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Abstract

A review of a new separability theory based on degenerated Poisson pencils and the so-
called separation curves is presented. This theory can be considered as an alternative
to the Sklyanin theory based on Lax representations and the so-called spectral curves.

1 Introduction

The separation of variables belongs to the basic methods of mathematical physics from
the previous century. Originating from the early works of D’Alambert (the 18th century),
Fourier and Jacobi (the first half of the 19th century), for many decades it has been
the only known method of exact solution of dynamical systems. Let us briefly recall the
idea from classical mechanics. Consider a Hamiltonian mechanical system of 2n degrees
of freedom and integrable in the sense of Liouville/Arnold theorem. This means that
there exist n linearly independent functions hi(Hamiltonians) which are in involution with
respect to the canonical Poisson bracket

{hj , hk} = 0, j, k = 1, ..., n. (1.1)

A system of canonical variables (µi, λi)ni=1

{λi, λj} = {µi, µj} = 0, {λi, µj} = δij (1.2)

is called separated [1] if there exist n relations of the form

ϕi(λi, µi, h1, ..., hn) = 0, i = 1, ..., n (1.3)

joining each pair (µi, λi) of conjugate coordinates and all Hamiltonians hk, k = 1, ..., n.
Fixing the values of Hamiltonians hj = constj = aj one obtains from (1.3) an explicit
factorization of the Liouville tori given by the equations

ϕi(λi, µi, a1, ..., an) = 0, i = 1, ..., n. (1.4)
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In the Hamilton-Jacobi method, for a given Hamiltonian function hr(µ, λ) we are looking
for a canonical transformation (µ, λ) → (a, b) in the form bi = ∂W

∂ai
, µi = ∂W

∂λi
, where

W (λ, a) is a generating function given by the related Hamilton-Jacobi equation

hr(λ,
∂W

∂λ
) = ar. (1.5)

If (µ, λ) are separated coordinates, then

W (λ, a) =
n∑

i=1

Wi(λi, a) (1.6)

and the partial differential equation (1.5) splits into n ordinary differential equations

ϕi(λi,
∂W

∂λi
, a1, ..., an) = 0, i = 1, ..., n (1.7)

just of the form (1.4). In (a, b) coordinates the flow is trivial

(aj)tr = 0, (bj)tr = δjr (1.8)

and the implicit form of the trajectories λi(tr) is the following

bj(λ, a) =
∂W

∂aj
= δjrtr + const, j = 1, ..., n. (1.9)

So, given a set of separated variables, it is possible to solve a related dynamical system by
quadratures. In the 19th century and most of the present century, for a number of models
of classical mechanics the separated variables were either guessed or found by some ad hoc
methods. For example, in the second half of the 19th century, Neumann’s investigation of
a particle moving on a sphere under the action of a linear force [2] and Jacobi’s study of
the geodesics motion on an ellipsoid [3] exploited the separability of the Hamilton-Jacobi
equation to solve the equations of motion by quadratures. In 1891 Stäckel initiated the
program dealing the classification of Hamiltonian systems according to their separability
or nonseparability, presenting conditions for separability of the Hamilton-Jacobi equation
in orthogonal coordinates [4]. For three dimensional flat space, the 11 possible coordinate
systems in which separation may take place were deduced in a paper by Eisenhart [5].
They were all obtained as degenerations of the confocal ellipsoidal coordinates [6]. For
each of the coordinates Eisenhart [7] determined the form of the potential that permitted
a separation of variables. These potentials, designated Stäckel or separable potentials,
played a crucial role in Hamiltonian mechanics before the development of more qualitative
geometric methods for differential equations. Although in all classical papers the trans-
formation to separated coordinates was searched in the form of point transformations,
nevertheless they can be produced by an arbitrary canonical transformation involving
both coordinates and momenta.
A fundamental progress in the theory of separability was made in 1985, when Sklyanin

adopted the method of soliton systems, i.e. the Lax representation, to systematic deriva-
tion of separated variables (see his review article [1]). It was the first constructive theory
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of separated coordinates for dynamical systems. In his approach, the appropriate Hamil-
tonians appear as coefficients of the spectral curve, i.e. the characteristic equation of Lax
matrix. His method was successfully applied to separation of variables for many old and
new integrable systems [8]-[12].
In this paper we present a new constructive separability theory, which has been re-

cently intensely developed, based on a bi-Hamiltonian property of integrable systems. In
last decade a considerable progress has been made in construction of new integrable fi-
nite dimensional dynamical systems showing bi-Hamiltonian property. The majority of
them originate from stationary flows, restricted flows or nonlinearization of Lax equations
of underlying soliton systems [13]-[25]. Quite recently a fundamental property of such
systems has been discovered, i.e. their separability. It was proved [26]-[31] that most
bi-Hamiltonian finite dimensional chains, which start with a Casimir of the first Poisson
structure and terminate with a Casimir of the second Poisson structure, are integrable by
quadratures, through the solutions of the appropriate Hamilton-Jacobi equation.
The presented review article is based on results of papers [26]-[31] systematizing and

unifying them into a compact separability theory in the frame of the set of canonical
coordinates. The results derived so far are sufficiently promising to consider the theory as
an alternative or complement to the Sklyanin ones.

2 Preliminaries

Let us re-examine some facts about bi-Hamiltonian systems. We recall some definitions.
Let M be a differentiable manifold, TM and T ∗M its tangent and cotangent bundle.
At any point u ∈ M, the tangent and cotangent spaces are denoted by TuM and T ∗

uM ,
respectively. The pairing between them is given by the map < ·, · >: T ∗

uM × TuM → R.
For each smooth function F ∈ C∞(M), dF denotes the differential of F . M is said to be
a Poisson manifold if it is endowed with a Poisson bracket {·, ·} : C∞(M)× C∞(M) →
C∞(M), in general degenerate. The related Poisson tensor π is defined by {F,G}π(u) :=<
dG, π ◦ dF > (u) =< dG(u), π(u)dF (u) >. So, at each point u, π(u) is a linear map
π(u) : T ∗

uM → TuM which is skew-symmetric and fulfils the Jacobi identity. Any function
c ∈ C∞(M), such that dc ∈ kerπ, is called a Casimir of π. Let π0,π1 : T ∗M → TM be
two Poisson tensors on M. A vector field K is said to be a bi-Hamiltonian with respect to
π0 and π1 if there exist two smooth functions H,F ∈ C∞(M) such that

K = π0 ◦ dH = π1 ◦ dF. (2.1)

Poisson tensors π0 and π1 are said to be compatible if the associated pencil πλ = π1−λπ0 is
itself a Poisson tensor for any λ ∈ R. Moreover, if π0 is invertible, the tensor N = π1 ◦π−1

0 ,
called a recursion operator, is a Nijenhuis (hereditary) tensor of such a property that when
it acts on a given bi-Hamiltonian vector fieldK, it produces another bi-Hamiltonian vector
field being a symmetry generator of K. Hence, having the invariant Nijenhuis tensor, one
can construct a hierarchy of Hamiltonian symmetries and related hierarchy of constants
of motion for an underlying system, so important for its integrability.
Unfortunately, for majority of bi-Hamiltonian finite dimensional systems, both Poisson

structures are degenerate, so one cannot construct the recursion Nijenhuis tensor inverting
one of the Poisson structures. Nevertheless, due to the nonuniqueness of Hamiltonian



216 M. B;laszak

functions, determined up to an appropriate Casimir function, it is always possible to
construct a finite bi-Hamiltonian chain starting and terminating with Casimirs of π0 and
π1, respectively.

3 One-Casimir chains

Let us consider a Poisson manifold M of dimM = 2n+ 1 equipped with a linear Poisson
pencil

πλ = π1 − λπ0 (3.1)

of maximal rank, where π0 and π1 are compatible Poisson structures and λ is a continuous
parameter. As was first shown by Gel’fand and Zakharevich [32], a Casimir of the pencil
is a polynomial in λ of an order n

hλ = h0λ
n + h1λ

n−1 + ...+ hn (3.2)

and generates a bi-Hamiltonian chain

πλ ◦ dhλ = 0⇐⇒

π0 ◦ dh0 = 0
π0 ◦ dh1 = K1 = π1 ◦ dh0

π0 ◦ dh2 = K2 = π1 ◦ dh1
...

π0 ◦ dhn = Kn = π1 ◦ dhn−1

0 = π1 ◦ dhn,

(3.3)

where K ≡ K1, H ≡ h1and F ≡ h0. In the paper we restrict our considerations to a class
of canonical coordinates (q, p, c), where q = (q1, ..., qn)T , p = (p1, ..., pn)T are generalized
coordinates and c is a Casimir coordinate. Hence, π0 always stays a canonical Poisson
matrix. This restriction simplifies the theory in the sense that it makes a Marsden-Ratiu
projection procedure [33], [34] trivial.

3.1 Darboux-Nijenhuis representation

To understand the theory better, let us start from the end in some sense, i.e. from a
system written in separated coordinates (µi, λi)ni=1. An interesting observation is that
such a system can be represented by n different points of some curve. We start from
Gel’fand and Zakharevich case. Actually, let us consider a curve in (λ, µ) plane, in the
particular form

f(λ, µ) = hλ, hλ = cλn + h1λ
n−1 + ...+ hn, (3.4)

where f(λ, µ) is an arbitrary smooth function. Then, let us take n different points (µi, λi)
from the curve:

f(λi, µi) = cλn
i + h1λ

n−1
i + ...+ hn, i = 1, ..., n, (3.5)

which will define our separated coordinates as they are of the form (1.3). The explicit
dependence of hk on (µi, λi, c)ni=1 is given by the solution of n linear equations (3.5), while
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for fixed values of hk = ak and µi = ∂Wi
∂λi

the system (3.5) allows us to solve the appropriate
Hamilton-Jacobi equations.
Here, we have to mention that the idea to relate the multi-Hamiltonian property to an
m-parameter family of curves comes from P. Vanhaecke [35].
In refs. [26]-[29] the bi-Hamiltonian chain was constructed for a separation curve in

the form (3.4). Actually, the Hamiltonian functions hk found from the system (3.5) take
the following compact form

hk(λ, µ, c) =
n∑

i=1

ρi
k−1(λ)

f(λi, µi)
∆i(λ)

+ cρk(λ), k = 1, ..., n

h0 = c,

(3.6)

where

∆i(λ) :=
∏
j �=i

(λi − λj), (3.7)

ρk(λ) := (−1)k
∑

j1, .., jk
j1 < .. < jk

λj1 · ... · λjk
, k = 1, ..., n, (3.8)

are the so-called Viete polynomials (symmetric polynomials) and

ρi
k−1(λ) := ρk−1(λi = 0) = −∂ρk(λ)

∂λi
. (3.9)

For example, for n = 2 we have

ρ1 = −λ1 − λ2, ρ2 = λ1λ2 (3.10)

and for n = 3

ρ1 = −λ1 − λ2 − λ3, ρ2 = λ1λ2 + λ1λ3 + λ2λ3, ρ3 = −λ1λ2λ3. (3.11)

The bi-Hamiltonian chain (3.3) is constructed with respect to the following compatible
Poisson matrix

π0 =


 0 I 0

−I 0 0
0 0 0


 , π1 =


 0 Λ h1,µ

−Λ 0 −h1,λ

− (h1,µ)
T (h1,λ)

T 0


 , (3.12)

where Λ = diag(λ1, ..., λn) and h1,µ :=
(

∂h1
∂µ1
, ..., ∂h1

∂µn

)T
. Notice that the last column of π1

is just the first vector field K1. All Hamiltonians hk are in involution with respect to both
Poisson structures π0 and π1.
Applying the following important relations

ρr(λ) = −
n∑

i=1

ρi
r−1

λn
i

∆i
, (3.13)

−
n∑

i=1

∂ρr

∂λi

λm
i

∆i
=

n∑
i=1

ρi
r−1(λ)λ

m
i

∆i
=

{
1, m = n− r
0, m 
= n− r

}
, r = 1, .., n (3.14)
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and the decomposition (1.6), the Hamilton-Jacobi equations

hr(λ,
∂W

∂λ
, c) = ar, r = 1, ..., n (3.15)

turn into the form
n∑

k=1

ρk
r−1(λ)[f(λk, ∂Wk/∂λk)− cλn

k ]
∆k

= ar, r = 1, ..., n (3.16)

with the solution

f(λk, ∂Wk/∂λk, c) = cλn
k + a1λ

n−1
k + ...+ an, k = 1, ..., n. (3.17)

Hence, W (λ, a) can be obtained by solving n decoupled first-order ODEs (3.17) and the
family of dynamical systems (3.3) can be solved by quadratures.
Now, let us pass to the projection of the Poisson pencil πλ onto a symplectic leaf S

of π0 (dimS = 2n) fixing the value of c. Generally, one has to apply the Marsden-Ratiu
theorem which in this case is trivial, as obviously θλ = θ1 − λθ0, where

θ0 =
(

0 I
−I 0

)
, θ1 =

(
0 Λ
−Λ 0

)
, (3.18)

is a nondegenerate Poisson pencil on S. Hence, the related Nijenhuis tensor

N = θ1 ◦ θ−1
0 =

(
Λ 0
0 Λ

)
(3.19)

is diagonal and this is the reason why we will refer below to the separated coordinates as to
the Darboux-Nijenhuis (DN) coordinates. Notice that ρi (3.8) are coefficients of minimal
polynomial of the Nijenhuis tensor

(det(N − λ))1/2 = λn +
n∑

i=1

ρiλ
n−i =

n∏
i=1

(λ− λi). (3.20)

On S the chain (3.3) turns into the form

θ0 ◦ dh1 = K1 = − 1
ρn
θ1 ◦ dhn

θ0 ◦ dh2 = K2 = −ρ1
ρn
θ1 ◦ dhn + θ1 ◦ dh1

...

θ0 ◦ dhn = Kn = −ρn−1

ρn
θ1 ◦ dhn + θ1 ◦ dhn−1.

(3.21)

The last equation terminates the sequence of vector fields Kr in the hierarchy as for the
next equation from the chain we have

θ0 ◦ dhn+1 = Kn+1 = −θ1 ◦ dhn + θ1 ◦ dhn = 0. (3.22)

Obviously N is not a recursion operator for the hierarchy (3.21). Because of the form of
the first equation, the vector field K1 is called a quasi-bi-Hamiltonian [36]-[39] and the
chain (3.21) could be treated alternatively as a starting point of the separability theory
for the case of c = 0.
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3.2 Arbitrary canonical representation

Now, let us consider an arbitrary canonical transformation

(q, p)→ (λ, µ) (3.23)

independent of a Casimir coordinate c (not necessarily a point transformation!). The
advantage of staying inside such a class of transformations is that the clear structure
of a pencil is preserved and the Marsden-Ratiu projection of the Poisson pencil is still
trivial. Of course, the most general case of multi-Hamiltonian separability theory takes
place when one goes beyond the set of canonical coordinates. i.e. when one tries to find
DN coordinates starting from the pencil written in a non-canonical representation. But
then the simple structure of degenerated Poisson pencil is lost and the nontrivial problem
of the Marsden-Ratiu projection for such pencil appears (see for example ref. [41]).
Applying the transformation (3.23) to Hamiltonian functions (3.6) and Poisson matrices

(3.12) one finds that

hk(q, p, c) = hk(q, p) + cbk(q, p), k = 1, ..., n (3.24)

and

π0 =
(
θ0 0
0 0

)
, θ0 =

(
0 I
−I 0

)
,

π1 =

(
θ1 K1

−KT
1 0

)
, θ1 =

(
D(q, p) A(q, p)

−AT (q, p) B(q, p)

)
,

(3.25)

where A,B and D are n × n matrices. The nondegenerate Poisson pencil θλ on S gives
rise to the related Nijenhuis tensor N and its adjoint N∗ in (q, p) coordinates in the form

N = θ1 ◦ θ−1
0 =

(
A −D
B AT

)
, N∗ = θ−1

0 ◦ θ1 =
(
AT −B
D A

)
. (3.26)

Obviously, in a real situation we start from a given bi-Hamiltonian chain (3.24)-(3.26)
in canonical coordinates (q, p, c), derived by some method (see for example [13]-[25]), and
trying to find the DN coordinates which diagonalize the appropriate Nijenhuis tensor and
are separated coordinates for the considered system. So now we pass to a systematic
derivation of the inverse of transformation (3.23).
The important intermediate step of the construction of DN coordinates are the so called

Hankel-Fröbenious (HF) non-canonical coordinates (u, v) [35], [40], related to the DN ones
through the following transformation

ui = ρi(λ1, ..., λn),

µi =
n∑

k=1

vkλ
n−k
i , i = 1, ..., n. (3.27)

In (u, v) coordinates one finds

θ0 =
(

0 U
−UT 0

)
, U =




0 0 · · · 1
0 · · · 1 u1

· · · · · · · · · · · ·
1 u1 · · · un−1


 ,
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N =
(
F 0
0 F

)
, F =




−u1 1 · · · · · · 0
−u2 0 1 · · · 0
· · · · · · · · · · · · · · ·

−un−1 0 · · · · · · 1
−un 0 · · · · · · 0


 ,

θ1 = N ◦ θ0 =
(

0 FU
−FUT 0

)
, N∗ = NT .

Moreover the differentials dui, dvi satisfy the following recursion relations [40], [41]

N∗ ◦ du1 = du2 − u1du1,
N∗ ◦ du2 = du3 − u2du1,

...
N∗ ◦ dun−1 = dun − un−1du1,
N∗ ◦ dun = −undu1,

N∗ ◦ dv1 = dv2 − u1dv1,
N∗ ◦ dv2 = dv3 − u2dv1,

...
N∗ ◦ dvn−1 = dvn − un−1dv1,
N∗ ◦ dvn = −undv1.

(3.28)

Note that vector fields θ0 ◦ du1 and θ0 ◦ dv1 are quasi-bi-Hamiltonian.
Now we relate the canonical coordinates (q, p, c) to the DN separated coordinates

(λ, µ, c). From the minimal polynomial of N (3.26) we get

uk = ζk(q, p), k = 1, ..., n. (3.29)

Conjugate coordinates vk = vk(q, p), k = 2, ..., n are found from the recursion formula
(3.28) while v1 = v1(q, p) coordinate from relations

{uj , v1}θk
= δj,n−k, j = 1, ..., n, k = 0, ...n− 1. (3.30)

Hence we get

vk = ϑk(q, p), k = 1, ..., n. (3.31)

Eliminating (u, v) coordinates from (3.27), (3.29) and (3.31) we derive the desired relations

χi(q, p;λ, µ) = 0, i = 1, ..., 2n. (3.32)

Now let us concentrate on a special but important case of point transformation between
(q, p, c) and (λ, µ, c) variables. Then

θ1 =
(

0 A(q)
−AT (q) B(q, p)

)
,

N =
(

A(q) 0
B(q, p) AT (q)

)
,

(3.33)
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where matrix elements of B are at most linear in p coordinates, so coefficients of minimal
polynomial of N are equal to coefficients of the characteristic polynomial of A. Hence, we
find the first part of the canonical transformation in the form

ρi(λ) = ηi(q), i = 1, ..., n =⇒ qk = ψk(λ), k = 1, ..., n . (3.34)

The complementary part of the transformation we get from the generating function

G(p, λ) =
n∑

i=1

piψi(λ). (3.35)

Then,

µi =
∂G

∂λi
, i = 1, ..., n =⇒ pk = ϕk(λ, µ), k = 1, ..., n. (3.36)

At the end of this subsection we introduce the notion of an inverse bi-Hamiltonian
separable chains. In ref. [29] it was demonstrated that for each separable bi-Hamiltonian
chain (3.3), (3.24), (3.25), (3.26) in canonical coordinates (q, p, c) there exists a related
inverse bi-Hamiltonian separable chain

π0 ◦ dh′n+1 = 0
π0 ◦ dh′n = K ′

n= π−1 ◦ dh′n+1
...

π0 ◦ dh′r = K ′
r= π−1 ◦ dh′r+1
...

π0 ◦ dh′1 = K ′
1= π−1 ◦ dh′2
0 = π−1 ◦ dh′1

(3.37)

where h′n+1 = h0 = c,

π−1 =

(
θ−1 K

′
n

−K ′T
n 0

)
, θ−1 = θ0 ◦ θ−1

1 ◦ θ0 = N−2 ◦ θ1, (3.38)

K
′
n = θ0 ◦ dh′n and

h′r(q, p, c) = hr(q, p) + cb′r(q), b′r(q) =
br−1(q)
bn(q)

, r = 1, ..., n. (3.39)

Notice that in both chains the respective Hamiltonians (3.24), (3.39) and related vector
fields differ only by the c−dependent parts. In the case of a point transformation to the
DN coordinates, when θ1 takes the form (3.33), we get

θ−1
1 =

( (
A−1

)T ◦D ◦A−1 − (
A−1

)T

A−1 0

)
(3.40)

and

θ0 ◦ θ−1
1 ◦ θ0 =

(
0 A−1

− (
A−1

)T − (
A−1

)T ◦D ◦A−1

)
. (3.41)
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Notice that both chains (3.3) and (3.37) given in natural coordinates can be transformed
to the Nijenhuis bi-Hamiltonian form (3.6)-(3.12), where the canonical transformation can
be derived from the relation ρr(λ) = br(q), r = 1, ..., n in the first case and from the
relations ρr(λ) =

bn−r(q)
bn(q) , r = 1, ..., n in the second case.

Consider the set of extended functions

hr(q, p; c, c′) = hr(q, p) + cbr(q) + c′b′(q). (3.42)

They can be simultaneously put into the bi-Hamiltonian and the inverse bi-Hamiltonian
hierarchies. In the first case c is treated as the Casimir variable and c′ as the parameter
and in the second case c is treated as the parameter and c′ as the Casimir variable.

3.3 Examples

We shall illustrate the theory presented by a few representative examples. More examples
can be found in refs. [26]-[29]. In all examples from this section canonical transformations
between natural and separated coordinates are point like. An example of a nonpoint
transformation will be given at the end of this paper.

Example 1. The one-Casimir extension of the Henon-Heiles system.
Let us consider the integrable case of the Henon-Heiles system generated by the Hamilto-
nian H = 1

2p
2
1 +

1
2p

2
2 + q

3
1 +

1
2q1q

2
2. Its one-Casimir extension reads [22]

(q1)tt = −3q21 − 1
2
q22 + c, (q2)tt = −q1q2 (3.43)

and belongs to the bi-Hamiltonian chain

π0 ◦ dh0 = 0
π0 ◦ dh1 = K1 = π1 ◦ dh0

π0 ◦ dh2 = K2 = π1 ◦ dh1

0 = π1 ◦ dh2,

(3.44)

where

h0 = c,

h1 = h1(q, p) + cb1(q) =
1
2
p21 +

1
2
p22 + q

3
1 +

1
2
q1q

2
2 − cq1,

h2 = h2(q, p) + cb2(q) =
1
2
q2p1p2 − 1

2
q1p

2
2 +

1
16
q42 +

1
4
q21q

2
2 − 1

4
cq22,

(3.45)

π1 =




0 0 q1
1
2q2 p1

0 0 1
2q2 0 p2

−q1 −1
2q2 0 1

2p2 −h1,q1

−1
2q2 0 −1

2p2 0 −h1,q2

−p1 −p2 h1,q1 h1,q2 0


 . (3.46)
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The construction of the related inverse bi-Hamiltonian chain, according to the results from
the previous subsection, gives the following results:

π0 ◦ dh′3 = 0
π0 ◦ dh′2 = K ′

2 = π−1 ◦ dh′3
π0 ◦ dh′1 = K ′

1 = π−1 ◦ dh′2
0 = π−1 ◦ dh′1,

(3.47)

where

h′1 = h1(q, p)− 4
q22
c,

h′2 = h2(q, p) +
4q1
q22
c,

h′3 = c,

(3.48)

π−1 =




0 0 0 2/q2 1
2q2p2

0 0 2/q2 −4q1/q22 1
2q2p1 − q1p2

0 −2/q2 0 2p2/q22 −h′2,q1

−2/q2 4q1/q22 −2p2/q22 0 −h′2,q2

−1
2q2p2 −1

2q2p1 + q1p2 h′2,q1
h′2,q2

0


 (3.49)

and Newton equations related with the natural Hamiltonian h′1 are:

(q1)tt = −3q21 − 1
2
q22, (q2)tt = −q1q2 −

(
2
q2

)3

c, (3.50)

being just the second well known one-Casimir extension [16] of the Henon-Heiles system
considered. Both systems (3.43) and (3.50) can be transformed to the Nijenhuis chain
(3.6)–(3.12) through the respective transformations

q1 = λ1 + λ2, p1 =
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1
,

q2 = 2
√

−λ1λ2, p2 =
√
−λ1λ2

(
µ1

λ1 − λ2
+

µ2

λ2 − λ1

)
,

f(λi, µi) =
1
2
λiµ

2
i + λ

4
i ,

(3.51)

and

q1 =
1
λ1
+
1
λ2
, p1 = λ1λ2

(
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1

)
,

q2 =
2√−λ1λ2

, p2 = −
√
−λ1λ2

(
λ2

1µ1

λ1 − λ2
+

λ2
2µ2

λ2 − λ1

)
,

f(λi, µi) =
1
2
λ4

iµ
2
i + λ

−3
i .

(3.52)
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Example 2. One-Casimir extension of the Kepler problem in the plane.
Let us consider the classical problem of a particle in the plane under the influence of the
Kepler potential and an additional homogeneous field force. The Hamiltonian function
reads

h1(q, p, c) =
1
2
p21 +

1
2
p22 −

a√
q21 + q

2
2

− cq2, a = const. (3.53)

There is a second independent integral of the motion

h2(q, p, c) = −1
2
q2p

2
1 +

1
2
q1p1p2 +

1
2

aq2√
q21 + q

2
2

− 1
4
cq21, (3.54)

which together with h0 = c allows us to construct a bi-Hamiltonian chain (3.44) with the
second Poisson structure in the form

π1 =




0 0 0 1
2q1 p1

0 0 1
2q1 q2 p2

0 −1
2q1 0 −1

2p1 −h1,q1

−1
2q1 −q2 1

2p1 0 −h1,q2

−p1 −p2 h1,q1 h1,q2 0


 . (3.55)

The inverse bi-Hamiltonian chain (3.47) is given for functions

h′1(q, p, c) =
1
2
p21 +

1
2
p22 −

a√
q21 + q

2
2

− 4
q21
c,

h′2(q, p, c) = −1
2
q2p

2
1 +

1
2
q1p1p2 +

1
2

aq2√
q21 + q

2
2

+
4q2
q21
c,

h′3 = c,

(3.56)

and the second Poisson tensor in the form

π−1 =




0 0 −4q2/q21 2/q1 1
2q2p1 − q1p2

0 0 2/q1 0 1
2q2p2

4q2/q21 −2/q1 0 −2p1/q21 −h′2,q1

−2/q1 0 2p1/q21 0 −h′2,q2

−1
2q2p1 + q1p2 −1

2q2p2 h′2,q1
h′2,q2

0


 . (3.57)

The transformations to DN coordinates for both chains are the following

q1 = 2
√
λ1λ2, p1 =

√
λ1λ2

(
µ1

λ1 − λ2
+

µ2

λ2 − λ1

)
,

q2 = λ1 + λ2, p2 =
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1
,

f(λi, µi) =
1
2
λiµ

2
i +

1
2
a,

(3.58)

and

q1 =
2√−λ1λ2

, p1 =
√
−λ1λ2

(
λ2

1µ1

λ1 − λ2
+

λ2
2µ2

λ2 − λ1

)
,

q2 =
λ1 + λ2

λ1λ2
, p2 = λ1λ2

(
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1

)
,

f(λi, µi) =
1
2
λ4

iµ
2
i +

1
2
aλi.

(3.59)
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Example 3. One-Casimir extension of elliptic separable potentials.
In refs.[26],[28] it was proved that every natural Hamiltonian system

H =
1
2

n∑
i=1

p2i + V (q) +
1
2
c(q, q), (3.60)

where (., .) means the scalar product, which admits in extended phase space M � (q, p, c)
the bi-Hamiltonian formulation


 q
p
c




t

= π0 ◦ dh1 = π1 ◦ dh0, (3.61)

where π0 is a canonical Poisson structure,

π1 =




0 A− 1
2q ⊗ q h1,p

−A+ 1
2q ⊗ q 1

2p⊗ q − 1
2q ⊗ p −h1,q

− (h1,p)
T (h1,q)

T 0


 , (3.62)

A = diag(α1, ..., αN ), αi−different positive constants, h0 = c, h1 = H + cρ1(α), is sep-
arable in generalized elliptic coordinates. This bi-Hamiltonian formulation generates the
chain (1.2) [25] of commuting bi-Hamiltonian vector fields, where

hr(q, p, c;α) = hr(q, p;α) + cbr(q;α),

br(q;α) = ρr(α) +
1
2

r−1∑
k=1

ρk(α)(q, Ar−k−1q), r = 1, ..., n− 1,

bn(α) = ρn(α)[1− 1
2
(q, A−1q)],

hr(q, p;α) =
r∑

k=0

ρk(α)hr−k, hs =
1
2

n∑
i=1

αs−1
i Ri,

Ri =
∑
i�=j

qipj − qjpi
αi − αj

+ p2i + Vi(q),
n∑

i=1

Vi(q) = V (q),

(3.63)

{H,Ri}π0 = 0, i = 1, ..., n and ρr(α) are Viete polynomials of α.
On the other hand, according to our procedure, the inverse bi-Hamiltonian chain (3.47)

for one-Casimir extension of potentials separable in elliptic coordinates reads

h′r(q, p, c;α) = hr(q, p;α) + c
br−1(q;α)
bn(q;α)

, (3.64)

π−1 =




0 B−1 hn,p

−B−1 −B−1(12p⊗ q − 1
2q ⊗ p)B−1 −hn,q

− (hn,p)
T (hn,p)

T 0


 , (3.65)
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where

B = A− 1
2
q ⊗ q,

B−1 =
1
|B|

[
∂α |B|+ 1

2
(∂αq ⊗ ∂αq) |A|

]
,

∂α = diag
(
∂

∂α1
, ...,

∂

∂αn

)
,

|B| = |A| − 1
2
(q, ∂α |A| q).

(3.66)

Notice that now, the natural Hamiltonian in the inverse hierarchy is the last one of the
form

H ′ = h′1(q, p, c) =
1
2

n∑
i=1

p2i + V (q) +
c

ρn(α)[1− (q, A−1q)]
. (3.67)

The basic example here is the Garnier system with the potential V (q) = 1
4(q, q)

2− 1
2(q, Aq).

This potential is a member of an infinite family of permutationally symmetric potentials
separable in generalized elliptic coordinates [17]. The point transformation to DN sepa-
rated coordinates can be constructed from the relations

ρr(λ) = ρr(α) +
1
2

r−1∑
k=1

ρk(α)(q, Ar−k−1q), r = 1, ..., n. (3.68)

But so defined DN coordinates are just the generalized elliptic coordinates λ1, ..., λn defined
by the relation

1 +
1
2

n∑
k=1

q2k
z − αk

=

∏n
j=1(z − λj)∏n
k=1(z − αk)

. (3.69)

The proof is given in refs. [26] and [28].

More examples of separated systems by the method presented the reader can find in
refs. [26]-[29],[37]-[39].

4 Multi-Casimir unsplit chains

In the previous section a separability theory of one-Casimir bi-Hamiltonian chains was
reviewed. Here we pass to the generalization of the theory and include multi-Casimir
cases. This procedure considerably extends the class of separable systems and in general
covers a new class of chains, i.e. the so-called split chains. In the following section we
consider the simplest generalization of unsplit multi-Casimir chains related to the extension
of the separation curve (3.4) of the form

f(λ, µ) = hλ, hλ = cnλ2n−1 + ...+ c1λn + h1λ
n−1 + ...+ hn. (4.1)

Choosing other admissible forms of the separation curve with more then one Casimir,
one can construct split bi(multi)-Hamiltonian chain, i.e. the chain which splits onto a few
bi(multi)-Hamiltonian sub-chains, each starting and terminating with some Casimir of the
appropriate Poisson structure. The work on split cases is still in progress but some results
are presented in the next section.
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4.1 Multi-Hamiltonian Darboux-Nijenhuis chains

In ref. [30] the multi-Hamiltonian chain was constructed for the separation curve in the
form (4.1). Actually, the Hamiltonian functions hk found from the system

f(λi, µi) = cnλ2n−1
i + ...+ c1λn

i + h1λ
n−1
i + ...+ hn, i = 1, ..., n, (4.2)

take the following form

hr(λ, µ, c) = −
n∑

i=1

∂ρr

∂λi

f(λi, µi)
∆i

+
n∑

j=1

cjβj,r(λ), r = 1, ..., n, (4.3)

where β1,r(λ) ≡ ρr(λ) and βm,r ,m = 2, ..., n, are defined by the recursive formula

βm,r = βm−1,r+1 − βm−1,1 · β1,r. (4.4)

Notice that Hamiltonians (4.3) are just Hamiltonians (3.6) supplemented with extra terms,
linear with respect to additional Casimirs ci, i = 2, ..., n. On the extended phase space
M � (λ1, ..., λn, µ1, ..., µn, c1, ..., cn) functions (4.3) and h1−r(c) = cr, r = 1, ..., n form(
n+ 1
2

)
bi-Hamiltonian chains, each generated by a Poisson pencil πλk−1 = πk − λk−iπi

of order 1 ≤ (k − i) ≤ n,

πλk−i ◦ dhλ =⇒

πi ◦ dh−i = 0
πi ◦ dh−i+1 = K1 = πk ◦ dh−k+1

πi ◦ dh−i+2 = K2 = πk ◦ dh−k+2
...

πi ◦ dh−i+j = Kj = πk ◦ dh−k+j
...

πi ◦ dh−i+n = Kn = πk ◦ dh−k+n

0 = πk ◦ dh−k+n+1

0 ≤ i < k ≤ n, (4.5)

with respect to (n+ 1) compatible 3n× 3n Poisson structures of rank 2n

π0 =



θ0 0 · · · 0
0
... 0
0


 , π1 =




θ1 K1 0 · · · 0
−KT

1

0
... 0
0


 ,

π2 =




θ2 K2 K1 0 · · · 0
−KT

2

−KT
1

0 0
...
0



, ....., (4.6)
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πn =




θn Kn Kn−1 · · · K1

−KT
n

−KT
n−1
... 0

−KT
1



,

where

θm = Nm ◦ θ0 =
(

0 Λm

−Λm 0

)
, Λm = diag(λm

1 , ..., λ
m
n ) (4.7)

Km = (hm,µ,−hm,λ)T and each Poisson structure πm has n Casimir functions:
cm+1, cm+2, . . . , cn, hn, . . . , hn−m+1. Moreover all functions hr(λ, µ, c), r = 1, ..., n are in
involution with respect to an arbitrary Poisson tensor πk, k = 1, ..., n.

Now, we integrate equations of motion from the hierarchy (4.5) solving the Hamilton-
Jacobi equation for Hamiltonians (4.3)

hr(λ,
∂W

∂λ
, c) =

n∑
k=1

ρk
r−1(λ)fk(λk, ∂W/∂λk)

∆k
+

n∑
i=1

ciβi,r(λ) = ar. (4.8)

First we demonstrate the separability of this equation. Taking the generating function
W (λ, a) in the form W (λ, a) =

∑n
i=1Wi(λi, a) and the following representation of βk,r

βk,r(λ) =
n∑

i=1

∂ρr

∂λi

λn+k−1
i

∆i
= −

n∑
i=1

ρi
r−1

λn+k−1
i

∆i
, (4.9)

eq.(4.8) turns into the form

n∑
k=1

ρk
r−1(λ)[f(λk, ∂Wk/∂λk)−

∑n
i=1 ciλ

n−1+i
k ]

∆k
= ar. (4.10)

Applying relation (3.14) we get the solution of eq.(4.10) in the form

f(λk, ∂Wk/∂λk) = g(λk), k = 1, ..., n, (4.11)

where

g(ξ) = cnξ2n−1 + ...+ c1ξn + a1ξn−1 + ...+ an−1ξ + an. (4.12)

Hence, W (λ, a) can be obtained by solving n decoupled first-order ODEs (4.11). For
example, if

f(λi, µi) = ϕ(λi)f(µi) + ψ(λi), (4.13)

then we obtain

W (λ, a) =
n∑

k=1

∫ λk

f−1

(
g(ξ)− ψ(ξ)
ϕ(ξ)

)
dξ. (4.14)
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In new canonical variables ai, bi = ∂W
∂ai
, the Hamiltonians hr(λ, µ, c) become hr = ar with

bi =
∂W

∂ai
=

n∑
k=1

∫ λk (
f−1

)′ ξn−i

ϕ(ξ)
dξ, (4.15)

where
(
f−1

)′ means the derivative of f−1. As in the new coordinates each hr generates a
trivial flow

(aj)tr = −∂hr

∂bj
= 0, (bj)tr =

∂hr

∂aj
= δj,r, (cj)tr = 0, (4.16)

hence

bi = ti + const. (4.17)

Combining (4.15) with (4.17) we arrive at implicit solutions for the trajectories λi(tr),
with respect to the evolution parameter tr in the form

n∑
k=1

∫ λk (
f−1

)′ ξn−i

ϕ(ξ)
dξ = δi,r tr + const, i = 1, ..., n. (4.18)

4.2 Multi-Hamiltonian chains in arbitrary canonical coordinates

Let us introduce arbitrary canonical coordinates (q, p, c) related to the Darboux-Nijenhuis
coordinates (λ, µ, c) trough some canonical transformation

qk = ζk(λ, µ), pk = ηk(λ, µ), k = 1, ..., n. (4.19)

Applying the inverse of this transformation to Hamiltonian functions (4.3) and Poisson
matrices (4.6) one finds that

hr(q, p, c) = hr(q, p) +
n∑

i=1

cibi,r(q) (4.20)

and the nondegenerate part θm of rank 2n of each πm(also implectic) takes now the form

θm = Nm ◦ θ0 =
(
Dm(q, p) Am(q, p)
−AT

m(q, p) Bm(q, p)

)
, m = 1, ..., n. (4.21)

Conversely, if we have a multi-Hamiltonian chain in (q, p, c) coordinates and the Nijen-
huis tensor

N(q, p) =
(
D1(q, p) A1(q, p)
−AT

1 (q, p) B1(q, p)

)
·
(

0 I
−I 0

)−1

=
(
A1(q, p) −D1(q, p)
B1(q, p) AT

1 (q, p)

)
(4.22)

is nondegenerate and has n distinct eigenvalues λi each of multiplicity 2, then the canonical
transformation (4.19) transforms a given chain to the one considered in the previous
subsection.
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The admissible reductions of the number of Casimir variables are the following. For
arbitrary 1 ≤ m < n, let ci 
= 0, 1 ≤ i ≤ m and ci = 0 for m < i ≤ n. The first
m Poisson structures πi, i ≤ m survive the projection (λ, µ, c1, ..., cn) ∈ M → M �
(λ, µ, c1, ..., cm) and we have still

(
m+1

2

)
bi-Hamiltonian chains (4.5). In the limit c1 =

... = cn = 0, the systems considered lose the bi-Hamiltonian property, turning into the
quasi-bi-Hamiltonian systems on a symplectic manifold M � (q, p), being still separable
and integrable by quadratures. Moreover, because of the property (4.9), each of the
multi-Hamiltonian systems considered on a Poisson manifold M � (q, p, c) has a quasi-bi-
Hamiltonian representation on a symplectic leaf S of π0 (dimS = 2n) fixing the values of
all ci.

4.3 Examples

The theory extended in this section will be illustrated by several representative examples
of already known as well as new multi-Hamiltonian systems.

Example 4. Stationary t2−flow of dispersive water waves.
The Hamiltonian functions and Poisson structures in Ostrogradsky variables are as follows
[42]:

h1(q, p, c) = −4p1p2 + 5q2p21 −
5
8
q1q

3
2 − 3

4
q21q2 −

7
64
q52 +

1
2
q2c1 + (

1
2
q1 +

1
8
q22)c2,

h2(q, p, c) = q1p21 + 4q2p1p2 −
5
4
q22p

2
1 − 2p22 +

5
64
q1q

4
2 − 3

16
q21q

2
2 − 1

4
q31 +

45
6 · 128q

6
2

+ (
1
2
q1 +

3
8
q22)c1 − (

1
4
q1q2 − 3

16
q32)c2,

π0 =




0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



,

π1 =




0 0 −3
2q2 −1

2q1 − 15
8 q

2
2 h1,p1 0

0 0 1 q2 h1,p2 0
3
2q2 −1 0 −p1 −h1,q1 0

1
2q1 +

15
8 q

2
2 −q2 p1 0 −h1,q2 0

−h1,p1 −h1,p2 h1,q1 h1,q2 0 0
0 0 0 0 0 0



,

π2 =




0 0 3
8q

2
2 − 1

2q1 −1
4q1q2 − 15

16q
3
2 h2,p1 h1,p1

0 0 −1
2q2 −1

2q1 − 7
8q

2
2 h2,p2 h1,p2

−3
8q

2
2 +

1
2q1

1
2q2 0 1

2q2p1 −h2,q1 −h1,q1

1
4q1q2 +

15
16q

3
2

1
2q1 +

7
8q

2
2 −1

2q2p1 0 −h2,q2 −h1,q2

−h2,p1 −h2,p2 h2,q1 h2,q2 0 0
−h1,p1 −h1,p2 h1,q1 h1,q2 0 0



.
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Hence, we have three bi-Hamiltonian chains (4.5)

π0 ◦ dc1 = 0
π0 ◦ dh1 = K1 = π1 ◦ dc1
π0 ◦ dh2 = K2 = π1 ◦ dh1

0 = π1 ◦ dh2,

π0 ◦ dc1 = 0
π0 ◦ dh1 = K1 = π2 ◦ dc2
π0 ◦ dh2 = K2 = π2 ◦ dc1

0 = π2 ◦ dh1,

π1 ◦ dc2 = 0
π1 ◦ dc1 = K1 = π2 ◦ dc2
π1 ◦ dh1 = K2 = π2 ◦ dc1

0 = π2 ◦ dh1.

(4.23)

The canonical transformation to the Darboux-Nijenhuis coordinates reads

q1 = −(3λ2
1 + 3λ

2
2 + 4λ1λ2),

q2 = −2(λ1 + λ2),

p1 =
1
2
µ2 − µ1

λ1 − λ2
,

p2 = −1
2
λ1(3µ2 − 2µ1)− λ2(3µ1 − 2µ2)

λ1 − λ2
,

where now hr, r = 1, 2 take the form (4.3) with

fi(λi, µi) = 2λ6
i −

1
2
µ2

i ,

β1,1 = ρ1, β1,2 = ρ2 (3.10) and

β2,1 = −λ2
1 − λ2

2 − λ1λ2,

β2,2 = λ1λ2(λ1 + λ2).
(4.24)

Example 5. Two-Casimir extension of the Henon-Heiles system.
In Example 1 one-Casimir extension of the Henon-Heiles system was considered in the
form

(q1)tt = −3q21 − 1
2
q22 + c, (q2)tt = −q1q2,

with two constants of motion (3.45) and the related transformation to Darboux-Nijenhuis
coordinates (3.51). For a two-Casimir extension we get immediately

β2,1 = −[(λ1 + λ2)2 − λ1λ2] = −(q21 +
1
4
q22),

β2,2 = λ1λ2(λ1 + λ2) = −1
4
q1q

2
2.

(4.25)

Hence

h1 = H =
1
2
p21 +

1
2
p22 + q

3
1 +

1
2
q1q

2
2 − c1q1 − (q21 +

1
4
q22)c2,

h2 =
1
2
q2p1p2 − 1

2
q1p

2
2 +

1
16
q42 +

1
4
q21q

2
2 − 1

4
q22c1 −

1
4
q1qc2,

(4.26)
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where the Newton’s equations related to the energy H are

(q1)tt = −3q21 − 1
2
q22 + c1 + 2q1c2, (q2)tt = −q1q2 + 12q2c2. (4.27)

This is tri-Hamiltonian system with the following Poisson structures

π0 =




0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



,

π1 =




0 0 q1
1
2q2 h1,p1 0

0 0 1
2q2 0 h1,p2 0

−q1 −1
2q2 0 1

2p2 −h1,q1 0
−1

2q2 0 −1
2p2 0 −h1,q2 0

−h1,p1 −h1,p2 h1,q1 h1,q2 0 0
0 0 0 0 0 0



,

π2 =




0 0 q21 +
1
4q

2
2

1
2q1q2 h2,p1 h1,p1

0 0 1
2q1q2

1
4q

2
2 h2,p2 h1,p2

−q21 − 1
4q

2
2 −1

2q1q2 0 1
2q1p2 −h2,q1 −h1,q1

−1
2q1q2 −1

4q
2
2 −1

2q1p2 0 −h2,q2 −h1,q2

−h2,p1 −h2,p2 h2,q1 h2,q2 0 0
−h1,p1 −h1,p2 h1,q1 h1,q2 0 0



.

The first two of them come from one-Casimir extension and the last one was constructed
according to formula (4.21). Notice that again we have three bi-Hamiltonian chains (4.23).
Also in Example 1 the inverse one-Casimir extension of the Henon-Heiles system was

considered in the form

(q1)tt = −3q21 − 1
2
q22, (q2)tt = −q1q2 − 8

q32
c,

with two constants of motion (3.48) and the respective transformation to the DN coordi-
nates (3.52). The two-Casimir extension we get by adding new terms

β2,1 = −[(λ1 + λ2)2 − λ1λ2] =
4
q22

− 16q21
q42
,

β2,2 = λ1λ2(λ1 + λ2) =
16q1
q42
,

to the constants of motion (3.48)

h′1(q, p, c1, c2) = h
′
1(q, p, c = c1) +

16q1
q42

c2,

h′2(q, p, c1, c2) = h
′
2(q, p, c = c1) +

(
4
q22

− 16q21
q42

)
c2,
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where the Newton equations related to the energy h′1 are

(q1)tt = −3q21 − 1
2
q22 − 16

q42
c2, (q2)tt = −q1q2 − 8

q32
c1 +

64q1
q52
c2.

Again this is inverse tri-Hamiltonian system

π0 ◦ dc1 = 0
π0 ◦ dh′2 = K ′

2 = π−1 ◦ dc1
π0 ◦ dh′1 = K ′

1 = π−1 ◦ dh′2
0 = π−1 ◦ dh′1,

π0 ◦ dc1 = 0
π0 ◦ dh′2 = K ′

2 = π−2 ◦ dc2
π0 ◦ dh′1 = K ′

1 = π−2 ◦ dc1
0 = π−2 ◦ dh′2,

π−1 ◦ dc2 = 0
π−1 ◦ dc1 = K ′

2 = π−2 ◦ dc2
π−1 ◦ dh′2 = K ′

1 = π−2 ◦ dc1
0 = π−2 ◦ dh′2,

(4.28)

where the Poisson structure π−1is given by (3.49), with additional last row and column
with zeros, while the new third Poisson structure π−2 reads

π−2 =




0 0 4/q22 −8q/q32 h′1,p1
h′2,p1

0 0 −8q/q32 (16q21 + 4q
2
2)/q

4
2 h′1,p2

h′2,p2

−4/q22 8q1/q32 0 −8q1p2/q42 −h′1,q1
−h′2,q1

8q1/q32 −(16q21 + 4q22)/q42 8q1p2/q42 0 −h′1,q2
−h′2,q2

−h′1,p1
−h′1,p2

h′1,q1
h′1,q2

0 0
−h′2,p1

−h′2,p2
h′2,q1

h′2,q2
0 0



.

Till now all examples presented were bi(multi)-Hamiltonian Stäckel systems [27], i.e.
the systems with all Hamiltonian functions quadratic in momenta in DN coordinates:
f(λi, µi) = ϕ(λi)µ2

i + ψ(λi). Here we present the first example of non-Stäckel system.

Example 6. m-Casimir extension of the relativistic n-body problem.
Consider the Hamiltonian dynamical system with the Hamiltonian given by

H =
n∑

i=1

ϕi(λi)
∆i

eaµi , (4.29)

where ϕi are arbitrary smooth functions and a is an arbitrary constant. The corresponding
dynamical system takes the form

(λi)tt = 2
∑
k �=i

(λi)t(λk)t
λi − λk

, i = 1, ..., n, (4.30)

which depends explicitly on velocities. The derivation of formula (4.30) is given in ref.
[26]. Notice that equations (4.30) do not depend on ϕi functions, hence the dynamics is
not influenced by ϕi terms.
Dynamics (4.30) is a special case of the integrable relativistic n-body problems intro-

duced by Ruijsenaars and Schneider [43]. Now, comparing (4.29) with (4.3) one immedi-
ately concludes that (λ, µ) is a Darboux-Nijenhuis chart for the Hamiltonian H, and as a
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consequence, system (4.30) is quasi-bi-Hamiltonian and separable, with the solution given
by the implicit formulae

1
a

n∑
k=1

∫ λk ξn−i

g(ξ)
dξ = δi,1 t+ const, i = 1, ..., n, (4.31)

where g(ξ) = an + an−1ξ + ...+ a1ξn−1. This fact was noticed for the first time by Morosi
and Tondo [38]. Notice, that trajectories λi(t) do not depend on the ϕi(λi) factors, as
expected, so without a loss of generality one can put ϕi(λi) = 1.
The system (4.30) can be naturally extended to anm-Casimir one with the Hamiltonian

H =
n∑

i=1

ϕi(λi)
∆i

eaµi +
m∑

j=1

cjβj,1(λ), 1 ≤ m ≤ n (4.32)

and the related Newton equations of motion

(λi)tt = 2
∑
k �=i

(λi)t(λk)t
λi − λk

− a
m∑

j=1

cj
∂βj,1

∂λi
(λi)t. (4.33)

The dynamical system (4.33) has n constants of motion

hr(λ, µ, c) = −
n∑

i=1

∂ρr(λ)
∂λi

eaµi

∆i
+

m∑
j=1

cjβj,r(λ), r = 1, ..., n,

(m+ 1) Poisson structures (4.6) and the solution given by implicit formula (4.31), where
now

g(ξ) = an + an−1ξ + ...+ a1ξn−1 + c1ξn + ...+ cmξn+m−1.

The one-Casimir extension, which is bi-Hamiltonian, has the following Newton equations
of motion

(λi)tt = 2
∑
k �=i

(λi)t(λk)t
λi − λk

+ ac(λi)t, i = 1, ..., n.

The two-Casimir extension, which is tri-Hamiltonian, has the Newton equations in the
form

(λi)tt = 2
∑
k �=i

(λi)t(λk)t
λi − λk

+ ac1(λi)t + ac2

(
λi +

n∑
k=1

λk

)
(λi)t, i = 1, ..., n.

Example 7. (m+ 1)-Hamiltonian formulation for elliptic separable potentials.
In Example 3 we presented bi-Hamiltonian systems separable in generalized elliptic coordi-
nates. In the following example we extend the result onto appropriate multi-Hamiltonian
chains.
According to the theory presented in this section, let us generalize the Hamiltonian

system (3.60) to the form

H(q, p, c) =
1
2
(p, p) + V (q) +

m∑
k=1

ckbk,1(q), m = 1, ..., n (4.34)
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being multi-Hamiltonian and separable. The few first bk,1(q) functions are as follows

b1,1(q) =
1
2
(q, q),

b2,1(q) =
1
2
(q, Aq)− 1

4
(q, q)2,

b3,1(q) =
1
2
(q, q)(q, Aq)− 1

2
(q, A2q)− 1

8
(q, q)3, ... .

(4.35)

For example, the three Poisson structures of the system (4.34) with two Casimirs read

π0 =




0 I 0 0
−I 0 0 0
0 0 0 0
0 0 0 0


 ,

π1 =




0 A− 1
2q ⊗ q h1,p 0

−A+ 1
2q ⊗ q 1

2p⊗ q − 1
2q ⊗ p −h1,q 0

−(h1,p)T (h1,q)T 0 0
0 0 0 0


 ,

π2 =




0 (A− 1
2q ⊗ q)2 h2,p h1,p

−(A− 1
2q ⊗ q)2

(A− 1
2q ⊗ q)(12p⊗ q − 1

2q ⊗ p)
+(12p⊗ q − 1

2q ⊗ p)(A− 1
2q ⊗ q)

−h2,q −h1,q

−(h2,p)T (h2,q)T 0 0
−(h1,p)T (h1,q)T 0 0



.

The functions hr(q, p, c), forming three admissible bi-Hamiltonian chains, are given by
formulas (3.63), where now

hr =
1
2

n∑
i=1

αr−1
i Ki + c1b1,r(q) + c2b2,r(q).

5 Multi-Casimir split chains

In the following section we extend the results from previous sections onto the so-called
split bi(multi)-Hamiltonian chains [31]. Potentially, the variety of such systems is much
richer than the one of unsplit chains, but still less recognized. The reason is that systems
from this family are generally non-physical in the sense that are either non-Stäckel, or
even if are of Stäckel type, the underlying Stäckel space is never flat (at most conformally
flat).
Let M be a (2n+ k) dimensional manifold endowed with a linear Poisson pencil πλ =

π1 − λπ0. We suppose that it admits k polynomial Casimir functions

hλ(α) =
nα∑
j=0

h
(α)
j λnα−j , α = 1, ..., k (5.1)
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with n = n1+ ...+nk. From beeing Casimir of a pencil it follows that the set {h(α)
0 }k

α=1 is a
set of Casimirs of π0, while {h(α)

nα}k
α=1 is a set of Casimirs of π1, respectively. In canonical

coordinates (q, p, c) h(α)
0 = cα, α = 1, ..., k,

π0 =



θ0 0 ... 0
0
... 0
0


 , π1 =




θ1 K
(1)
1 · · · K

(k)
1

−
(
K

(1)
1

)T

... 0

−
(
K

(k)
1

)T



, (5.2)

where K(i)
1 = θ0dh

(i)
1 and θ0, θ1 are given by (3.25). Now, we are looking for a separation

curve in the form

f(λ, µ) =
∑
αϑαhλ(α) = hλ, (5.3)

where ϑα are admissible functions of λ and µ. Further on we concentrate on particular
two-Casimir cases, but it will be enough to make some insight into the theory.
Let us start from a separation curve for the unsplit two-Casimir case

f(λ, µ) = hλ, hλ = c2λn+1 + c1λn + h1λ
n−1 + ...+ hn. (5.4)

An arbitrary shift of c1 Casimir variable along the polynomial hλ leads to a separation
curve

f(λ, µ) = c2λn+1 + h1λ
n + ...+ hiλ

n−i+1 + c1λn−i + hi+1λ
n−i−1 + ...+ hn (5.5)

of some split bi-Hamiltonian chain. This is the case (5.3) with k = 2, n1 = n − i, n2 =
i, ϑ1 = 1, ϑ2 = λn+1−i, h

(2)
l = hl, l = 1, ..., i and h

(1)
j = hi+j , j = 1, ..., n− i. We illustrate

the situation for i = 1. The following results were obtained. For a separation curve in the
form

f(λ, µ) = c2λn+1 + h1λ
n + c1λn−1 + h2λ

n−2 + ...+ hn ≡ hλ (5.6)

Hamiltonian functions hr, r = 1, ..., n read

hr(λ, µ, c) = hr(λ, µ) + γ1,r(λ)c1 + γ2,r(λ)c2, (5.7)

where

hr(λ, µ) =
n∑

i=1

αi
r−1(λ)

f(λi, µi)
Ωi(λ)

,

Ωi(λ) =

(
n∑

k=1

λk

) ∏
k �=i

(λi − λk),

γ1,1(λ) =
1
ρ1
, γ1,r(λ) =

ρr

ρ1
, r = 2, ..., n,

γ2,1(λ) =
ρ21 − ρ2
ρ1

, γ2,r(λ) =
ρ1ρr+1 − ρ2ρr

ρ1
, r = 2, ..., n,

αi
r(λ) = αr(λi = 0), αr(λ) ≡ β2,r(λ) = ρr+1 − ρ1ρr.

(5.8)
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Two compatible Poisson structures

π0 =




0 I 0 0
−I 0 0 0
0 0 0 0
0 0 0 0


 ,

π1 =




0 Λ h2,µ h1,µ

−Λ 0 −h2,λ −h1,λ

−(h2,µ)T (h2,λ)T 0 0
−(h1,µ)T (h1,λ)T 0 0


 ,

(5.9)

give rise to a linear Poisson pencil πλ = π1−λπ0, which acting on its Casimir hλ generates
a bi-Hamiltonian chain

πλ ◦ dhλ =⇒

π0 ◦ dc2 = 0
π0 ◦ dh1 = K1 = π1 ◦ dc2

0 = π1 ◦ dh1

π0 ◦ dc1 = 0
π0 ◦ dh2 = K2 = π1 ◦ dc1

...
π0 ◦ dhn = Kn = π1 ◦ dhn−1

0 = π1 ◦ dhn

(5.10)

which splits onto two sub-chains, each starting and terminating with a Casimir of an
appropriate Poisson structure.

Example 8. The case of three degrees of freedom.
We construct a system comparable with the Newton representation of the 7th order KdV
[26], [28]. Thus let us take

f(µi, λi) =
1
8
µ2

i + 16λ
7
i , i = 1, 2, 3 (5.11)

and the point transformation generated by relations

q1 = λ1 + λ2 + λ3,

q2 = −1
2
(λ2

1 + λ
2
2 + λ

2
3) + (λ1λ2 + λ1λ3 + λ2λ3),

q3 =
1
2
(λ1 − λ2 − λ3)(λ2 − λ1 − λ3)(λ3 − λ1 − λ2).

(5.12)

Then, from (5.8), we arrive at the following Hamiltonians in natural coordinates

h1 =
1
q1

(
1
2
p22 + p1p3

)
+ 10q1q3 + 8q22 − 10q21q2 + 3q41 − 4q2q3

q1
− 1
q1
c1

+
(
1
2
q2
q1

− 3
4
q1

)
c2,

h2 =
1
8

(
2q2
q1

− 3q1
)
p22 +

1
2
q3p

2
3 +

1
4

(
2q2
q1

− q1
)
p1p3 − 1

2
p1p2 − 1

2
q2p2p3
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− 2q1q2q3 − q21q22 +
3
2
q41q2 + 2q

3
2 +

5
2
q31q3 + q

2
3 − 1

2
q61 − 2q

2
2q3
q1

− 1
2

(
1
2
q1 +

q2
q1

)
c1 +

1
2

(
q1q2 − 1

2
q3 +

1
8
q31 +

1
2
q22
q1

)
c2,

h3 =
1
8
p21 +

1
8

(
q21 − q2 − q3

q1

)
p22 +

1
8
q22p

2
3 +

1
4
q1p1p2 − 1

4
q3
q1
p1p3

− 1
4
(2q3 + q1q2) +

1
2
q41q3 − q21q2q3 −

1
2
q1q

2
3 +

1
2
q51q2 −

1
2
q31q

2
2 − q1q32

+
q2q

2
3

q1
+
1
4

(
q2 − q3

q1

)
c1 +

1
16
(q21q2 − q1q3 + 2q22 − 2q2q3

q1
)c2.

They form bi-Hamiltonian split chain (5.10), where now

π1 =




0 0 0 1
2q1 −1

2 0 h2,p1 h1,p1

0 0 0 1
2q2 0 −1

2 h2,p2 h1,p2

0 0 0 q3
1
2q2

1
2q1 h2,p3 h1,p3

−1
2q1 −1

2q2 −q3 0 1
2p2

1
2p3 −h2,q1 −h1,q1

1
2 0 −1

2q2 −1
2p2 0 0 −h2,q2 −h1,q2

0 1
2 −1

2q1 −1
2p3 0 0 −h2,q3 −h1,q3

−h2,p1 −h2,p2 −h2,p3 h2,q1 h2,q2 h2,q3 0 0
−h1,p1 −h1,p2 −h1,p3 h1,q1 h1,q2 h1,q3 0 0



,

and are conformally related to these of first Newton representation of 7th order stationary
KdV, i.e. in separated coordinates the metrices of respective Stäckel spaces are conformally
related.

Another admissible form of the separation curve with two Casimirs, leading to bi-
Hamiltonian split chain of non-Stäckel type, reads

f(λ, µ) = µ
(
c2λ

n−i + h1λ
n−i−1 + ...+ hn−i

)
+ c1λi + hn−i−1λ

i−1 + ...+ hn.

It has the form (5.3) with k = 2, n1 = i, n2 = n − i, ϑ1 = 1, ϑ2 = µ, h
(2)
l = hl, l =

1, ..., n− i, and h(1)
j = hn−i+j , j = 1, ..., i. Here we concentrate on the case i = n− 1

f(λ, µ) = µ(c2λ+ h1) + c1λn−1 + h2λ
n−2 + ...+ hn. (5.13)

The Poisson pencil and the chain are the same as in the previous split case, i.e. are of the
form (5.9) and (5.10), but hr(λ, µ, c), being the solution of the system

f(λi, µi) = µi(c2λi + h1) + c1λn−1
i + h2λ

n−2
i + ...+ hn, i = 1, ..., n,

are of more complicated form and we omit here the explicit formulas.
We illustrate the case (5.13) and n = 3 with the example where the transformation to

DN coordinates will be of non-point nature.
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Example 9. The 4th order Boussinesq stationary flow.
The Hamiltonians and compatible Poisson structures for the 4th order Boussinesq sta-
tionary flow, written in generalized Ostrogradsky canonical coordinates, are the following
[44]

h1 = − 27p2p3 − 27p22 − 9p23 + 2q21p3 + 3q21p2 + q2p1 −
2
9
q1q

2
3 − 1

9
q1q

2
2 − 8

81
q41

+
1
3
q1c1 +

1
3
q3c2,

h2 = − 9p1p3 + q21p1 + 2q1(q2 − 2q3)p2 +
4
3
q1q2p3 − 4

27
q33 +

8
81
q31q3 −

16
81
q31q2

+
1
27
q32 +

2
9
q2q

2
3 − 4

27
q22q3 +

1
3
(2q3 − q2)c1 + (3p2 − 1

9
q21)c2,

h3 = − 54p32 − 27p2p23 − 81p22p3 + 3q1p21 + 18q21p22 + 2q21p23 + 3q2p1p2 + 3(q2 − q3)p1p3
+ 15q21p2p3 − q21(q3 +

2
3
q2)p1 − (4427q

4
1 +

2
3
q1q2q3)p2 + (

2
3
q1q

2
3 − 1

9
q1q

2
2

− 4
9
q1q2q3 − 16

27
q41)p3 +

32
243
q31q2q3 +

32
729
q61 +

16
243
q31q

3
3 +

4
243
q31q

2
2

− 4
81
q22q

2
3 +

1
81
q32q3 +

2
27
q2q

3
3 − 1

27
q43 + (

4
27
q31 +

1
9
q23 − 1

9
q2q3 − 2q1p2

− q1p3)c1 + (q1p1 + q3p2 − 5
27
q21q3 −

2
27
q21q2)c2,

π0 =




0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



,

π1 =




0 0 0 −1
3q3

1
3q1 −2

3q1 h2,p1 h1,p1

0 0 −3q1 A 1
3q2 − 1

3q3 −1
3q2 h2,p2 h1,p2

0 3q1 0 2
9q

2
1 0 −1

3q3 h2,p3 h1,p3

1
3q3 −A −2

9q
2
1 0 B C −h2,q1 −h1,q1

−1
3q1 −1

3q2 +
1
3q3 0 −B 0 − 8

81q
2
1 −h2,q2 −h1,q2

2
3q1

1
3q2

1
3q3 −C 8

81q
2
1 0 −h2,q3 −h1,q3

−h2,p1 −h2,p2 −h2,p3 h2,q1 h2,q2 h2,q3 0 0
−h1,p1 −h1,p2 −h1,p3 h1,q1 h1,q2 h1,q3 0 0




where A = 9p2 + 3p3 − q21, B = 2
27q1q2 +

8
81q1q3 − 1

3p1, C = − 8
81q1q2 − 4

27q1q3 +
1
3p1.

¿From the minimal polynomial (3.20) of related Nijenhuis tensor N one finds the first
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part of transformation to the HF coordinates (u, v)

u1 = q3 − 1
3
q2,

u2 =
1
3
q23 +

5
27
q31 − 3q1p2 − q1p3 − 2

9
q2q3,

u3 =
1
27
q33 +

1
9
q31q3 − q1q3p2 −

1
3
q1q3p3 +

2
81
q31q2 −

1
3
q21p1 −

1
27
q2q3,

(5.14)

while the system (3.30) with the second chain (3.28) give the second part of the transfor-
mation

v1 = − 3
q1
,

v2 =
q2 − 2q3
q1

,

v3 = 3p3 + 6p2 − 1
3
q23
q1
+
1
3
q2q3
q1

− 4
9
q21.

(5.15)

On the other hand the relation between HF and DN coordinates reads

u1 = −λ1 − λ2 − λ3,

u2 = λ1λ2 + λ1λ3 + λ2λ3,

u3 = −λ1λ2λ3,

µi = v1λ2
i + v2λi + v3, i = 1, 2, 3.

(5.16)

Hence, eliminating the HF coordinates (u, v) from the system (5.14)-(5.16) we arrive at
the explicit relation between DN coordinates (λ, µ) and natural coordinates (q, p). Unfor-
tunately, the formulas are too long to quote them in the text. In DN coordinates the two
Poisson structures take the form (5.9) and the related separated curve

µ3 − λ4 = µ(c2λ+ h1) + c1λ2 + h2λ+ h3. (5.17)

The implicit solutions of the system can be obtained by solving the three decoupled first
order ODEs(

∂Wi

∂λi

)3

=
∂Wi

∂λi
(c2λi + a1) + (λ4

i + c1λ
2
i + a2λi + a3), i = 1, 2, 3. (5.18)

6 Concluding remarks

In this review paper we presented a multi-Hamiltonian separability theory of finite dimen-
sional dynamical systems, in the frame of the set of canonical coordinates. It reveals the
important fact that the multi-Hamiltonian property of considered system is closely related
to its separability. Actually, we presented the constructive method of finding a separation
coordinates once having a bi(multi)-Hamiltonian representation of the underlying dynam-
ical system, written down in some natural canonical coordinates. There is still an open
question: whether each bi-Hamiltonian chain with sufficient number of constants of mo-
tion guarantees a separability of underlying Hamiltonian systems? Or, in other words:
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whether the arbitrary degenerate Poisson pencil, written in noncanonical coordinates, can
be restricted to the nondegenerate one on a symplectic leaf of one of the Poisson ten-
sors from the pencil? The second important problem is how to perform effectively such
a Marden-Ratiu projection if it is possible? Some progress in this direction was made
recently [41] but this part of separability theory still requires further investigations.
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