝑝𝑛 𝑎𝑖𝑝

𝑖
𝑖 0 𝑎𝑖−𝑛𝑝

𝑖
𝑖 𝑛

Published by Atlantis Press
Copyright: the authors

126

.140404040

.322222222

.413131313

We can check that the 5-adic of

Subtraction can be considered as addition,

3.1.2. Multiplication/Division

The multiplication of P-adic is also similar to the
binary numeral multiplication. The difference is also
that P-adic multiplication is calculating from left to
right. The point position of the result equals to:

point1 + point2.

For example of

 with p = 5:

1
.231313131

3

1
.140404040

6





The multiplication can be shown:

 .2313131313131 · · ·
 × .1404040404040 · · ·
 --
 2313131313131 · · ·
 331313131313· · ·
 00000000000 · · ·
 3313131313 · · ·
 000000000 · · ·
 33131313 · · ·
 0000000 · · ·
 331313 · · ·
 00000 · · ·
 3313 · · ·
 000 · · ·
 33 · · ·
 + 0· · ·

--
 .2103341103341 · · ·

Check the result with 5-adic representation:

1
.21033411033411.....

18


Division can be carried out as a multiplication
process. First we use recursive method to get the inverse
of the dividend then do multiplication. The point
position for division equals to:

point1 - point2.

3.1.3. Hensel code

The encoded P-adic sequence is usually infinite. The
way to choose a finite P-adic sequence used in exact
rational computation is called Hensel code arithmetic
[1]. The Hensel codes are closed with respect to basic
arithmetic operations (ADD/SUBTRACT) and
(MULTIPLY/DIVIDE).

For each Hensel code , means the prime,
 means the length of the P-adic sequence, means the
finite P-adic sequence.

3.2. Combining P-adic arithmetic with the

extended Chinese remainder theorem

P-adic arithmetic can be combined with the extended

Chinese remainder theorem to do exact computing. It

was called multiple P-adic algorithm [9]. In each GF()

we can use finite P-adic sequence to do calculation, the

flow chart is the following:

Rational number entries

C
o
d
e to

 fin
ite P

1
-ad

ic

C
o
d
e to

 fin
ite P

2
-ad

ic

C
o
d
e to

 fin
ite P

n
-ad

ic

…
…

P
-ad

ic arith
m

etic in
 G

F
(P

1
)

P
-ad

ic arith
m

etic in
 G

F
(P

2
)

P
-ad

ic arith
m

etic in
 G

F
(P

n
)

…
…

Decoding back to rational number

M
ath

em
atic alg

o
rith

m

Fig. 2. Extended CRT combined with P-adic arithmetic for parallel

implementation

The decoding process:

If , is the Hensel code P-adic

sequence with 0
respect to prime .

Published by Atlantis Press
Copyright: the authors

127

The residue representation can be given

as:

 ∑

 0

where

 .

For example, if we choose the prime set as

{2147483647, 2147483629, 2147483587} (the largest

prime numbers smaller than square root of 2 to 64

power, 64-bit CPU architecture,),

we wish to obtain the reflexive general inverse of matrix

A, given in the following example. For each GF()

calculation, we choose the P-adic length as 2. The

computation process is the following:

The entry rational matrix,

 [

]

After modulo operations by , , , we have the

following P-adic matrices,

 ,

 [

]

 [

]

 [

]

Parallel calculation of each under P-adic arithmetic to

get the reflexive general inverse, the results:

 [

]

 [

]

 [

]

Decoding from the extended Chinese remainder

theorem is the following:

 [

].

4. Practical Considerations for the

Implementation of Multiple P-adic Algorithm

4.1. Advantages of multiple modulus arithmetic

 There are three advantages of multiple P-adic algorithm

as stated below.

4.1.1. Avoid the denominator problem

For rational number

 and prime , if and are not

relatively prime, we cannot calculate

 . Because

 is a prime, if and are not relatively prime,

 . We can still get the finite P-adic

sequence of

, just the point position will be equal to .

4.1.2. Increase the representation range

With , ∏

 , for multiple module

arithmetic, the bound for the representation of

denominator and/or numerator will be √ (

 is a root of). While for

multiple P-adic algorithm with each P-adic length is ,

the bound will be √ , ∏

 .

4.1.3. Parallel data structure

One of the important issues of finite P-adic arithmetic is

to choose the P-adic sequence length If the initial is

not long enough, Hensel code overflow will happen [6].

The P-adic sequence length needs to be increased and

the calculated results have to be discarded. On the other

hand, for the multiple P-adic algorithm, when overflow

happens, the calculated results can be kept. One should

merely choose another prime to continue the

calculation, then combine the previously calculated

results to convert back to the rational number by the

extended Chinese remainder theorem.

By the “natural” structure of the extended Chinese

remainder theorem, multiple P-adic arithmetic can be

realized through parallel computation.

4.2. Choosing a prime

How to choose the prime set ? According

to the theory, for a fixed value, the larger you

Published by Atlantis Press
Copyright: the authors

128

0.000%

0.020%

0.040%

0.060%

0.080%

0.100%

0.120%

0.140%

0.160%

3
3

4
7

7
6

9
1

2
3

7
1

7
3

3
2

2
6

9
2

7
7

7
3

3
4

3
3

8
8

1
4

4
5

1
5

0
1

1
5

6
2

3
6

1
9

9
6

7
8

1
7

4
1

1

choose, the larger the bound that will result. But for

computer architectures with 32 bit or 64 bit CPUs, when

using the existing integer classes, the largest should

be chosen with respect to 46337 or 2147483647 to

assure overflow protection [4]. This means that for a 32-

bit CPU architecture, , while for a 64-bit

CPU architecture, .

4.3. Overflow detection [6]

Extended CRT overflow: For the extended CRT

systems with the prime set when a rational

number

 set ,

satisfies | | √ ∏

 (is a

root of), the rational number, whose set

cannot be uniquely recovered by the inverse

transformation. We call this situation extended CRT

overflow. One way to detect the overflow is to predict

the bound, then decide the size of the prime set

 by Newman [12]. Another way to detect

overflow is to provide some extra digits [6]. This

method can detect the overflow by using the prime set
 and the residue number set itself. In this

method, each number set should have some extra digits

used for verification, the length is kept by k.

With prime set + + , for any

rational number x, we get the set

 + + , we record it as:

 + +

During the overflow detection process, it will be treated

as

 0 + + ⏟

Notation: Decoding(x, i) and Decoding(X, i) will be

used to donate decoding rational number set x and

matrix X into rational number and rational number

matrix by first i digits.

Overflow happened, if:

Overflow did not happen, if:

For example, taking prime set

Let the last one digit as verification part,

Decoding(x, 3) = 18/29

Decoding(x, 4) = 18/29

But,

Decoding(y, 3) = -34/37

Which is not equal to:

Decoding(y, 4) = -85/179

By the overflow detection method, x=18/29 is correct,

and for y, overflow happened.

This method has not been perfectly proved yet, but has a

highly practical usage. If the prime set and verification

part k is chosen properly, there will be no errors. With

the values of prime set

 + + increase, the possibility of

error-happening decreases. For fixed prime set value,

with the increase of verification part k, the possibility of

error-happening also decreases. The experiments 1 to 3

will give support to this property.

Experiment 1:

Each time, the prime set is fixed, is

continuous series of prime numbers. For each prime set,

we randomly generate 10,000 rational number

 | | . The size of prime set

is 10, including verification part k = 1. When

Decoding(x, i) = Decoding(x, i+k), but Decoding(x,

i)

, it is record as one error.

Fig. 3. Verification park k = 1, sequence length fixed, the error
percentage
vertical axis: error percentage
horizontal axis: the value of

From Fig. 3, we can see when , the error

percentage is extremely low. If , the error

percentage goes to zero.

Published by Atlantis Press
Copyright: the authors

129

0.000%

0.050%

0.100%

0.150%

0.200%

1
0

2
5

4
0

5
5

7
0

8
5

1
0

0

1
1

5

1
3

0

1
4

5

1
6

0

1
7

5

1
9

0

2
0

5

0.000%

5.000%

10.000%

15.000%

20.000%

1 3 5 7 9 11 13 15 17 19

Experiment 2:

Each time, the prime set is fixed with the

 , is continuous series of prime numbers. For

each prime set, we randomly generate 10,000 rational

numbers

 | | . The size of

prime set is growing with 1 for each time, with

verification part k = 1. When Decoding(x, i) =

Decoding(x, i+k), but Decoding(x, i)

, it is record as

one error.

Fig. 4. Verification park k = 1, sequence length growing, the error
percentage
vertical axis: error percentage
horizontal axis: the length of prime set

From Fig. 4, when the size of prime set is greater than

38, the error percentage goes to zero.

Experiment 3:

Each time, the prime set is fixed with the

 , is continuous series of prime numbers. For

each prime set, we randomly generate 10,000 rational

numbers

 | | . The size of

prime set is fixed with 30, and for each time, the

verification part is growing with 1. When Decoding(x, i)

= Decoding(x, i+k), but Decoding(x, i)

, it is record

as one error.

Fig. 5. Sequence length fixed with the verification part growing,
the error percentage
vertical axis: error percentage
horizontal axis: the length of k

From Fig. 5, when the verification part is greater than 4,

the error percentage goes to zero.

In the above experiments 2 and 3, we chose small

primes to show the effects of prime set size and

verification size. In practice, we chose the largest

primes possible based on the CPU architecture. For 64-

bit CPU architecture, we can choose primes close to

2147483647. Then the prime set size that we should

select needs to be multiple of number of CPU cores, and

the verification part should be as small as possible,

usually just to be1.

4.4. Parallel programming

The modern computer architecture utilizes multiple

cores in the CPU. The parallel tasking design can

significantly improve the efficiency of any computation.

The multiple P-adic arithmetic has the natural property

to realize parallel computation. The programming

design can be described by the flowing flow chart:

Rational number entries

Roughly

decide P set

G
enerate P

1-adic sequece by length

r

G
enerate P

n-adic sequece by length

r

…
...

…
...

G
enerate P

(n+
1)-adic sequece by

length r

G
enerate P

(n+
s)-adic sequece by length

r

M
athem

atic algorithm

C
alculate by P

-adic arithm
etic in

G
F

(P
1)

C
alculate by P

-adic arithm
etic in

G
F

(P
n)

…
...

…
...

C
alculate by P

-adic arithm
etic in

G
F

(P
n+

1)

C
alculate by P

-adic arithm
etic in

G
F

(P
n+

s)

Overflow

detection

No overflow happened

Overflow happened

Add more Pi

on P set

Print rational number results

Fig. 6. Multiple P-adic arithmetic implementation flow chart

Published by Atlantis Press
Copyright: the authors

130

The number of tasks, which will be the same as from

 , can be chosen with respect to the

number of CPU cores to improve the efficiency.

5. Implementation of Multiple P-adic Arithmetic

on Matrix

Our experiments were carried out on a typical laptop

with Intel Core i5-2500 CPU as a parallel environment.

The CPU has 4 cores for parallel processing.

5.1. Moore-Penrose inverse [2]

This algorithm is based on the Hermite theory [2], it is

expressed as,

 +
−

 + means the Moore-Penrose inverse of A (of order

).
− of means the reflexive g-

inverse of .

Experiment 4:

We generated random matrices with size from 3 by 3 to

40 by 40, each element

 satisfies | | . For

Multiple P-adic arithmetic algorithm, for

 and for each p the sequence length is

5. While for P-adic arithmetic, the sequence is 60. For

each matrix size, we generated 30 simples. Both

algorithms are used to calculate the Moore-Penrose

inverse.

We use NTL [15] to represent larger integers for the

 experiments. The speed up is defined as:

Speed-up Rate
 −

 −

5.2. Polynomial method to calculate [7, 13]

For the calculation of , the polynomial method is:

Transform a matrix A into Lower Hessenberg

form H, and get the transforming matrix T,

 −

Convert the lower Hessenberg matrix H to Frobenius

form according to the formula of Wilkinson [3],

 −

Form a diagonal matrix D that is supposed to transform

the matrix so that the sub-diagonal consists of 1s,

 −

After the three transforming steps, we get the Frobenius

canonical form G, invertible matrix W and its inverse

matrix − , for which − − − − , W=TCD.

Mostly, will have the structure as the following:

[

 0

 −

 −]

According to the Cayley-Hamilton theorem,

 0 −
 −

And it follows that any power of A can be expressed in

terms of − :

 ∑

 −

 0

Then can be implied as the following:

 ∑

 ∑

[∑

 −

 0

]

 0

 0

 ∑ [∑

 0

] ∑

 −

 0

 −

 0

where and are expressed as,

 ∑

Fig. 7. Moore-Penrose Inverse

vertical axis: the average implementation time in second

horizontal axis: the matrix size

0

2

4

6

8

10

12

14

3 7 11 15 19 23 27 31 35 39

P-adic

Multiple P-
adic
arithmetic

Published by Atlantis Press
Copyright: the authors

131

{

 0 − −

 − − − −

Experiment 5:

We generated random matrices with size from 3 by 3 to

40 by 40, each element

 satisfies | | . For

Multiple P-adic arithmetic algorithm, for

 and for each p the sequence length is

5. While for P-adic arithmetic, the sequence is 60. For

each matrix size, we generated 30 simples. Both

algorithms are used to calculate with 100

iterations.

From the above two experiments, we can find that on

the 4 cores CPU (Intel Core i5- 2500), the multiple P-

adic arithmetic algorithm will speed up about 2 to 4

times based on the matrix sizes compared with that of

direct P-adic arithmetic.

Fig. 8. Polynomial method to calculate
vertical axis: the average implementation time in second

horizontal axis: the matrix size

6. Efficiency Analysis and Conclusions

Experiment 6:

We generated random matrices with size from 3 by 3 to

40 by 40, each element

 satisfies | | . For the

multiple P-adic arithmetic algorithm, for

 and for each p the sequence length is

5. While for P-adic arithmetic, the sequence is

 . For each matrix size, we generated 30

simples. Both algorithms are used to calculate the

Moore-Penrose inverse.

We get the average of speed up rate (
 −

 −
)

for each size s as shown in Figures 9 and 10.

From Fig. 9, we can see that with the increase of the

integer sequence length for multiple P-adic and P-adic

sequences, we will have more advantage of the multiple

P-adic arithmetic. The reason is that as the length

increase, the time complexity for P-adic arithmetic is

 , while for Multiple P-adic arithmetic is .

Fig. 10. Speed up rate for s equal to 4, 5 and 8

vertical axis: speed up rate value

horizontal axis: the matrix size

The CPU architecture can be an important part of the

speeding up. From Fig. 9 and Fig. 10, we can see that if

the length is a multiple of the number of CPU cores, the

speed up is outstanding; while when the length is not a

divisible number by CPU cores, such as 5 for a CPU

0

100

200

300

400

500

600

3 8 13 18 23 28 33 38

P-adic

Multiple P-
adic
arithmetic

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3 6 9 12 15 18 21 24 27 30 33 36 39

4

8

12

0

0.5

1

1.5

2

2.5

3

3.5

3 6 9 12 15 18 21 24 27 30 33 36 39

4

5

8

Fig. 9. Speed up rate for s equal to 4, 8 and 12

vertical axis: speed up rate value

horizontal axis: the matrix size

Published by Atlantis Press
Copyright: the authors

132

with four cores, the speed-up will be poor. Also, as the

matrix sizes grow, the speed-up factor becomes even

more significant.

Acknowledgements

This research project is supported by the Air Force

Office of Scientific Research, FA9550-11-1-0315.

References

1. E. V. Krishnamurthy, “Matrix Processors Using P-

adic Arithmetic for Exact Linear Computations”, Vol.

C-26, No. 7, July 1977.

2. T. M. Rao, K. Subramanian and E.V. Krishnamurthy,

“Residue Arithmetic Algorithms for Exact

Gomputation of g-inverses of Matrices”, SIAM J.

NUMER. ANAL, Vol. 13, No. 2, pp. 155-171, April

1976.

3. J. D. Dixon, “Exact Solution of Linear Equations

Using P-adic Expansions”, Number. Math. 40, 137-

141(1982), Springer- Verlag.

4. X. Li, M, Zhao and C. Lu, “Efficient Algorithms and

Implementation for Error-free Computation Using P-

adic”, CSNI2011.

5. C. Lu, X. Li and L. Shan, “Periodicity of the P-adic

Expansion after Arithmetic Operations in P-adic

Field”, ACIS2012.

6. X. Li, C. Lu and J. A. Sjogren, “A Method for Hensel

Code Overflow Detection”, ACM SIGAPP Applied

Computing Review, Vol. 12, Issue 1, p. 6-11, 2012.

7. X. Li, M. Zhao, C. Lu and J. A. Sjogren,

“Implementation of the Polynomial Method to

Calculate Using P-adic”, Proceedings of the 2012

ACM Research in Applied Computation Symposium,

2012.

8. P. Kornerup and D. W. Matula, Finite Precision

Number Systems and Arithmetic, Cambridge

University Press, 2010.

9. J. Morrison, “Parallel P-adic computation, Information

Processing Letters”, Vol. 28, Issue 3, 1988.

10. C. Limongelli and H. W. Loidl, “Rational Number

Arithmetic by Parallel P-adic Algorithms”, Springer

Verlag, editor, Proc. Of Second International

Conference of the Austrian Center for Parallel

Computation (ACPC), Vol. 734 of LNCS, 1993.

11. C. K. Koc, “Parallel P-adic Method for Solving Linear

Systems of Equations”, Parallel Computing, Vol.

23(13), 1997.

12. M. Newman, “Solving Equations Exactly”,

Mathematics and Mathematical Physics, Vol. 71B, No.

4, Oct-Dec 1967.

13. C. Moler and C. V. Loan, “Nineteen Dubious Ways to

Compute the Exponential of Matrix”, Twenty-Five

Years Later, Society for Industrial and Applied

Mathematics, Vol. 45, No. 1, 2003.

14. C. Limongelli and R. Pirastu, “p-adic Arithmetic and

Parallel Symbolic Computation: An Implementation

for Solving Linear Systems”, Technical Report N. RT-

INF-1-1995.

15. V. Shoup, NTL library at: http://www.shoup.net/ntl/.

Published by Atlantis Press
Copyright: the authors

133

