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Abstract

We investigate some classical evolution model in the discrete 2+1 space-time. A map,
giving an one-step time evolution, may be derived as the compatibility condition for
some systems of linear equations for a set of auxiliary linear variables. Dynamical
variables for the evolution model are the coefficients of these systems of linear equa-
tions. Determinant of any system of linear equations is a polynomial of two numerical
quasimomenta of the auxiliary linear variables. For one, this determinant is the gen-
erating functions of all integrals of motion for the evolution, and on the other hand it
defines a high genus algebraic curve. The dependence of the dynamical variables on
the space-time point (exact solution) may be expressed in terms of theta functions on
the jacobian of this curve. This is the main result of our paper.

1 Introduction

In this paper we give an exact solution of a classical evolution model in discrete 2 + 1
space-time. This model was formulated in [1]. The map of dynamical variables, governing
the one-step evolution, was derived as the compatibility condition for two sets of linear
relations, associated with the usual graphical representation of left and right hand sides of
the famous Yang – Baxter equation. Such form of the zero curvature condition generalizes
the usual concept of the local Yang – Baxter equation as the zero curvature condition for
3d lattice models. Linear variables may be assigned either to the vertices or to the sites
of the two dimensional auxiliary graphs (these two assignments are the dual ones), and
the coefficients of the linear relations – nothing but the dynamical variables – are to be
assigned to the vertices. Main feature of the map of the dynamical variables is that it is
canonical with respect to local Poisson brackets and thus may be easily quantized [2], so
that the auxiliary linear systems exist even in the quantum case [4].
Evolution models arise when one considers flat regular graphs, formed by straight lines,

on a two dimensional torus. The only demand is that the graph must contain Yang-Baxter
triangles, so that a simultaneous “bypass of some lines through appropriate vertices” will
restore the geometry of the graph. Thus, with the map associated with the Yang – Baxter
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type triangles, there appears the map of the dynamical variables, assigned to the vertices
of the primary lattice, into the set of the dynamical variables, assigned in fact to the same
lattice. This gives the one-step evolution of the discrete 2 + 1 evolution model.
Simple square lattice does not fit the demands, because of it does not contain the

triangles. The simplest two dimensional graph with the properties demanded is the so
called kagome lattice 1 (see the figures below). This is not something strange, the 2d
kagome lattice is nothing but a section of a regular 3d cubic lattice by an inclined plane.
The governing map was derived for the open linear system (i.e. the number of the

equations is less then the number of auxiliary linear variables), but nevertheless the linear
systems may be written for the 2d lattice with the toroidal boundary conditions. Also,
in general, dealing with the linear equations, one may impose on the linear variables
quasiperiodical boundary conditions in both directions of the torus with two numerical
quasimomenta. In this case the number of the auxiliary linear variables coincides with the
number of the linear equations and one may ask for the admissibility of the linear system,
i.e. for the zero value of corresponding determinant. Because of the evolution arises as a
simple compatibility of two similar linear systems, the admissibility of the primary system
provides the admissibility of the evaluated one. Therefore the determinant is at least
an ideal of the evolution. Moreover, being normalized appropriately, formal determinant
J(A,B) of the linear system as a polynomial of the quasimomenta A and B is conserved by
one-step evolution map, i.e. is the generating function of the integrals of motion. All these
remains valid and in the quantum case, where J(A,B) is an operator-valued functional.
In our classical case and finite spatial size of the two dimensional lattice, equation

J(A,B) = 0 gives a finite genus g algebraic curve Γ, so that the integrals of motion are
interpreted as moduli of Γ. With Γ and a bit of additional information concerning the
initial state given, the system of the auxiliary linear variables may be easily parametrized
as the meromorphic functions on Γ in terms of the theta functions on Jac Γ. Doing this,
we get at once the parametrization of the dynamical variables in terms of theta functions
on Jac Γ and obtain the exact solution.
Perhaps it would be expedient to discuss several 3d discrete integrable models from the
point of view of their linear systems and indicate the place of the model being considered
among them. Spatial nature of any 3d integrable model means that geometrically linear
variables are assigned to several elements of 3d cubic lattice. This assignment gives a
type of the linear system. Consider three main scenarios corresponding to three relative
integrable models.
The first, most simple type [5, 6, 7, 8]: let the vertices of the cubic lattice Z3 have the

coordinates p = (a, b, c), a, b, c ∈ Z. Consider the even sublattice of it, Z3
even: p = (a, b, c),

a + b + c = even. Points Z3
even triangulize the three dimensional Euclidean space into

the following convex bodies: set of octahedra and sets of two types of tetrahedra (up to
regular translations). Assign the auxiliary linear variables to the vertices of Z3

even. Linear
equations are assigned to the triangles of the triangulation described. Primary set of the
linear equations maybe chosen for the triangles – sides of one of the tetrahedra. System
of coefficients of the linear equations gives the tau function for Hirota’s discrete bilinear
equation (the “octahedron equation” from this naive geometrical point of view).
The second type: assign the auxiliary linear variables to the facets of Z3. Linear

1“Kagome” is not a name, it is a kind of Japanese mats.
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Figure 1. Labelling of the kagome lattice.

relation are to be written for each edge surrounded by four facets. This corresponds to
Korepanov’s block-matrix models [9]. Hirota and Hirota-Miwa’ equations are the simplest
compatibility conditions for Korepanov’s linear problem [11, 10, 12].

The third type: dealing with the cubic lattice, most obvious scenario is to assign the
linear variables to all the vertices of it (or, correspondingly, to the sites of the dual lattice).
Each linear equation corresponds to a square (any face of the elementary cube). This is our
case. Independent Lagrangian – type variables are a triplet of “tau – functions”, obeying
the system of the “cube equations”. Taking a section of the cubic lattice by an inclined
plane, we at first get the kagome lattice geometrically, and the linear system for it as a
part of whole linear relations secondly. Details may be found in [1, 2, 3]. The advantages
of this approach (Poisson structure, quantization etc.) were mentioned at the beginning
of this introduction.

Few remarks concerning the section by the inclined plane and the evolution. For the
cubic lattice p = (a, b, c), a, b, c ∈ Z, the sections mentioned are the planes a+ b+ c = t =
const. Equations of motion normally may be solved so that all the dynamical variables
for a + b + c = t + 1 are expressed from the dynamical variables for a + b + c = t. This
gives the natural notion of the evolution as the map from t to t+1. As it was mentioned,
geometrically the section a+ b+ c = t is the kagome lattice.

This paper is organized as follows. First, we recall the formulation of the model,
describing the dynamical system and defining the evolution. Second, introducing the
linear system, we define the generating function for the integrals of motion. All these are
based on the results of [1, 2], and we rather enumerate the facts. In the fourth section we
analyse the curve, parametrize the auxiliary linear variables and derive the expressions for
the dynamical variables. In the final section we discuss possible applications of the results
obtained.
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Figure 2. (a, b) – triangle.

2 Discrete evolution

System of the dynamical variables assigned to a finiteM×M kagome lattice (see Figure 1)
is a set of 3M2 pairs

[ uj,a,b , wj,a,b ] , j = 1, 2, 3, a, b ∈ ZM . (2.1)

Arrangement of the triangles of the kagome lattice is shown in Figure 1. Consideration
of the lattice on a torus implies the periodical boundary conditions for the dynamical
variables

uj,a+M,b = uj,a,b+M = uj,a,b , wj,a+M,b = wj,a,b+M = wj,a,b . (2.2)

Geometrically the indices (j, a, b) are assigned to the vertices of the kagome lattice, so
that for a, b given (j, a, b), j = 1, 2, 3 mark three vertices of a definite triangle, as it is
shown in Figure 2. Whole kagome lattice may be obtained as the up-down and left-right
translations of the triangle (a, b). It is supposed that a increases to up and b increases to
right.
Impose the following Poisson structure on the set of the dynamical variables:

{ uj,a,b , wj,a,b } = uj,a,b wj,a,b , (2.3)

and any other Poisson bracket is zero. Remarkable is the locality of the dynamical vari-
ables.
Evolution of the system is governed by the fundamental map R. Consider one isolated

triangle (a, b). Define map

R : [uj ,wj ] �→ [u′j ,w
′
j ] j = 1, 2, 3 , (a, b) implied to be fixed, (2.4)
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Figure 3. Geometrical representation of the map R.

by the following relations:

(i)


u′1 =

κ2 u1 u2 w2

κ1 u1 w2 + κ3 u2 w3 + κ1 κ3 u1 w3

,

w′
1 =

w1 w2 + u3 w2 + κ3 u3 w3

w3

,

(ii)


u′2 =

u1 u2 u3

u2 u3 + u2 w1 + κ1 u1 w1

,

w′
2 =

w1 w2 w3

w1 w2 + u3 w2 + κ3 u3 w3

,

(iii)


u′3 =

u2 u3 + u2 w1 + κ1 u1 w1

u1

,

w′
3 =

κ2 u2 w2 w3

κ1 u1 w2 + κ3 u2 w3 + κ1 κ3 u1 w3

.

(2.5)

κ1,2,3 are arbitrary numbers (not the dynamical variables).

Proposition 1. The map R, (2.5), conserves the local Poisson structure,

{uj ,wj′} = δj,j′ uj wj ⇔ {u′j ,w′
j′} = δj,j′ u′j w′

j , (2.6)

i.e. R is the canonical map.

Geometrically R may be interpreted as the map from one Yang – Baxter triangle to
another, as it is shown in Figure 3, i.e. as a bypass of a line through the opposite vertex.
Turn now to the whole lattice. We will distinguish three types of lines with respect to

their slopes by the letters x, y, z as it is shown in the Figure 4 and enumerate the lines,
xα, yβ , zγ , α, β, γ ∈ ZM . “Spectral parameters” κj,a,b actually depend on numbers of the
corresponding lines.
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Figure 4. Accessories of the lattice: lines.

Evolution of the lattice is the simultaneous shift of all lines of one type in one direc-
tion. The result of such shift is the application of R to each (a, b) triangle and some
re-numeration of the images of u′j,a,b,w

′
j,a,b. This re-numeration depends on what type of

vertices we leave immovable. Choose the vertices of type (1, a, b) motionless, i.e. we shift
all x lines to the north-east direction. Define the functional map U, acting on the space
of functions of the dynamical variables [uj,a,b,wj,a,b]:

(U ◦ f) ( uj,a,b , wj,a,b ) = f( U∗ ◦ uj,a,b , U∗ ◦ wj,a,b ) , (2.7)

where

U∗ ◦ u1,a,b = u′1,a,b , U∗ ◦ w1,a,b = w′
1,a,b ,

U∗ ◦ u2,a,b = u′2,a+1,b , U∗ ◦ w2,a,b = w′
2,a+1,b ,

U∗ ◦ u3,a,b = u′3,a,b+1 , U∗ ◦ w3,a,b = w′
3,a,b+1 ,

(2.8)

where, for example, u′1,a,b means that we take the expression for u′1 from (2.5) and add the
indices a, b to each uj , wj there. Indices (a + 1, b) and (a, b + 1) in the second and third
lines of (2.8) are the re-enumeration mentioned above.
Obviously, U conserves the Poisson brackets, and thus it is the canonical map. U is

identified with the one step discrete evolution, so that if

f( uj,a,b , wj,a,b ) = f(t0) , (2.9)

then

f(t0 , t) =
(
Ut ◦ f

)
(t0) . (2.10)

3 Linear system and the integrals of motion

Map R (2.5) was “derived” in [4] as a zero curvature condition for a system of linear
equations. There are at least two ways to define the linear system, and here we use the
co-current form according to the terminology of [1, 2].
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Figure 5. Linear variables of the map R.

We start from the linear system for isolated Yang – Baxter triangles and explain how
the map R appears. First, in addition to the vertex variables uj ,wj , κj introduce eight
auxiliary variables ϕa...ϕh living in the sites of the 2d graphs as it is shown in Figure 5.
Please note that the variables ϕb...ϕg are the same in the left and right hand sides of

Figure 5 and belong to the equivalent open cells. Left and right hand side graphs differ
by ϕh and ϕa. Consider now two sets of linear relations: for the left hand side graph

0 = f1
def
= ϕc − ϕe u1 + ϕh w1 + ϕd κ1 u1 w1 ,

0 = f2
def
= ϕh − ϕd u2 + ϕb w2 + ϕf κ2 u2 w2 ,

0 = f3
def
= ϕg − ϕc u3 + ϕb w3 + ϕh κ3 u3 w3 ,

(3.1)

and for the right hand side graph

0 = f ′
1

def
= ϕg − ϕa u′1 + ϕb w′

1 + ϕf κ1 u′1 w′
1 ,

0 = f ′
2

def
= ϕc − ϕe u′2 + ϕg w′

2 + ϕa κ2 u′2 w′
2 ,

0 = f ′
3

def
= ϕa − ϕe u′3 + ϕf w′

3 + ϕd κ3 u′3 w′
3 .

(3.2)

Each linear expression fj and f ′
j is assigned to j-th vertex of the left and right graphs

respectively. Into each fj and f ′
j there involved four linear variables from the sites sur-

rounding the vertex. Coefficients in fj and f ′
j are the vertex variables, assigned with j-th

vertex. Arrangement of the vertex variables and the site variables with respect to the
arrows of the lines is the same for any vertex (just look attentively at the linear relations
and the figure). Each expression fj and f ′

j becomes the equation, fj = 0, f ′
j = 0, and thus

two sets of linear equations appear.

Theorem 1. Two systems, (3.1) and (3.2) are linearly equivalent (after excluding extra
linear variables ϕh and ϕa) iff u′j ,w′

j are connected with uj ,wj via (2.5).
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Turn now to the kagome lattice on the torus. Linear forms fj,a,b and and corresponding
linear equations fj,a,b = 0 are to be introduced for all vertices of the lattice.

0 = f1,a,b
def= ϕ3,a+1,b − ϕ2,a,b · u1,a,b + ϕ1,a,b · w1,a,b

+ ϕ3,a,b+1 · κ1 u1,a,b w1,a,b ,

0 = f2,a,b
def= ϕ1,a,b − ϕ3,a,b+1 · u2,a,b + ϕ3,a,b · w2,a,b

+ ϕ2,a−1,b · κ2 u2,a,b w2,a,b ,

0 = f3,a,b
def= ϕ3,a+1,b − ϕ1,a,b · u3,a,b + ϕ2,a,b−1 · w3,a,b

+ ϕ3,a,b · κ3 u3,a,b w3,a,b .

(3.3)

What these writings mean. The linear objects ϕj,a,b, appeared in these relations, are
assigned to the sites of the kagome lattice as it is shown in Figure 6. Each linear expression
fj,a,b is assigned to (j, a, b)-th vertex of the kagome lattice, and into fj,a,b there involved
four linear variables from the sites surrounding the vertex. Coefficients in fj,a,b are the
vertex variables, assigned with (j, a, b)-th vertex. Arrangement of the vertex variables and
the site variables with respect to the arrows of the lines is the same for any vertex. Each
expression fj,a,b becomes the equation, fj,a,b = 0, and thus the set of linear equations
appears.
The linearity of ϕj,a,b allows one to impose the quasiperiodical boundary conditions for

them:

ϕα,a−M,b = ϕα,a,b · A , ϕα,a,b−M = ϕα,a,b · B . (3.4)

The coefficients of the linear system form a 3M2 × 3M2 matrix L, depending on the
dynamical variables and the quasimomenta A,B. The following set of propositions was
proved in [1, 2]:

Proposition 2. The determinant of L is a Laurent polynomial of A,B,

detL =
∑

α,β∈Π

J̃α,β Aα · Bβ , (3.5)
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where domain Π is described below. Being normalized in any way,

J(A,B) =
detL
J̃α0,β0

, (3.6)

functional J(A,B) is the generating functions for the integrals of motion,

J(A,B) =
∑

α,β∈Π

Jα,β(u,w) Aα · Bβ , (3.7)

(U ◦ Jα,β)(u,w) = Jα,β(u,w) . (3.8)

Proposition 3. Domain Π in the decomposition of J(A,B) is the following hexagon:

Π : −M ≤ α ≤ M , −M ≤ β ≤ M , −M ≤ α+ β ≤ M , (3.9)

where M is the spatial size of the kagome lattice. According to the Riemann-Hurwitz
theorem, the genus of the curve Γ : J(A,B) = 0 is

g = 3M2 − 3M + 1 . (3.10)

Complete number of the integrals of motion is 3M2+1, and one can choose exactly 3M2

involutive between them.

Perimeter of the hexagon Π is formed by 6M points,

JM−n,n , J−n,n−M , JM,−n , J−M,M−n , Jn−M,M , Jn,−M , (3.11)

where n = 0, ...,M . These perimeter integrals are not independent. Let

Xα =
∏
σ

u−1
2,α−σ,σ u−1

3,α−σ,σ ,

Yβ = (−)M
∏
σ

u1,β,σ w−1
3,β,σ ,

Zγ =
∏
σ

w1,σ,γ w2,σ,γ .

(3.12)

Each of these expressions corresponds naturally to its line, Xα to xα etc., see Figure 4.
The perimeter integrals (3.11) are some the symmetrical polynomials of Xα, or Yβ, or Zγ .
The Poisson brackets for Xα, Yβ, Zγ ∀α, β, γ are

{Xα, Yβ} = Xα Yβ , {Yβ , Zγ} = Yβ Zγ , {Zγ , Xα} = Zγ Xα . (3.13)

It is useful to extract common convolutive parts from Xα, Yβ, Zγ ,

Xα = X · j(Xα) , Yβ = Y · j(Yβ) , Zγ = Z · j(Zγ) , (3.14)

where

{X,Y } = X Y , etc. (3.15)
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Now we can rewrite J(A,B) in its final invariant form:

J =
∑

α,β,γ ∈Π′
jα,β,γ (Z A)α (Y B−1)β

(
X

B

A

)γ

, (3.16)

where Π′ is three squares of the cube:

Π′ : 0 ≤ α, β, γ ≤ M , at least one of α, β, γ iz zero . (3.17)

Now we may describe the complete set of 3M2 involutive integrals: g = 3M2 − 3M + 1
functionals jα,β,γ , corresponding to the inner points of Π′, 3M − 3 independent projective
j(Xα), j(Yβ) and j(Zγ), one X · Y · Z (this is the center for X,Y, Z), and any finally –
any other single function of X, Y , Z.
Running ahead, for what purpose else one needs the perimeter integrals (3.11)?

J(A,B) = 0 is an algebraic curve Γ, and we will be interested in the divisors (A) and
(B) of the algebraic functions A = A(P ) and B = B(P ), P ∈ Γ. In general the perimeter
integrals describes the divisors (A) and (B), and after a bit cumbersome calculations we
have obtained the following description:

(A)0 :


A = 0 ,

A

B
= Xα , α ∈ ZM ,

A = 0 , B = Yβ , β ∈ ZM ,

(A)∞ :


A = ∞ ,

A

B
=

Xα

(κ2κ3)M
, α ∈ ZM ,

A = ∞ , B =
(
κ1

κ3

)M

Yβ , β ∈ ZM ,

(3.18)

and

(B)0 :


B = 0 ,

A

B
= Xα , α ∈ ZM ,

B = 0 , A =
1

(κ1κ2)MZγ
, γ ∈ ZM ,

(B)∞ :


B = ∞ ,

A

B
=

Xα

(κ2κ3)M
, α ∈ ZM ,

B = ∞ , A =
1
Zγ

, γ ∈ ZM ,

(3.19)

In these formulae it is supposed that the spectral parameters κj are the same for all lattice,
but the structure of Xα, Yβ and Zγ , associated with the lines xα, yβ and zγ makes obvious
the situation when κj depend on the lines numbers.
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4 The curve and solution

Turn at last to the algebraic geometry. We deal with the algebraic curve Γ, defined by
J(A,B) = 0. A, B and C = A/B are the meromorphic functions on Γ, their divisors
are already obtained in the previous section, and (3.18,3.19) may be rewritten in decent
notations as

(A) =
∑
α

(
P+

xα
− P−

xα

)
+

∑
β

(
P+

yβ
− P−

yβ

)
,

(B) =
∑
α

(
P+

xα
− P−

xα

)
−

∑
γ

(
P+

zγ
− P−

zγ

)
,

(4.1)

where the notion of the points P±
xα
, P±

yβ
and P±

zγ
comes from (3.18,3.19) transparently.

Remarkable feature of these divisors is the natural correspondence between P± and the
lines xα, yβ , zγ .
Return now to linear system (3.3). Solving it, one may put one of ϕj,a,b to be unity, then

all other linear variables become some meromorphic functions on Γ. Our next interest is a
common pole divisor of all ϕj,a,b. Denote this divisor as D̃, its degree may be calculated:

deg D̃ = 3M2 + 1 . (4.2)

This calculation is based directly on the dimension of linear system and needs no com-
ments. The set ϕj,a,b is the unique solution of the linear system, so due to the Riemann-
Roch theorem the dimension of the linear space of the holomorphic functions with the
pole divisor D̃ is

dim L(D̃) = deg D̃ − g + 1 = 3M + 1 . (4.3)

This means that one may restore ϕj,a,b as a function on Γ via just 3M points of positive
D′

j,a,b,

(ϕj,a,b) + D̃ = D(0)
j,a,b +D′

j,a,b , deg D(0)
j,a,b = g , deg D′

j,a,b = 3M , (4.4)

where positive D(0)
j,a,b may be restored unambiguously. Obviously, the meaning of the

quasimomenta A and B implies that we may choose the lines xα0 , yβ0 and zγ0 , where the
quasimomenta appear, in any way. Therefore D′

p, p ≡ (j, a, b), are all governed by the
same points as form the divisors (A) and (B).
The same is valid for D̃:

D̃ = D̃(0) + D̃′ , (4.5)

where D̃′, deg D̃′ = 3M is also governed by the points of (A) and (B). Thus for any
p = (j, a, b) the decomposition arises:

(ϕp) = (ϕp)0 − (ϕp)∞ = D(0)
p − D̃(0) +D′

p − D̃′ , (4.6)

such that we can trace the following simple part of (ϕp):

Dp = D′
p − D̃′ . (4.7)
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Figure 7. Sites separated by a segment of line x between two vertices and theirs divisors.

Before we give concrete expressions for ϕp recall a couple of notations of the algebraic
geometry, see for example [13]. For a given curve Γ with normalized holomorphic one-
forms ω it is defined its jacobian Jac Γ and the theta – functions on it. We’ll use the
conventional notations for Γ �→ Jac Γ: for D, deg D = 0, let

I(D) =
∫
Σ:D=∂Σ

ω . (4.8)

Also for P,Q ∈ Γ denote their prime form as E(P,Q),

E(P,Q) ∼ Θδ

(∫ Q

P
ω

)
, (4.9)

where the subscript δ means the nonsingular odd theta characteristic of the curve (see
[13]). Let the same symbol E stands for a product of the prime forms

E(P,D) =
∏

Q∈D
E(P,Q) , D > 0 . (4.10)

Theorem 2. With the notations introduced, the expression for ϕp as the meromorphic
function on Γ with the divisor given by (4.6,4.7) is

ϕp = ϕp(P ) = ϕ
(0)
p

Θ(z+ I(P − P0 +Dp))
Θ(z+ I(P − P0))

E(P, (Dp)0)
E(P, (Dp)∞)

, (4.11)

where P ∈ Γ, vector z ∈ Cg and P0 ∈ Γ are some auxiliary parameters in the parametriza-
tion (4.11), ϕ(0)

p are constants (i.e. do not depend neither on P nor on z), Θ(z+I(P−P0))
corresponds to g poles from D̃(0), and so on.

Actually eq. (4.11) is the consequence of the Riemann-Roch theorem, see [9, 13].
Further it is simpler to cancel Θ(z+I(P−P0)) from all ϕp and deal with the holomorphic

with respect to z functions.
Describe now the explicit way of assigning the divisors Dp (4.7) to the sites p = (j, a, b)

of the kagome lattice.
To each line xα, yβ and zγ of the lattice the pair P+

.. −P−
.. is assigned, see (4.1) and the

remarks at the beginning of this section. Let a segment of oriented line x separates two
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Figure 8. Divisor notations around a vertex.

sites, p− on the left and p+ on the right according to the orientation of x, see Figure 7.
According to our previous considerations, the divisors Dp+ and Dp− , assigned to p+ and
p− respectively, obey

Dp+ − Dp− = P+
x − P−

x , (4.12)

where P+
x and P−

x is the pair assigned to line x. Starting from any site p0 on the lattice
and using this procedure, we may define all Dp up to the divisors of the algebraic functions
(A) and (B). Such system of the divisors was introduces by I. Korepanov in [9], i.e. the
divisor rules we’ve obtained (Figure 7, eq. (4.12)) coincide formally with that of the second
type linear problem (see the introduction).
Introduce also a divisor of the edge of x separating p+ and p−:

Dx = Dp− + P+
x − P0 = Dp+ + P−

x − P0 , (4.13)

where P0 is the same point as in (4.11). The meaning of Dx is following:

ϕp−

ϕp+

(z = δ − I(Dx)) =
ϕ

(0)
p−

ϕ
(0)
p+

. (4.14)

Consider further a vertex formed by two lines x and y surrounded by the sites a, b, c, d
as it is shown in Figure 8. The linear relation for it is

ϕa − ϕb · u + ϕc · w + ϕd · κ u w = 0 . (4.15)

With the parametrization (4.11) this relation must be the identity both in P and z, so
that neither u nor w depend on P , but u = u(z), w = w(z). This allows one to find u(z)
and w(z) immediately.
Eight divisors correspond to eight elements of the vertex. For the site divisors we use

obvious notations Da, Db, Dc and Dd. Two lines involved, x and y, are divided by the
intersection point into four edges with the divisors: Dx and Dx′ for x line, and Dy and
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Dy′ for y line. According to divisor rules (4.12), the relations for all these eight divisors
may be written in the following form:

Da = Dx − P+
x + P0 = Dy′ − P+

y + P0 ,

Db = Dx′ − P+
x + P0 = Dy′ − P−

y + P0 ,

Dc = Dx − P−
x + P0 = Dy − P+

y + P0 ,

Dd = Dx′ − P−
x + P0 = Dy − P−

y + P0 .

(4.16)

Testing (4.15) for the quasiperiodicity on z and taking zeros and poles of u(z) and w(z)
(relation (4.14) is useful for it), we get unambiguously

u(z) = u0 · Θ(z + I(Dx))
Θ (z + I(Dx′))

, w(z) = w0 · Θ
(
z + I(Dy′)

)
Θ(z + I(Dy))

. (4.17)

Extra constant parameters obey

ϕ
(0)
a

ϕ
(0)
c

= − w0 ·
E(P+

x , P+
y )

E(P−
x , P+

y )
,

ϕ
(0)
b

ϕ
(0)
d

= κw0 ·
E(P+

x , P−
y )

E(P−
x , P−

y )
,

ϕ
(0)
a

ϕ
(0)
b

= u0 ·
E(P+

x , P+
y )

E(P+
x , P−

y )
,

ϕ
(0)
c

ϕ
(0)
d

= − κ u0 ·
E(P−

x , P+
y )

E(P−
x , P−

y )
.

(4.18)

These constants of the normalization, u0 and w0, are to be used to parametrize the “gauge”
integrals of motion Xα, Yβ , Zγ , and thus have no dynamical sense.
Actually (4.15), as an identity on z, is a combination of two Fay’s identities (see [13]).

In the parametrization of u and w the theta functions are assigned naturally to the edges.
These thetas are nothing but the triplet of tau-functions and thus solve a system of trilinear
relations, see [3].
With the parametrization in terms of the divisors, the evolution becomes simple. It

corresponds to the geometrical shift of the lines generating the change of the divisors of
the sites. In general the lattice is heterogeneous and non-equidistant and thus there the
formula for u,w is rather geometrical, because of “time” means a concrete geometrical
configuration. But M -step evolution S = UM has the common form for all u,w:

[u,w] = [u(z),w(z)] S−→ [u(z+T),w(z+T)] , (4.19)

where the vector of the periods

T = I(T ) , (4.20)

is the same for all three “time” directions:

T =
∑
α

P+
xα

− P−
xα
=

∑
α

P−
yα

− P+
yα
=

∑
α

P+
zα

− P−
zα

, (4.21)

where, surely, the equality signs mean the equivalence of the divisors.



On Exact Solution of a Classical 3D Integrable Model 71

5 Conclusion

In this conclusion we would like to discuss possible applications of all the considerations
made in this paper. Usually the algebraic geometry gives rather formal results, which are
hard to apply to calculate something “physical”. Nevertheless one may use the consid-
erations above in order to make some important conclusions for the quantum evolution
model [2].
The quantum evolution model is based on the quantum analogue of the map R (2.5)

for the local Weyl algebra replacing the local Poisson algebra (2.6),

uj · wj = q wj · uj , (5.1)

where q is the commonly accepted parameter of the quantum deformation. The form of
the map R and the linear system in the quantum case differ very slightly form (2.5) and
(3.1,3.2), see [2] for the details. The determinant in the quantum case is well defined and
also gives the complete set of the quantum integrals of motion. With a great effort we do
not fall into speculations concerning a quantum jacobian.
Instead, turn to the case when q is N -th root of unity. For these q the Weyl algebra (5.1)

has the finite dimensional representations, so that N -th powers uN
j and wN

j are centres,
i.e. the parameters of the finite dimensional representation. The map for uN

j and wN
j

coincides with the functional map (2.5) up to κj �→ κN
j , i.e. exactly the case considered.

Actually the quantum map factorizes into a finite dimensional part (which is the vertex
R matrix for a Zamolodchikov – Bazhanov – Baxter – type model, giving the Boltzmann
weights for a statistical mechanics modelling) times the functional part for N -th powers.
The evolution operator factorizes also in this way. The quantum S matrix is a high power
of the quantum one-step evolution operator, and so in order to factorize it one has to carry
out all the functional parts outside. Doing this, one changes the parameters of the finite
dimensional one-step evolution operators. This situation corresponds to the consistent
changes of the Boltzmann weights parameters from one time layer to the other. In two
dimensions the simplest such models are known as the checkerboard models, and the
simplest three dimensional chess model was described in [14, 15]. Note, the parameters
uM ,wN , κ live on the lattice, i. e. uN

V , wN
V , κV are assigned to the vertex V as well

as the operators uV ,wV . Actually, for given spatial size of the kagome lattice M , one
may consider another effective spatial size M ′ of the lattice of parameters, such that M
is divisible by M ′. Small M ′ correspond to the small heterogeneity of the lattice, and
M ′ = 1 corresponds to the spatial homogeneity of the parameters.
In general the results of this paper would help one to parametrize the consistent evolu-

tion of the parameters of the finite dimensional one-step evolution operators or the transfer
matrices.
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