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Abstract

A concept of asymptotic symmetry is introduced which is based on a definition of
symmetry as a reducibility property relative to a corresponding invariant ansatz. It is
shown that the nonlocal Lorentz invariance of the free-particle Schrödinger equation,
discovered by Fushchych and Segeda in 1977, can be extended to Galilei-invariant
equations for free particles with arbitrary spin and, with our definition of asymptotic
symmetry, to many nonlinear Schrödinger equations. An important class of solutions
of the free Schrödinger equation with improved smoothing properties is obtained.

1 Introduction

It is well-known that the maximal Lie invariance algebra of the free linear Schrödinger
equation in three spatial dimensions(

i�∂t +
�

2

2m
∆

)
ψ = 0, (1)

is the Schrödinger algebra sch(1, 3), a Lie algebra which contains the Galilei and dilation
algebras as well as some special conformal transformations [1–3]. It was quite surpris-
ing therefore, when Fushchych and Segeda [4] showed that equation (1) is also invariant
under an algebra of nonlocal pseudodifferential operators which is isomorphic to the Lie
algebra so(1, 3) of the three-dimensional homogeneous Lorentz group.
The purpose of the present work is to establish similar results concerning nonlocal

symmetry for some other equations of interest in mathematical physics. In particular, it
will be shown that linear Schrödinger equations with linear and quadratic potentials with
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arbitrary time-dependent coefficients and Hurley’s Galilei-invariant wave equations [5],
which describe free nonrelativistic quantum particles with arbitrary spin, are invariant
under related algebras of nonlocal pseudodifferential operators. The results on nonlocal
symmetries for linear Schrödinger equations with the potentials described above follows
from the fact that these equations can be transformed to the free Schrödinger equation (1)
and, therefore, inherit the nonlocal symmetry of the latter equation. The generators of the
respective nonlocal Lie algebras for these Schrödinger equations necessarily have different
representations than the generators of the algebras corresponding to equation (1), but the
algebras associated, respectively, with these different equations are isomorphic.
Analogous results to those for the linear Schrödinger equations mentioned above can

be obtained for some nonlinear Schrödinger equations (NSEs). Specifically, a subclass of
the family of NSEs proposed and discussed by Doebner and Goldin over the past sev-
eral years [6, 7] in connection with representations of diffeomorphism groups and the
corresponding Lie algebras of vector fields, as well as some related equations studied by
Auberson and Sabatier [8] have been shown to be linearizable; i.e., they can be mapped
by means of an appropriate change of variables to linear Schrödinger equations. In partic-
ular, the potential in the latter equation can be chosen to be identically zero so that the
solutions of these nonlinear equations can be related to the nonlocal invariant solutions of
equation (1). These results make the situation for these linearizable NSEs analogous to the
situation for linear Schrödinger equations with time-dependent linear and quadratic poten-
tials, where the isomorphism of the respective Lie algebras was first proved by Niederer [9]
for the linear Schrödinger equation with the usual (time-independent) harmonic oscilla-
tor potential. In the cases examined by Niederer, however, the Lie algebras were those
corresponding to the Schrödinger and oscillator groups whereas, in the present paper, we
consider isomorphisms for nonlocal Lie algebras.
Since the symmetries that we discuss are nonlocal, Lie’s approach is not adequate to

deal with them. A generalization of Lie’s method, suitable for linear partial differential
equations (PDEs), was suggested in [10] and is based upon the following commutator form
of invariance condition.

Definition 1.1. An operator Q is a symmetry of a linear system of PDEs

Lu = 0 (2)

if and only if [L,Q]u = 0 for each solution u of (2).

Note that there is no restriction on the order of the operator Q (unlike the situation
with Lie’s methods [11]). In fact, Q need not be a differential operator, but may also be a
pseudodifferential or integral operator. This non-Lie approach proved to be very effective,
and wide classes of new symmetries were discovered for many equations of mathematical
physics [12].
In the present paper we suggest an alternative symmetry criterion of invariance for

nonlocal operators which is also suitable for nonlinear equations.

Definition 1.2. We will say that an operator Q is a symmetry of a system of PDEs if
and only if a corresponding ansatz, obtained as a solution of the equation

Qu = 0, (3)

reduces the given system of PDEs.
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Remark. When Q is a (linear) pseudodifferential operator, one can construct an invariant
ansatz (solution of (3)) by means of a Fourier transform, as shown in [13] (see also [3],
Sec. 5.11).

We prove that certain classes of nonlinear Schrödinger equations (NSEs) have a similar
invariance when the time is larger than the squared modulus of the spatial variables in
a certain well-defined sense. This “asymptotic symmetry” is based upon Definition 1.2
when there does not exist an exact reduction of the given system of nonlinear PDEs by an
invariant ansatz, but there does exist such a reduction in a well-defined asymptotic sense.
(The precise definition will be given in Section 4.) This asymptotic symmetry situation
is somewhat reminiscent of the situation encountered in scattering theory in which a
solution of a nonfree equation approaches a solution of the corresponding free equation as
t → ±∞ (cf. [14]). This scenario has been established for some NSEs with power-type
nonlinearities [15]. In the present case, certain NSEs have a nonlocal asymptotic symmetry
which is an exact symmetry of the free Schrödinger equation.
As we shall discuss in more detail later, a number of authors have given Lie symmetry

analyses for the NSEs that we consider [3, 11]. However, since the symmetries of interest in
the present paper are nonlocal. Lie’s algorithm cannot be applied to them and a different
approach must be used to study them.
The paper is organized in the following manner. In Section 2 we discuss the results

for the free Schrödinger equation in further detail, extending the three-dimensional re-
sults of [4] to any spatial dimension n ≥ 2 and extending the nonlocal Lorentz-invariant
solutions of the free Schrödinger equation to a larger class of symmetries. Nonlocal sym-
metries of the type discussed in the present paper do not exist when n = 1. They are
phenomena peculiar to higher spatial dimensions. Similar results are obtained for the
three-dimensional Galilei-invariant free-particle wave equations of Hurley [5] for nonrela-
tivistic free quantum particles with arbitrary spin. We have found a new representation
of the Lorentz algebra for particles with arbitrary spin whose time evolution is described
by these equations. In particular, the spin contributions to the angular momentum oper-
ators do not satisfy the familiar angular momentum commutation relations, even though
the total angular momentum operators satisfy the correct commutation relations with
themselves and with the nonlocal generators.
In Section 3 we show that, since linear Schrödinger equations with linear and quadratic

(harmonic oscillator) potentials with arbitrary time-dependent coefficients can be trans-
formed to the free Schrödinger equation (1), they inherit the nonlocal symmetry of the
free equation. The corresponding nonlocal Lie algebras are isomorphic. Similar results
are then discussed for the linearizable Doebner-Goldin and Auberson-Sabatier NSEs.
In Section 4 we prove that several classes of NSEs possess nonlocal symmetries in an

asymptotic sense when the time variable is sufficiently large. The collection of NSEs
considered include several classes of standard type with power-type nonlinearities as well
as the families of NSEs proposed and discussed by Doebner and Goldin [6, 7], Bialynicki-
Birula and Mycielski [16], and Kostin [17]. Finally, Section 5 consists of some concluding
remarks.
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2 Free-particle equations

We first discuss the exact nonlocal symmetry of the free-particle Schrödinger equation, and
then consider analogous exact nonlocal symmetries for the Galilei-invariant wave equations
of Hurley.

Free-particle Schrödinger equations

We define the standard operators p0 ≡ i�∂t, pj ≡ −i�∂xj (j = 1, 2, . . . , n), and set

LS ≡ p0 − pjpj

2m
where, in the latter definition, the convention of summing over repeated

indices is used. Then the free-particle Schrödinger equation (1) takes the form LSψ = 0.
Consider the operators (j, k = 1, 2, . . . , n ≥ 2):

Jjk = xjpk − xkpj , (4a)

and

J0j =
1
2m

(f(p)Gj +Gjf(p)), (4b)

where

Gj = tpj −mxj , (4c)

p ≡
(

n∑
j=1

pjpj

)1/2

, and f denotes a smooth function.

One easily verifies that the Schrödinger operator LS is invariant under the operators (4)
since

[LS , Jjk] = 0 = [LS , J0j ], j, k = 1, 2, . . . , n. (5)

The operators (4) satisfy the following commutation relations:

[Jjk, Jqr] = i�(δrkJjq − δqkJjr + δqjJkr − δjrJkq), (6a)

[Jjk, J0q] = i�(δqjJ0k − δkqJ0j), (6b)

[J0j , J0k] = −i�
ff ′

p
Jjk, (6c)

(j, k, q, r = 1, 2, . . . , n ≥ 2) where f ′ ≡ f ′(p) =
df(p)
dp

. For f(p) = p, relations (6) are

commutation relations of the Lotentz Lie algebra [4]. When f(p) 	= p, the invariance
relations (5) are still valid. In this case, the operators {Jjk, J0q; j, k, q = 1, 2, . . . , n} still
form a Lie algebra isomorphic to the Lorentz algebra when f =

√
p2 + const. For other

choices of f , the operators {Jjk, J0q} do not form a Lie algebra although it is possible that
they could be embedded in a Lie algebra of larger dimension than the Lorentz algebra.
We will not consider this approach in the present paper.
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Using the symmetries (5), one can derive fundamental solutions ψ of LSψ = 0 which
are invariant under the operators (4) by requiring that Jjkψ = 0, J0qψ = 0 (j, k, q =
1, 2, . . . , n). In terms of the Fourier transform ψ̃ of ψ , this procedure leads to:

ψ̃(k, t) = cf(k)−1/2 exp
(
− itk2

2m�

)
, (7)

where k ≡
 n∑

j=1

kjkj

1/2

and c denotes a complex constant. This result was first obtained

(for the case f(k) = k) in [13]. In order to calculate the inverse Fourier transform of (7),
it is convenient to specify the function f . A convenient set of choices is:

Case I: f(k) = kα, 0 < α < 2n.

This reduces to the Lorentz case when α = 1. One finds from (7) (see [18] for a
derivation in the case α = 1):

ψ(x, r) = (2π�)−
n
2

∫
Rn

exp
(

i

�
k · x

)
ψ̃(k, t) dnk

=
( m

2πi�t

)n
2
−α

4 Γ
(

n
2 − n

4

)
Γ

(
n
2

) 1F1

(
n

2
− α

4
;
n

2
;
im|x|2
2�t

) (8)

(valid in all dimensions n ≥ 2 if 0 < α < 2n) in terms of the confluent hypergeometric
function 1F1, and we have chosen the constant c in (7) so that (8) reduces to the standard
Galilei-invariant fundamental solution

ψg(x, t) =
( m

2πi�t

)n
2 exp

(
im|x|2
2�t

)
(9)

when α = 0. For the case n = 3 and α = 1, one may use the recurrence relations for the
confluent functions and the well-known relations

1F1

(
ν +

1
2
; 2ν + 1; 2iz

)
= Γ(1 + ν)eiz

(z

2

)−ν
Jν(z)

to write (8) in terms of Bessel functions (see [13, 3]):

ψ(x, t) =
i
1
4π

3
4

2

( m

2πi�t

) 3
2 exp

(
im|x|2
4�t

)
|x| 12

[
J− 1

4

(
m|x|2
4�t

)
+ iJ 3

4

(
m|x|2
4�t

)]
, (10)

Similarly, when α = n ≥ 2 the same relation between 1F1, and Jν given above can be used
to write (8) in the following Bessel function form:

ψ(x, t) =
√
π

2
n
2
−1

( m

2πi�t

)n
4 exp

(
im|x|2
4�t

) (
m|x|2
8�t

)−(n
4
− 1

2)
Jn

4
− 1

2

(
m|x|2
4�t

)
,

where the following well-known relation between Γ functions has also been used:

Γ(z)Γ
(
z +

1
2

)
=

√
πΓ(2z)
22z−1

.
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We note that, when n is a multiple of 4, the Bessel function in the above expression can
be further simplified to a combination of sine, cosine, and algebraic functions.
The fact that the fundamental solutions (8) have a slower time decay, t−(−

n
2
−α

4 ) than
the corresponding Galilean result (9), which is seen to be t−

n
2 , was discussed in [18] for

the case α = 1. The point was made that, although this property makes (8) unacceptable
for use in quantum mechanics (when used as a kernel analogously to the usual use of the
Galilean fundamental solution (9)) because the standard probability interpretation for
the wave functions of free nonrelativistic particles is not obtained; its use may actually be
more desirable than (9) for mathematical applications because of the smoothing properties
which the linear operators that are constructed from them possess. (Analogous operators
constructed from (9) do not have such smoothing properties.)
One advantage of considering the cases α 	= 1 of Case I is that the corresponding

convolution mappings formed from (8) or (10) have improved smoothing properties as
α increases. Thus, generalizing the discussion in [18] for the case α = 1, we define the
mappings Gn : g → Gn(α)g:

(Gn(α)g)(x, t) = (2π�)−
n
2

∫
Rn

exp
(

i

�
k · x

) (|k|2)−α
4 exp

(
− it|k|2
2m�

)
g̃(k) dk,

and deduce that the mapsGn(α) are smoothing in the sense thatGng have
α

2
(distribution)

derivatives if g ∈ L2 (Rn) (n ≥ 2).
The above argument shows that the smoothing properties of mappings on L2 con-

structed with the fundamental solutions (8) or (10) increase as α increases. However,
since f(p) = pα of Case I only increases algebraically with α, and α is bounded above
by 2n, the smoothing properties are limited. This suggests that one consider functions f
of exponential type in the variable k2:

Case II: f(k) = exp
(
2β|k|2), (n ≥ 2).

In this case, the corresponding mappings Gn have much improved smoothing properties
because Gn : L2 (Rn) → Lq (Rn) for all q ∈ [2,∞). In addition, it turns out that the
corresponding fundamental solutions (i.e., the inverse Fourier transforms of (7)) have the
same asymptotic time decay as t → +∞ as the Galilean fundamental solutions (9):

ψ(x, t) = c

(
2�β +

it

m

)−n
2

exp

(
− |x|2
4�2

(
β + it

2m�

))
. (11)

The fact that the functions (11) have the same asymptotic decay as the Galilean funda-
mental solutions (9) is explained by the fact that the former correspond to imaginary time
translations of the latter: ψ(x, t) = ψg(x, t− 2mi�β) with the choices c = (2π�)−

n
2 for the

constant in (11). The increase in smoothness of the mappings Gn associated with (11)
relative to those associated with (9) is intimately connected with the fact that the time
translations leading from (9) to (11) are imaginary.

Free-particle wave equations for arbitrary spin

According to the principles of quantum mechanics, a wave function which represents a

free nonrelativistic particle with spin s =
1
2
, 1,

3
2
, . . . should have 2s+ 1 components. The
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equations obtained by Hurley [5]:

LHψ ≡


i�∂tI2s+1 − 1

�s
S · p − 1

�s
K∗ · p

1
2m�s

S · p I2s+1 02s+1,2s−1

i

2m�s
K · p 02s−1,2s+1 I2s−1


 ψ

χ
Ω

 = 0, (12)

are a system of 6s+1 equations in which the first row in (12) gives the equations of motion
for the (2s + 1)-component wave function ψ and the remaining two rows are equations
of constraint defining the redundant functions χ (2s + 1 components) and Ω (2s − 1
components) in terms of ψ. Sj and Kj (j = 1, 2, 3) are spin matrices with dimensions
(2s + 1) × (2s − 1), (2s − 1) × (2s + 1), respectively, and can be chosen to satisfy the
following relations [5] (with K∗ the adjoint of K and εijk the completely antisymmetric
Levi-Civita symbol):

SiSj +K∗
i Kj = is�εijkSk + �

2s2δij . (13)

The symbol Im denotes the m-dimensional unit matrix, and 0ab denotes the zero matrix
with a rows and b columns. Equations (12) reduce to the equations derived by Levy-

Leblond [19] when s =
1
2
and by Hagen [20] when s = 1. They are Galilei invariant

by construction. For convenience in the demonstration of nonlocal invariance of equa-
tions (12) in the discussion to follow, we have used a different normalization than Hurley.
By substituting the equations of constraint (the second and third rows of (12)) into

the equations of motion for ψ (first row of (12)), and using (13), one finds that each
component of ψ satisfies equation (1). In order to establish the nonlocal symmetry of
equations (12), we define new representations of the commutation relations (6). Thus, in
place of the operators (4), we define (with j, k = 1, 2, 3):

J̃jk = (xjpk − xkpj)I6s+1 − 1
m
(λjpk − λkpj), (14a)

and

J̃0j =
1
2m

(f(p)G̃j + G̃jf(p)), (14b)

where

G̃j = (tpj −mxj)I6s+1 + λj , (14c)

with

λj =


02s+1,2s+1 02s+1,2s+1 02s+1,2s−1

1
2s

Sj 02s+1,2s+1 02s+1,2s−1

1
2s

Kj 02s−1,2s+1 02s−1,2s−1

 . (14d)

Then, using (13), one verifies that solutions of (12) are invariant under the operators (14)
in the sense that [LH , ϑ]ψ = 0 when LHψ = 0, with ϑ = J̃jk, J̃0j (j, k = 1, 2, 3) and that
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{J̃jk, J̃0j ; j, k = 1, 2, 3} satisfy the commutation relations (6) with {Jjk, J0j} replaced by
{J̃jk, J̃0j}, respectively.
We can now construct solutions of (12) in the form

ψ = column
(
ψ,− i

2m�s
S · pψ,− i

2m�s
K · pψ

)
(15)

with ψ(x, t) = β(t)F (x, t), where β(t) has 2s + 1 components and F (x, t) is a (scalar)
solution of (1). Then, inserting (15) into (12) and using (13), we infer that the components
of β must be constant. In particular, F (x, t) can be taken as the invariant solution (10).
However, in order to write the solutions (15) in complete detail, one needs representations
for the spin matrices Sj and Kj (j = 1, 2, 3). Examples of these are given in [5].
Finally, we note that the operators J̃0j defined in (14b)–(14d) are pseudodifferential

operators and that the terms − 1
m
(λjpk − λkpj) (j, k = 1, 2, 3) in (14a), which play the

role of spin angular momenta in the present case, are noncanonical in the sense that they
do not satisfy the usual angular momentum commutation relations. Thus, they do not
generate the usual representations of the three-dimensional rotation group corresponding
to spin s. Nevertheless, as we noted above, the operators {J̃jk, J̃0j ; j, k = 1, 2, 3} satisfy
the correct commutation relations.

3 Nonfree equations possessing exact nonlocal Lorentz sym-
metries

In this section we discuss how the exact nonlocal symmetry of free-particle equations,
discussed in the preceding section, can be extended to some nonfree equations which
describe interactions between particles. The existence of nonlocal symmetries for these
equations follows from the fact that appropriate Lie algebras can be constructed which

are isomorphic to the Lie algebra formed by the operators in equations (6) with
ff ′

p
= 1.

We discuss this situation for two cases: (1) linear Schrödinger equations with linear and
quadratic potentials (with arbitrary time-dependent coefficients), and (2) some classes of
nonlinear Schrödinger equations.

Linear Schrödinger equations with linear and quadratic potentials

The symmetry properties of these equations have been well-studied, especially in one space
dimension. We refer to a recent discussion of the latter case in the context of coherent
states and squeezed states [21], from which many references may be traced.
Our approach to these equations is based on the fact that they can be transformed

to the free Schrödinger equation (1). The results are analogous to those obtained by
Niederer [9] for linear Schrödinger equations with time-independent harmonic oscillator
potentials which showed that the Lie algebras of the oscillator and Schrödinger groups
are isomorphic. Our transformation results generalize the treatment of Niederer and are
a direct extension of those of Truax [22], Bluman [23], and of Bluman and Shtelen [24]
for the case of one spatial dimension. However, our objective is different than that of the
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authors cited above in that we are interested in algebras of nonlocal symmetries rather
than in algebras of point transformations.
For Schrödinger equations of the form:

i�∂tψ(x, t) +
�

2

2m
∆ψ(x, t) =

(
a(t)|x|2 + bj(t)xj + c(t)

)
ψ(x, t), (16)

with |x|2 =
n∑

j=1

xjxj for n ≥ 1, where a, bj (j = 1, 2, . . . , n), and c are arbitrary functions

of t, we define the following transformation:

ψ(x, t) = exp
(
− i

�

(
A(t)|x|2 +Bj(t)xj + C(t)

))
u(y, τ), (17a)

with

τ(t) =
∫ t

σ2(µ) dµ, yj = σ(t)xj + ρj(t), (17b)

where σ(t), A(t), C(t), ρj(t), and Bj(t) (j = 1, 2, . . . , n) are to be expressed in terms of
a(t), bj(t) (j = 1, 2, . . . , n), and c(t). By substitution of (17) into (16), one can choose the
former coefficients so that (16) reduces to equation (1) for the function u(y, τ):

i�∂τu(y, τ) +
�

2

2m
∆yu(y, τ) = 0.

For the standard harmonic oscillator: a =
1
2
mω2, bj = 0 (j = 1, 2, . . . , n), c = 0; (17)

reduces to the transformation obtained by Niederer:

ψ(x, t) = (sec(ωt))
n
2 exp

(
− imω

2�
tan(ωt)|x|2

)
u(y, τ), (18)

with yj = sec(ωt)xj (j = 1, 2, . . . , n) and τ =
1
ω
tan(ωt). By taking u(y, τ) to be the

Galilean fundamental solution (9) expressed in the y, τ variables, one obtains the standard
fundamental solution for the harmonic oscillator ([9] and [25], p.63). In a similar manner,
we can use the mapping (18) to obtain nonlocal invariant solutions by taking for u(y, τ)
the nonlocal invariant solution (8) of equation (1):

u(y, τ) =
( m

2πi�τ

)n
2
−α

4 Γ
(

n
2 − α

4

)
Γ

(
n
2

) 1F1

(
n

2
− α

4
;
n

2
;
im|y|2
2�τ

)
, n ≥ 2,

and obtain

ψ(x, t) =
(

mω

2πi� sin(ωt)

)n
2

(
mω tan(ωt)

2πi�

)−α
4 Γ

(
n
2 − α

4

)
Γ

(
n
2

)
× exp

(
− imω

2�
tan(ωt)|x|2

)
1F1

(
n

2
− α

4
;
n

2
;

imω|x|2
� sin(2ωt)

)
.
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Remark. An explicit form for the generators of the Lorentz algebra for the harmonic
oscillator is as follows:

Ĵ0j =
1

2mω

(
p̂Ĝj + Ĝj p̂

)
, p̂ ≡

 n∑
j=1

p̂ip̂i


1
2

, n ≥ 2,

where

p̂j = cos(ωt)pj −mω sin(ωt)xj ,

and

Ĝj = − sin(ωt)pj −mω cos(ωt)xj , j = 1, 2, . . . , n,

in terms of the same coodinates xj , and momentum operators pj used in Section 2. We
use the same angular momentum operators Jik (j, k = 1, 2, . . . , n) as defined in (4a) and
obtain the following commutation relations in place of (6b), (6c) for the free case:

[Jjk, Ĵ0q] = i�(δqj Ĵ0k − δqkĴ0j),

[Ĵ0j , Ĵ0k] = −i�Jjk, j, k = 1, 2, . . . , n ≥ 2.

We derive similar results for linear potentials by setting a = 0, c = 0, bj 	= 0 (j =
1, 2, . . . , n ≥ 1) and obtain mappings of solutions of (1) onto solutions of (16):

ψ(x, t) = exp
(
− i

�

(
tbjxj +

|b|2t3
6m

))
u(y, τ);

yj = σxj +
σt2

2m
bj , (j = 1, 2, . . . , n) τ = σ2t.

σ = const; and mappings of nonlocal invariant fundamental solutions (with n ≥ 2):

u(y, τ) =
( m

2πi�σ2t

)n
2
−α

4 Γ
(

n
2 − α

4

)
Γ

(
n
2

) 1F1

(
n

2
− α

4
;
n

2
;
im|x|2
2�t

+
it

2�
bjxj +

i|b|2t3
8m�

)
,

ψ(x, t) =
( m

2πi�σ2t

)n
2
−α

4 Γ
(

n
2 − α

4

)
Γ

(
n
2

) exp
(
− i

�

(
tbjxj +

|b|2t3
6m

))

× 1F1

(
n

2
− α

4
;
n

2
;
im|x|2
2�t

+
it

2�
bjxj +

i|b|2t3
8m�

)
,

Similar results can be given for the case of a harmonic oscillator driven by an external

force fj(t) (j = 1, 2, . . . , n), for which a =
1
2
mω2 = const and bj = −fj , whose Galilean

fundamental solutions were given in [25]. However, since the expressions obtained are
somewhat unwieldy, we shall not give those results here.
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Nonlinear Schrödinger equations with exact nonlocal symmetry

Doebner and Goldin [6, 7] considered a class of nonlinear Schrödinger equations which
were suggested by their studies of dissipative quantum theory based on group theoretic
considerations relating to groups of diffeomorphisms on Euclidean spaces and the corre-
sponding Lie algebras (algebras of vector fields). Related equations were considered earlier
by Sabatier [26] and subsequently by Auberson and Sabatier [8] and by Auberson [27].
We first consider a subclass of the Doebner-Goldin (DG) equations which are lin-

earizable in the sense that they can be mapped to linear Schrödinger equations by point
transformations. The nonlocal symmetry of the linearizable DG equations follows from
the isomorphy of the Lie algebras of these equations with the nonlocal Lie algebras of
linear Schrödinger equations.
The DG equations can be written in the form:

i�ψt =
(
− �

2

2m
∆+ V (x, t)

)
ψ +

i�D

2
R2(ψ,ψ)ψ + �D′

5∑
j=1

cjRj(ψ,ψ)ψ, (19)

where D and D′ denote constant diffusion coefficients, and the real-valued nonlinear
functionals Rj(ψ,ψ) (j = 1, 2, 3, 4, 5) are given by:

R1(ψ,ψ) =
∇ · j̃
ρ

, R2(ψ,ψ) =
∆ρ

ρ
, R3(ψ,ψ) =

j̃2

ρ2
,

R4(ψ,ψ) =
j̃ · ∇ρ

ρ2
, R5(ψ,ψ) =

(∇ρ)2

ρ2
,

(20)

where ρ = ψψ, and j̃ is related to the usual probability current density j by

j̃ =
m

�
j =

1
2i
(ψ∇ψ − ψ∇ψ).

Lie symmetry analyses of these equations have been discussed by several authors [28–30].
References to discussions of analogous equations by other authors can be found in [7].
It was pointed out by Doebner and Goldin that the subfamily of their equations (19),

(20) defined by the following relations between the coefficients D, D′, cj (j = 1, 2, 3, 4, 5):

D = D′c1 = −D′c4; D′(c2 + 2c5) = D′c3 = 0, (21)

are linearizable and that the corresponding solutions can be constructed from solutions of
linear Schrödinger equations by means of “nonlinear gauge transformations” (see also [28]).
The nonlinear gauge transformations of DG are given by:

ψ → ψ′ = N(ψ) = |ψ| exp
(
i[γ ln |ψ|+ ΛArgψ]

)
, (22)

with γ, Λ real numbers (and Λ 	= 0). Doebner and Goldin show that, given the rela-
tions (21) among the coefficients, if ψ is a solution of (19), (20); then ψ′ = N(ψ) is a
solution of the following linear Schrödinger equation:

i�

Λ
ψ′

t = − �
2

2mΛ2
∆ψ′ + V (x, t)ψ′, (23)
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when

Λ =
(
1− 4m

�
D′c2 − 4m2D2

�2

)− 1
2

and

γ = −2mDΛ
�

, (24)

provided that
4m
�

D′c2 +
4m2D2

�2
< 1. Since the gauge transformations satisfy the group

law Nγ1,Λ1 • Nγ2,Λ2 = Nγ1+Λ1γ2,Λ1Λ2 , the gauge transformations inverse to (22) are given
by:

ψ = N−1(ψ′) = |ψ′| exp (
i
[−Λ−1γ ln |ψ′|+ Λ−1Argψ′]) . (25)

This mapping is analogous to the mapping (17) which transforms solutions of the free
Schrödinger equation to solutions of the linear Schrödinger equation with linear or quad-
ratic potentials.
For the case when the potential V is identically zero, ψ′ is a solution of the free

Schrödinger equation with the mass m replaced by the “effective mass” mΛ. For ex-
ample, we may take the solution analogous to (8):

ψ′(x, t) =
(

mΛ
2πi�t

)n
2
−α

4 Γ
(

n
2 − α

4

)
Γ

(
n
2

) 1F1

(
n

2
− α

4
;
n

2
;
imΛ|x|2
2�t

)
(26)

for 0 < α < 2n and n ≥ 2. More generally, one can also consider mappings from solutions
of the DG equations (19), (20) to solutions of a linear Schrödinger equation with one
of the potentials discussed in the first part of this section and then map to solutions of
the free Schrödinger equation by using the results discussed there. The composition of
this sequence of mappings yields transformations of solutions of (19), (20) to solutions of
free Schrödinger equations without the necessity of assuming that the linear potential in
the DG equations is identically zero.
Auberson and Sabatier [8] (AS) considered the following NSE (for convenience, we set

� = 1 and 2m = 1):

iψt(x, t) = (−∆+ V )ψ(x, t) + s
∆|ψ|
ψ

ψ(x, t), (27)

where s is a real parameter. For s < 1 AS use the following linearization transformation:

ψ = |ψ| exp(−iθ), t = (1− s)−
1
2 t′, θ(x, t) = (1− s)

1
2 θ′(x, t′), (28)

which transforms equation (27) to the following linear Schrödinger equation:

iψ′
t′(x, t

′) = −∆ψ′(x, t′) + (1− s)−1V (x)ψ′(x, t′)

for the quantity

ψ′(x, t′) =
∣∣∣ψ (

x, (1− s)−
1
2 t′

)∣∣∣ exp(−iθ′(x, t′)). (29)
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AS also linearize (27) when s ≥ 1, but the linear equations thereby obtained are not
Schrödinger equations so we shall not discuss them.
If we consider invariant solutions analogous to (26) for (29):

ψ′(x, t′) = (4πi�t′)−(
n
2
−α

4 ) Γ
(

n
2 − α

4

)
Γ

(
n
2

) 1F1

(
n

2
− α

4
;
n

2
;
i|x|2
4t′

)
,

then the corresponding invariant solutions of (27) are obtained from (28).
As a consequence of the analogies between the inverse gauge transformation (25) of

the DG equations or of the linearization transformation (29) of the AS equation with the
transformation (17) between solutions of the free Schrödinger equation and solutions of
linear Schrödinger equations with linear or quadratic potentials, we see that the symmetry
algebras corresponding, respectively, to the free Schrödinger and to the linearizable DG
or AS equations are isomorphic.

4 Asymptotic symmetry

For general nonlinear Schrödinger equations, one does not expect the nonlocal symmetries
for the equations discussed in the preceding sections to extend in an exact form because
those results depended on the fact that the equations were either linear or linearizable.
Lie’s algorithm [3, 11] gives a general method for the investigation of local symmetries
and solutions of differential equations, including nonlinear ones; and this method has
been applied to many types of equations, both linear and nonlinear. However, as we
have noted in the Introduction, since the symmetries that we are discussing are nonlocal
and are defined in terms of pseudodifferential, rather than differential, operators; Lie’s
approach and related techniques are not adequate to deal with them. Because of this
difficulty of extending nonlocal symmetries to general nonlinear equations, we propose to
use a definition of symmetry based on a reducibility property (see Definition 1.2 and the
discussion below). When there is no exact reducibility, we introduce a weaker concept of
asymptotic symmetry.

Power-type nonlinearities

Consider an NSE of the form

i∂tψ +
1
2m

∆ψ = F
(
ψ,ψ, ∂xjψ, ∂xjψ, ∂

2
xixj

ψ, ∂2
xixj

ψ
)

(30)

(i, j = l, 2, . . . , n), where the nonlinear function F depends in general on the solution ψ, its
complex conjugate ψ, derivatives of these functions through the second order and, unless
a statement is made to the contrary, we set � = 1 in the present section.
Following Definition 1.2, we will say that an operator Q is a symmetry of equation (30)

if and only if the corresponding ansatz, obtained as a solution of (3), reduces (30) to
a system of PDEs in fewer independent variables or, as a limiting case, to a system
of ordinary differential equations (ODEs). This approach is especially useful when one
wants to extend symmetries of a system of linear equations (in the present case the free
Schrödinger equation (1)) to a system of nonlinear equations.
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By extending an argument in [13] for Case I with α = 1, we conclude that the following
ansatz is invariant under the algebra (4):

ψ(x, t) = φ(t)g(t, x), (31)

where φ is an arbitrary function of t and g has the form (8) (or (10) in the special
case when n = 3 and α = 1). According to Definition 1.2, we say that equation (30) is
invariant under the algebra (4) if and only if the ansatz (31) reduces (30) to an ODE for the
function φ(t). In the following definition, we introduce a concept of asymptotic symmetry
when an exact reduction does not exist, but a reduction does exist in an asymptotic sense.

Definition 4.1. We will say that equation (30) has the asymptotic symmetry (4) if
and only if the ansatz (31) reduces (30) to an ODE for φ(t) in the asymptotic region
m|x|2 � 2t.

In this section we will first discuss NSEs with power-type nonlinearities and then con-
sider several cases of derivative nonlinearities. We first treat the case in which the non-
linear term in (30) is of the form:

F = λ(ψψ)kψ, (32)

where k denotes a positive real number (not necessarily an integer) and λ denotes a
complex (coupling) constant. Lie symmetry analyses of equations of the form (30), (32)
have been discussed by many authors (see [3] for a summary). In addition, many authors
have investigated the existence of solutions to such equations in various Banach and Hilbert

spaces. For dimensions n ≥ 3, many of these results require that 0 < k <
2n

n− 2
because

the proofs use the Sobolev embedding theorem. See [15] for a summary. Our results are
not subject to this restriction.
To investigate the asymptotic symmetry of (30), (32), we look for a solution of the

form (31) where g(x, t) is a solution of the free Schrödinger equation defined by (8):

g(x, t) =
( m

2πit

)n
2
−α

4 Γ
(

n
2 − α

4

)
Γ

(
n
2

) 1F1

(
n

2
− α

4
;
n

2
;
im|x|2
2t

)
, (33)

with 0 < α < 2n for spatial dimensions n ≥ 2. (If n = 3 and α = 1 we may, of course,
use (10) instead.) Then, substituting these expressions into (30) and (32), assuming that
φ depends only on t, and using the fact that g satisfies the free Schrödinger equation

i∂tg = − 1
2m

∆g, we obtain the following equation for φ:

φt = −iλ(φφ)k(gg)kφ, k > 0. (34)

Since φ is assumed to depend only on t, the above derivation is only consistent if the
quantities (gg)k are independent of the spatial coordinates xj (j = 1, 2, . . . , n). This is
not true in general, so we consider the limit of large t or, more precisely, values of the
variables xj (j = 1, 2, . . . , n) and t such that m|x|2 � 2t. Then, using the small-argument
expansions

1F1(a; c; z) = 1 +
a

c
z +

a(a+ 1)
c(c+ 1)

z2

2
+ · · · (35)
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for the confluent functions, we obtain the following asymptotic result for gg:

gg ∼=
( m

2πt

)n−α
2

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) )2 (
1 +O

((
m|x|2
2t

)2
))

, (36)

and (34) becomes, to leading order in the quantity
m|x|2
2t

,

φt
∼= −iλ

( m

2πt

)(n−α
2 )k

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) )2k

(φφ)kφ. (37)

From the form of equation (37), we find that its solution must have the form φ(t) =
β exp(−i�(t)) with β a real constant and h(t) a real-valued function of t. Substitution of
this expression into (37) yields an equation for h(t) which has the following solution: (ω
a real constant)

h(t) = λ
( m

2π

)(n−α
2 )k

(
Γ

(
n
2 − α

4

)
β

Γ
(

n
2

) )2k

χk(t) + ω, (38)

where χk(t) = t−(n−
α
2 )k+1 when k 	=

(
n− α

2

)−1
and = ln t when k =

(
n− α

2

)−1
. The

asymptotic solution to (30), (32) is now obtained by substitution into (31):

ψ(x, t) ∼= β exp(−i�(t))g(x, t)

with g given by (33) and h given by (38).
We note that the asymptotic result for |ψ| = (ψψ)

1
2 corresponds (apart from the con-

stant β) to the asymptotic result for the solution g(x, t) of the free Schrödinger equation,

whereas the asymptotic value of Argψ =
1
2i
ln

(
ψ

ψ

)
contains effects of the nonlinear terms

(32).
Similar results can also be obtained when the nonlinear term in (30) is a linear combi-

nation of power-type nonlinearities such as, for example:

F = −a0ψ − a1(ψψ)ψ − a2(ψψ)2ψ, (39)

where aj , (j = 0, 1, 2) are real constants, and a2 	= 0. Lie symmetries of equations (30),
(39) were discussed by Gagnon and Winternitz [31].

The Doebner-Goldin and related equations

We next consider asymptotic symmetry results for the DG equation (19), (20) and then
discuss the relationship between these results and some others for these equations.
To show that the DG equations have asymptotic symmetry in the sense of Definition 4.1,

we follow the procedure used for NSEs with power-type nonlinities and look for a solution
ψ of (19), (20) of the form (31) with g(x, t) defined by (33) or (10) with the appropriate
powers of � again inserted. We obtain the following linear equation for ψ by virtue of the
homogeneity property of the nonlinear functionals Rj (j = 1, 2, 3, 4, 5):

i�φt = V ϕ+
i�D

2
R2(g, g)φ+ �D′

5∑
j=1

cjRj(g, g)φ. (40)
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Using the derivative relations
d

dz
1F1(a; c; z) =

a

c
1F1(a+1; c+1; z) and the small-argument

expansions (35) for the confluent functions, we obtain the following asymptotic results for
the Rj(g, g) (j = 1, 2, 3, 4, 5):

R1(g, g) =
(
1− α

2n

) mn

�t

(
1 +O

((
m|x|2
2�t

)2
))

,

R2(g, g) = −
(
1− α

2n

) 2α
n

m

�t

m|x|2
2�t

(
1 +O

(
m|x|2
2�t

))
,

R3(g, g) =
(
1− α

2n

)2 2m
�t

(
m|x|2
2�t

)
+O

((
m|x|2
2�t

)2
)

,

R4(g, g) = −
(
1− α

2n

)2 2α
n(n+ 2)

2m
�t

(
m|x|2
2�t

)2 (
1 +O

(
m|x|2
2�t

))
,

R5(g, g) =

(
1− α

2n

)2
α2

n2(n+ 2)2
2m
�t

(
m|x|2
2�t

)3 (
1 +O

(
m|x|2
2�t

))
,

Thus, we see that the DG equations are asymptotically invariant in the sense of Defi-
nition 4.1 if we consider the case of an identically zero potential V and omit the Rj

functionals with j = 2, 3, 4, 5. Then, solution of (40) gives the following asymptotic result
(m|x|2 � 2�t):

ψ(x, t) ∼= κ exp
(
−iD′c1

(
1− α

2n

) mn

�
ln(t)

)
g(x, t) (41)

with κ a complex constant.
For reasons of consistency, we must show that a solution ψ of (19), (20) obtained as

in (25) from a solution ψ′ of (23) is consistent with our asymptotic symmetry result (41).
This can be done by noting that, for the case when the potential V is identically zero, ψ′

is a solution of the free Schrödinger equation with the mass m replaced by the “effective
mass” mΛ as in (26). Using the small-argument expansion (35) and related expansions for
the arctangent and logarithmic functions that occur in Argψ′ and ln(|ψ′|), respectively,
we obtain from (25):

ψ(x, t) ∼=
(

mΛ
2π�t

)n
2 Γ

(
n
2 − α

4

)
Γ

(
n
2

) exp

(
2miD

�
ln

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) (
mΛ
2π�t

)n
2
−α

4

))

× exp
(
− iπ

Λ

(n

4
− α

8

)
+ i

(
1− α

2n

) m|x|2
2�t

)
.

(42)

We will compare this expression with the asymptotic symmetry result (41), which can be
written in the form:

ψasym(x, t) ∼= κ

(
mΛ
2π�t

)n
2
−α

4 Γ
(

n
2 − α

4

)
Γ

(
n
2

) exp
(
−i

[
D′c1

(
1− α

2n

) mn

�
ln(t)+

+π
(n

4
− α

8

)])
exp

(
i
(
1− α

2n

) m|x|2
2�t

)
.

(43)
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The expressions (42), (43) will be compared in the spacetime domain m|x|2 � 2�t by
setting

κ = β exp(−iδ) with β and δ real. (44)

One then obtains

β = Λ
n
2
−α

4 (45)

and the coefficients of ln t in the exponents of (42) and (43) agree because of the equality
D = D′c1, which is part of the conditions (21) of DG required for linearizability. Equating
the constant parts of the phases of (42) and (43) gives:

δ = n
(
1− α

2n

) [
π

4
(
Λ−1 − 1

) − mD

�
ln

(
mΛ
2π�

)]
− 2mD

�
ln

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) )
. (46)

Thus, the solutions of the DG equations (19), (20) obtained by their gauge equivalence to
solutions of the linear Schrödinger equation (23) with V = 0 is consistent with the asymp-
totic symmetry result (41) provided that the constant κ is chosen to satisfy (44)–(46).

Equations of Kostin and of Bialynicki-Birula and Mycielski

We consider NSEs of the form:

i�ψt = − �
2

2m
∆ψ + ξ1 ln(ψψ)ψ − ξ2

2i
ln

(
ψ

ψ

)
ψ, (47)

where ξ1 and ξ2 are real constants. The first logarithmic term ln
(|ψ|2)ψ was originally

proposed by Bialynicki-Birula and Mycielski [16] and the second logarithmic term, which

involves the phase of ψ: (2i)−1 ln
(
ψ

ψ

)
, was first proposed by Kostin [17] in connection

with studies of dissipation effects in quantum mechanics. It is appropriate to discuss equa-
tion (47) in this section because Doebner and Goldin have shown [7] that their equation
(19), (20) extends to include the nonlinear terms in (47) when the parameters γ and Λ in
the gauge transformation (22) are time-dependent. Symmetry analyses of equation (47)
with ξ2 = 0 have been investigated (cf. [ 32, 3]) and existence results for this equation
(with ξ2 = 0) when an appropriate class of linear potentials is also included have been
summarized by Cazenave [15].
Looking for solutions of (47) in the form (31), (33); we obtain the following equation

for φ:

i�φt = ξ1 ln
(|φ|2|g|2)φ− ξ2

2i
ln

(
φ

φ

g

g

)
φ. (48)

Then, assuming that m|x|2 � 2�t and using the expansions (35), we obtain (36) and

g

g
∼= (−1)n

2
−α

4

(
1 +O

(
m|x|2
2�t

))
. (49)
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Equation (48) becomes, to leading order in the quantity
m|x|2
2�t

,

φt
∼= − i

�
ξ1 ln

(( m

2π�t

)n−α
2 |φ|2

)
φ+

ξ2
2�

ln
(
φ

φ

)
φ+

iξ2
2�

(n

2
− α

4

)
πφ, (50)

where the last term on the right-hand side comes from the logarithm in (48) and vanishes
n

2
− α

4
is an even integer. From the form of eq.(50), we find that its solution must

have the form φ(t) = β exp(iδ(t)) with β a real constant and δ(t) a real-valued function.
Substitution of this expression into (50) yields the following equation for δ(t):

δt = −ξ1
�
ln

β2
( m

2π�t

)n−α
2

(
Γ

(
n
2 − α4

)
Γ

(
n
2

) )2
+

ξ2δ

�
+

ξ2
�

(n

4
− α

8

)
π. (51)

The solution of this equation has different forms according as ξ2 is zero or nonzero.

Case A. ξ2 = 0.

φ(t) = β exp

− iξ1t

�

ln
β2

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) )2
+

(
n− α

2

) (
ln

( m

2π�

)
+ 1

)
× exp

(
iξ1
�

(
n− α

2

)
t ln t+ iζ

)
, ζ = real const.

(52)

Case B. ξ2 	= 0 and
n

2
− α

4
	= an even integer

In this case, equation (51) can be written in the form:

d

dt

(
exp

(
−ξ2t

�

)
δ(t)

)
=

ξ1
�

(
n− α

2

)
ln t exp

(
−ξ2t

�

)
+

ξ2π

�

(n

4
− α

8

)
exp

(
−ξ2t

�

)

−ξ1
�
ln

β2
( m

2π�

)n−α
2

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) )2
 exp

(
−ξ2t

�

)
.

Integrating this equation from t∗ > 0 to +∞, and using integration by parts for the ln t
term, we obtain

δ(t∗) =
ξ1
ξ2
ln

β2
( m

2π�

)n−α
2

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) )2
 − ξ1

ξ2

(
n− α

2

)
ln t∗ −

(n

4
− α

8

)
π

−ξ1
ξ2

(
n− α

2

)
exp

(
ξ2t

∗

�

)
E1

(
ξ2t

∗

�

)
and

φ(t) = β exp(iδ(t)) = β exp

i
ξ1
ξ2
ln

β2
( m

2π�

)n−α
2

(
Γ

(
n
2 − α

4

)
Γ

(
n
2

) )2


× exp
(
−i

ξ1
ξ2

(
n− α

2

)
ln t− i

ξ1
ξ2

(
n− α

2

)
exp

(
ξ2t

�

)
E1

(
ξ2t

�

)
− i

(n

4
− α

8

)
π

) (53)
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in terms of the exponential integrals E1(x) = −Ei (−x) =
∫ ∞

x
exp(−t)t−1dt (where the

integral is understood as a principal value integral when x < 0). In Case B, the terms
involving the quantity

(n

4
− α

8

)
π are absent when

n

2
− α

4
is an even integer. The final

asymptotic solutions to (47) are obtained to leading order in the quantity
m|x|2
2�t

by substi-

tuting (52) and (53) into the equation ψ(x, t) = φ(t)g(x, t), where g(x, t) is given by (33).

5 Concluding remarks

We have shown that nonlocal Lorentz symmetry, previously known to be valid for free-
particle Schrödinger equations [4, 13], is also valid in a modified form for the Galilei-
invariant linear wave equations of Hurley [5], which describe the time evolution of free
quantum particles with arbitrary spin. In Section 3 we have discussed similar results for
linear Schrödinger equations with linear and harmonic oscillator potentials with arbitrary
time-dependent coefficients. For nonlinear equations, we have shown that a subset of the
nonlinear Schrödinger equations introduced by Doebner and Goldin [6, 7] in connection
with studies of dissipative effects in quantum mechanics as well as some of the related
equations discussed by Auberson and Sabatier [26, 8] have exact forms of these symmetries.
Moreover, we have also shown that several classes of nonlinear Schrödinger equations
– those with power-type nonlinearities as well as the full set of equations proposed by
Doebner and Goldin – have asymptotic nonlocal symmetry in the sense described in the
present paper.
The question of the nonlocal symmetry of nontrivial (i.e., nonfree) multiparticle Schrö-

dinger equations is open. In general, we expect that the concept of nonlocal symmetry
may be helpful in the analysis of such equations.
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