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Abstract

Differential constraints compatible with the linearized equations of partial differential
equations are examined. Recursion operators are obtained by integrating the diffe-
rential constraints.

One of the standard ways for determining particular solutions to partial differential equa-
tions is to reduce them to ordinary differential equations which are easier to solve. The
classical work of Lie about group-invariant solutions generalizes well-known methods for
finding similarity solutions and other basic reduction methods [1]. Bluman and Cole [2]
proposed a generalization of Lie’s method for finding group-invariant solutions, which
they named the “nonclassical” method. In this approach, one replaces the condition for
the invariance of the given system of differential equations by the weaker condition for
the invariance of the combined system consisting of the original differential equations
along with the equations requiring the group invariance of the solutions. P.J. Olver and
P. Rosenau proposed a generalization of the nonclassical method [3, 4]. They showed
that many known reduction methods, including the classical and nonclassical methods,
partial invariance, and separation of variables can be placed into a general framework.
In their formulation, the original system of partial differential equations can be enlarged
by appending additional differential constraints (side conditions), such that the resulting
overdetermined system of partial differential equations satisfy compatibility conditions.

This work discusses differential constraints compatible with the linearized equations of
partial differential equations instead of the partial differential equations themselves. The
relation between differential constraints and recursion operators are examined. For the
type of equations in the form qt = P (x, t, q, qx, qxx) and qt = P (q, qx, qxx, qxxx), recursion
operators are obtained by integrating the compatible differential constraints. A new type
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of integrable equations, which are generalizations of the integrable equations of Fokas and
Svinolupov, are given. Results are also compared with Fokas’ generalized symmetry [5]
and Mikhailov-Shabat-Sokolov’s formal symmetry approaches [6, 7].

We can describe the differential constraint method for evolutionary equations [9]

qt = P (x, t, q, qx, qxx, . . .) (1)

in the following way. First we linearize the given differential equation. In other words, we
replace q (and its derivatives) in (1) by q+ εΨ and differentiate both sides of the resulting
expression with respect to ε and take the limit ε → 0, i.e.,

Ψt = DP (Ψ) (2)

where DP is the Fréchet derivative [1]. The equation above can also be written as

Ψt =
N∑

i=0

PiΨi =
N∑

i=0

∂P

∂qi
Ψi (3)

where N is the order of differential equation, q0 = q, q1 = qx, q2 = qxx, Ψ0 = Ψ, Ψ1 = Ψx,
Ψ2 = Ψxx, and so on. In the classical symmetry approach, (2) is the main equation, where
Ψ is the symmetry of the differential equation, which is a function of x, t, qi.

The compatible differential constraint is

HΨ = 0, (4)

where H depends on x, t, qi. If its order (highest derivative in H) is N , then (4) may be
written as

ΨN =
(N−1)∑

i=0

AiΨi, (5)

where A0, A1, . . . , AN−1 are functions of x, t, qi. Compatibility of (5) and (2) is given by

ΨN,t −Ψt,N = 0. (6)

Using (2) and (5), rewlation (6) leads to

N−1∑
i=0

ΨiWi = 0. (7)

Letting

Wi = 0, (8)

we obtain a system of partial differential equations among Pi, Ai and their partial deriva-
tives. The solution of this system will determine the differential constraint (4), which can
be integrated to give

ΦΨ = 0, (9)

where Φ is the recursion operator.
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Let us now consider differential equations of the following form

qt = f(x, t, q, qx, qxx). (10)

The linearized form of (10) can be given as

Ψt = γΨxx + αΨx + βΨ, (11)

where α, β, γ are functions of x, t, q, qx, qxx. We assume a differential constraint having
the same order as (10) in the form

Ψxx = AΨx +BΨ, (12)

where A and B are functions of x, t, q, qx, qxx. The compatibility condition between (11)
and (12) will give the following evolution equations

At = αxx + αxA+ γxxA+ 2γxAx + γxA2 + 2γxB

+2βx +Axxγ +Axα+ 2AxγA+ 2Bxγ,
(13)

Bt = 2αxB + γxxB + 2γxBx + γxAB + βxx

−βxA+ 2AxγB +Bxxγ +Bxα.
(14)

The solutions of the system (13)–(14) can be given with the linearized equation

Ψt = ηΨxx +
[
2ηrqq

rq
qx + 2ηr + η1

]
Ψx +

[
η

(
rqqqrq − r2

qq

)
r2
q

q2
x + 2ηrqqx

]
Ψ, (15)

and compatible differential constraint

Ψxx =
[
qxx

qx
− qxrqq

rq
− r

]
Ψx +

[
rqxx

qx
−

(
rqqqrq − r2

qq

)
q2
x

r2
q

− 2rqqx − rx

]
Ψ. (16)

Here η, η1 are function of x, t, and r is a function of x, t, q, such that they satisfy

2rxη + ηxr = 0, 2rtη + ηtr = 0 (17)

rt − r

4η
(−2ηηxx + η2

x − 2η1ηx + 4ηη1,x

)
= 0. (18)

It is interesting to note that in this classification the explicit time dependence is crucial
for obtaining equations (17)–(18), which do not have any derivative with respect to q,
although r depend explicitly on q. The differential constraint (16) can be integrated to
give

Φ = D +
rqqqx

rq
+ r + qxD−1rq + qxD−1

(
rqqxrq − rqqrqx

r2
q

)
, (19)

where
(
D−1f

)
(x) =

∫ x

−∞
f(ζ) dζ. Because of the last term in (19) and the explicit de-

pendence of x and t on r, Φ, as given by (19), is new recursion operator which is a
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generalization of the recursion operators obtained by Fokas [5] and Ibragimov-Shabat [10].
The new integrable equation takes the following form

qt = ηqxx +
ηrqqq

2
x

rq
+ (2ηr + η1)qx. (20)

Although (20) looks like the integrable equations classified by Fokas [5], they are different,
because of the explicit x, t dependence of r, η and η1, which are subject to conditions
(17)–(18). Using transformation q(x, t)→ r(q(x, t), x, t) [5] one obtains

rt = ηrxx + (2ηr + η1)rx − η(rq,xqx + r,xx)− (2ηr + η1)r,x + r,t, (21)

where r,x, r,t denotes partial derivatives with respect to x, t. However, in the limit
r(q, x, t) → r(q), we recover the equations classified by Fokas [5], Ibragimov-Shabat [10]
and Olver [8]. Moreover, equations (21) are more general than the once obtained by
Svinolupov [6], since he analyzed the case qt = F (x, q, qx, qxx), in which there is no explicit
time dependence. It is interesting to note that in the limit r(q, x, t) → r(q, t) (using the
conditions (17)–(18)), equation (20) will give Svinolupov’s equation [6]

qt = η′qxx +
η′rqqq

2
x

rq
+

(
2η′r − η′t

2η′
x+ ε

)
qx, (22)

where η′ and ε are functions of t, and r is a function of q and t.
Equations (17) can be integrated to give η =

a

r2
, where a = a(q). Substitution of η

in (18) will give

arxxr − 2ar2
x + rxη1r

3 + η1,xr4 − rtr
3 = 0. (23)

One particular solution can be given by solving the last two terms in the above equation.
This case (r(q, t)) corresponds to equation (22). Equation (23) is a coupled second or-
der partial differential equation and the general solution can be given by the method of
characteristics [11]. It is hoped that the general solution will appear in a future work.

Next, we consider differential equations of the following general form, which includes
the KdV equation,

qt = P (q, qx, qxx, qxxx). (24)

The linearization of (24) takes the form

Ψt = αΨxxx + βΨxx + γΨx + δΨ, (25)

where α, β, γ, δ are functions of q, qx, qxx, qxxx. We consider the differential constraint
having the same order as (24), i.e.,

Ψxxx = AΨxx +BΨx + CΨ (26)

where A, B and C are functions of q, qx, qxx, qxxx. The compatibility will determine
algebraic equations

B = −2α
3η

, C = − 1
3η
(αx − 2αA+ 2β) (27)
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and evolution equations

At = αxA+ βx +Axxxη + 3AxxηA+ 3A2
xη +Axα+ 3AxηA2, (28)

αt =
1
2
(2αxxxη − 3αxxηA − 3αxAxη + 2αxα

−3βxxη + 6βxηA+ 6Axβη + 3εtη)
(29)

βt =
1
4
(3αxxxηA − 6αxxηA2 − 3αxAxxη − 12αxAxηA+ 4αxβ

+βxxxη − 6βxxηA+ 4βxα+ 12βxηA2 + 6Axxβη + 24AxβηA),
(30)

where η is constant and ε is a function of t.
The linearized form of the first class is

Ψt = ηΨxxx+
[ρ1

2
q2
x + ρ

]
Ψx + ρqqxΨ, (31)

with compatible differential constraint

Ψxxx =
qxx

qx
Ψxx −

[
ρ1

3η
q2
x +

2ρ
3η

]
Ψx − −2ρqxx + 3ρqq

2
x

3ηqx
Ψ, (32)

where ρ1 is constant and ρ is a function of q with the condition

ρqqq +
4ρ1

3η
ρq = 0. (33)

The recursion operator can be obtained by integrating (32). This leads to

Φ = D2 +
2ρ
3η

+
ρ1

3η
q2
x − ρ1

3η
qxD−1qxx +

qx

η
D−1ρq. (34)

The integrable equation is in the form

qt = ηqxxx +
ρ1

6
q3
x + ρqx. (35)

The second class is given by the linearized equation

Ψt = ηΨxxx +
[
ε1q

2
x + 2ε1ε2qx + 2ε3

]
Ψ (36)

with compatible differential constraint

Ψxxx =
qxx

qx + ε2
Ψxx −

[
ε1
3η

q2
x +

2ε1ε2
3η

qx +
2ε3
3η

]
Ψx −

(
ε22ε1 − 2ε3

)
qxx

3η(qx + ε2)
Ψ, (37)

where ε1, ε2, ε3 are constants. The recursion operator can be obtained by integrating (37),
which gives

Φ = D2 +
2ε3
3η

+
ε2
3η

q2
x +

2ε1ε2
3η

qx − ε1
3η
(qx + ε2)D−1qxx. (38)

The integrable equation is in the form

qt = ηqxxx +
ε1
6

q3
x +

ε1ε2
2

q2
x + ε3qx. (39)
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Equations (35), (39) were classified by Fokas [5], Ibragimov-Shabat [10]. We obtained the
recursion operators (34), (38) by integrating the differential constraints.

The third type of equation is given by the linearized equation

Ψt = λ5Ψxxx +
3
2
λ3λ5Ψxx +

3
2
λ4λ5Ψx + λ6Ψ, (40)

and differential constraint

Ψxxx =
[
qxxx + λ1qxx + λ2qx

qxx + λ1qx + λ2q
− λ3

]
Ψxx

+
[
λ3(qxxx + λ1qxx + λ2qx)

qxx + λ1qx + λ2q
− λ4

]
Ψx +

λ4(qxxx + λ1qxx + λ2qx)
qxx + λ1qx + λ2q

Ψ.

(41)

The recursion operator is

Φ = D2 + λ3D + λ4. (42)

The integrable equation is given as

qt = λ5qxxx +
3
2
λ3λ5qxx +

3
2
λ4λ5qx + λ6q, (43)

where λ1, λ2, λ3, λ4, λ5 and λ6 are constants. Note that Rabelo and Tanenblat also
obtained linear equation using the classification method of pseudo-spherical surfaces with
Gaussian curvature (−1) [12].

According to Fokas, an integrable equation has infinitely many generalized symmetries
which are the solutions of (2). The existence of generalized symmetry manifest itself by the
existence of an admissible Lie-Bäcklund operator. The existence of infinitely many sym-
metries is expressed by the existence of a recursion operator. There is a close relationship
between Lie-Bäcklund operator and linearized equation [5]. Because, if Fokas’ admissible
Lie-Bäcklund operator is applied on the evolution equation, we obtain the Fréchet deriva-
tive of our differential equation under consideration or linearized form of our differential
equation. Recursion operators, in our method, are obtained by the integration of the
compatible differential constraints.

Let us briefly recall Olver-Fokas symmetry approach and the differential constraint
test:

Olver-Fokas symmetry test: The equation qt = P [q] is integrable if there exists
infinitely many non-Lie point symmetries, or equivalently, one non-Lie point sym-
metry and a recursion operator. The recursion operator and the time-independent
part of the linearized differential equation form a Lax pair �t + [�, DP ] = 0.

Dif ferential constraint test: The equation qt = P [q] is integrable if there exists
a differential constraint HΨ = 0, such that it is compatible with the linearized
equation Ψt = DP (Ψ). The compatibility condition is Ht + [H, DP ] = 0.

There are several methods to examine the integrability of nonlinear partial differential
equations [13], although in two dimensions most of these methods imply each other.
Infinite sets of conservation laws, infinite number of symmetries, and the bi-Hamiltonian
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structure, are a number of remarkable properties, to name but three. The recursion oper-
ator plays an important role in the formulation of these recursive properties. Firstly, the
family of integrable equations can be written in a compact form using recursion operators.
The other role of recursion operator is associated with the Hamiltonian treatment of inte-
grable equations. Recursion operators determine Hamiltonian structures through certain
Poisson brackets [14]. Further analysis of the recursion operators leads to the concept of
bi-Hamiltonian structures, which can be given by factorizing the recursion operator.

The main idea in this work is to give a new definition of integrability. A partial
differential equation is integrable if its linearized equation is compatible with a differential
constraint. Using differential constraints compatible with the linearized equations, we also
give an answer to the question “The deep connection between the direct reduction and
recursion operators” of Olver [8].
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