q-Newton Binomial: From Euler To Gauss

Boris A. KUPERSHMIDT
The University of Tennessee Space Institute, Tullahoma, TN 37388, USA
E-mail: bkupersh@utsi.edu
Received March 6, 2000; Accepted April 7, 2000

Abstract

A counter-intuitive result of Gauss (formulae (1.6), (1.7) below) is made less mysterious by virtue of being generalized through the introduction of an additional parameter.

1 A formula of Gauss revisited

Consider the Newton binomial for a positive integer N :

$$
\begin{equation*}
(1-x)^{N}=\sum_{\ell=0}^{N}\binom{N}{\ell}(1-x)^{\ell} . \tag{1.1}
\end{equation*}
$$

Substituting $x=1$ into this formula, we get

$$
\begin{equation*}
\sum_{\ell=0}^{N}\binom{N}{\ell}(-1)^{\ell}=0 \tag{1.2}
\end{equation*}
$$

What happens with these two equalities in the q-mathematics framework? Newton's formula (1) becomes Euler's formula

$$
(1-x)^{N}=(1-x)(1-q x) \ldots\left(1-q^{N-1} x\right)=\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{1.3}\\
\ell
\end{array}\right](-x)^{\ell} q^{\binom{\ell}{2}},
$$

where $\left[\begin{array}{c}N \\ \ell\end{array}\right]=\left[\begin{array}{l}N \\ \ell\end{array}\right]_{q}$ are the Gaussian polynomials, or q-binomial coefficients:

$$
\begin{align*}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}=\frac{[n] \ldots[n-k+1]}{[k]!}, \quad k \in \mathbf{Z}_{+},} \tag{1.4}\\
& {[k]!=[k]_{q}!=[1][2] \ldots[k], \quad[0]!=1, \quad[n]=[n]_{q}=\left(1-q^{n}\right)(1-q) .}
\end{align*}
$$

Substituting $x=1$ into the Euler formula (1.3), we find

$$
\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{1.5}\\
\ell
\end{array}\right](-1)^{\ell} q^{\binom{\ell}{2}}=0
$$

This does not look exactly as a q-analogue of formula (1.2).
How about the sum $\sum_{\ell=0}^{N}\left[\begin{array}{l}N \\ \ell\end{array}\right](-1)^{\ell}$?
The answer is quite surprising. Denote

$$
s_{N \mid 0}=(-1)^{N} \sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{1.6}\\
\ell
\end{array}\right](-1)^{\ell}
$$

Gauss found that

$$
\begin{align*}
& s_{2 m+1 \mid 0}=0, \quad m \in \mathbf{Z}_{+} \tag{1.7a}\\
& s_{2 m+2 \mid 0}=(1-q)\left(1-q^{3}\right) \ldots\left(1-q^{2 m+1}\right), \quad m \in \mathbf{Z}_{+} \tag{1.7b}
\end{align*}
$$

These formulae are easy to prove, but they are nevertheless mystifying: there is no hint in the definition (1.6) that some sort of 2-periodicity is involved. In addition, formula (1.2) may claim the following sums as proper q-analogues:

$$
s_{N \mid 1}=(-1)^{N} \sum_{\ell=0}^{N}\left[\begin{array}{l}
N \tag{1.8}\\
\ell
\end{array}\right](-q)^{\ell}
$$

or even

$$
s_{N \mid r}=(-1)^{N} \sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{1.9}\\
\ell
\end{array}\right]\left(-q^{r}\right)^{\ell}
$$

Indeed, we shall verify later on that

$$
\begin{align*}
& s_{2 m+1 \mid 1}=-\left(1-q^{2 m+1}\right) s_{2 m \mid 0}=-\Pi_{t=0}^{m}\left(1-q^{2 t+1}\right) \tag{1.10a}\\
& s_{2 m \mid 1}=s_{2 m \mid 0}=\Pi_{t=1}^{m}\left(1-q^{2 t-1}\right) \tag{1.10b}
\end{align*}
$$

Similar but more complex formulae can be derived for other values of r, not just for $r=0$ and $r=1$. We shall abstain from such derivations, as they are superseded by the general formulae (1.12) below.

What seems to be happening here is that the functions

$$
S_{N}(x)=(-1)^{N} \sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{1.11}\\
\ell
\end{array}\right](-x)^{\ell}
$$

possess some interesting properties worthy of attention; and once the decision to pay attention has been made, one quickly conjectures the formulae

$$
\begin{align*}
S_{2 m+1}(x) & =-\sum_{\ell=0}^{2 m+1}\left[\begin{array}{c}
2 m+1 \\
\ell
\end{array}\right](-x)^{\ell} \\
& =\sum_{k=0}^{m}\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}(x-1)^{2 m+1-2 k}\left(q^{2 m+1} ; q^{-2}\right)_{k}, \tag{1.12a}\\
S_{2 m+2}(x) & =\sum_{\ell=0}^{2 m+2}\left[\begin{array}{c}
2 m+2 \\
\ell
\end{array}\right](-x)^{\ell} \\
& =\sum_{k=0}^{m+1}\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q^{2}}(x-1)^{2 m+2-2 k}\left(q^{2 m+1} ; q^{-2}\right)_{k} \tag{1.12b}
\end{align*}
$$

The additional notations employed above are to be understood as

$$
\begin{equation*}
(u \dot{+} v)^{\ell}=\Pi_{k=0}^{\ell-1}\left(u+q^{k} v\right), \quad \ell \in \mathbf{N} ; \quad(u \dot{+} v)^{0}=1, \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
(a ; Q)_{\ell}=\Pi_{k=0}^{\ell-1}\left(1-Q^{k} a\right), \quad \ell \in \mathbf{N} ; \quad(a ; Q)_{0}=1 \tag{1.14}
\end{equation*}
$$

If we define

$$
\epsilon(N)=\left\{\begin{array}{ll}
1, & N \text { is even } \tag{1.15}\\
0, & N \text { is odd }
\end{array}=\left\lfloor\frac{N+2}{2}\right\rfloor-\left\lfloor\frac{N+1}{2}\right\rfloor,\right.
$$

then formulae (1.12) can be rewritten as

$$
\begin{align*}
S_{N}(x) & =(-1)^{N} \sum_{\ell=0}^{N}\left[\begin{array}{c}
N \\
\ell
\end{array}\right](-x)^{\ell} \\
& =\sum_{k=0}^{\lfloor N / 2\rfloor}\left[\begin{array}{c}
\lfloor N / 2\rfloor \\
k
\end{array}\right]_{q^{2}}(x-1)^{N-2 k}\left(q^{N-\epsilon(N)} ; q^{-2}\right)_{k} . \tag{1.16}
\end{align*}
$$

Substituting $x=1$ into formulae (1.12) we recover Gauss' formulae (1.7).
Let us now prove formulae (1.12). Denote the RHS of formulae (1.16) by $\tilde{S}_{N}(x)$. To show that

$$
\begin{equation*}
S_{N}(x)=\tilde{S}_{N}(x), \tag{1.17}
\end{equation*}
$$

we shall verify, first, that

$$
\begin{align*}
\frac{d S_{N}}{d_{q} x} & =[N] S_{N-1} \tag{1.18a}\\
\frac{d \tilde{S}_{N}}{d_{q} x} & =[N] \tilde{S}_{N-1}(x) \tag{1.18b}
\end{align*}
$$

and second, that

$$
\begin{equation*}
S_{N}(1)=\tilde{S}_{N}(1) \tag{1.19}
\end{equation*}
$$

here

$$
\begin{equation*}
\frac{d f(x)}{d_{q} x}=\frac{f(q x)-f(x)}{q x-x} \tag{1.20}
\end{equation*}
$$

is the q-derivative. Since $S_{1}=\tilde{S}_{1}=x-1$, these verifications would suffice.
We start with formula (1.18a). We have:

$$
\begin{align*}
\frac{d S_{N}}{d_{q} x} & =\frac{d}{d_{q} x}\left((-1)^{N} \sum_{\ell=0}^{N}\left[\begin{array}{c}
N \\
\ell
\end{array}\right](-1)^{\ell} x^{\ell}\right)=(-1)^{N} \sum_{\ell=1}^{N}\left[\begin{array}{c}
N \\
\ell
\end{array}\right][\ell](-1)^{\ell} x^{\ell-1}[\text { by (1.22) }] \\
& =(-1)^{N}[N] \sum_{\ell=1}^{N}\left[\begin{array}{c}
N-1 \\
\ell-1
\end{array}\right](-x)^{\ell-1}(-1)=[N](-1)^{N-1} \sum_{\ell=0}^{N-1}\left[\begin{array}{c}
N-1 \\
\ell
\end{array}\right](-x)^{\ell} \\
& =[N] S_{N-1} \tag{1.21}
\end{align*}
$$

where we used the obvious formula

$$
\left[\begin{array}{c}
w \tag{1.22}\\
\ell
\end{array}\right][\ell]=[w]\left[\begin{array}{c}
w-1 \\
\ell-1
\end{array}\right]
$$

Next, formula (1.18b), which we shall check separately for odd and even N, making use of the easy verifiable relation

$$
\begin{equation*}
\frac{d(x \dot{+} v)^{\alpha}}{d_{q} x}=[\alpha](x \dot{+} v)^{\alpha-1} \tag{1.23}
\end{equation*}
$$

So, for N odd, we have

$$
\begin{equation*}
\frac{d \tilde{S}_{1}}{d_{q} x}=\frac{d}{d_{q} x}(x-1)=1=\tilde{S}_{0} \tag{1.24}
\end{equation*}
$$

and then

$$
\begin{aligned}
\frac{d \tilde{S}_{2 m+3}}{d_{q} x} & =\sum_{k=0}^{m+1}\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q^{2}}[2 m+3-2 k](x-1)^{2 m+2-2 k}\left(q^{2 m+3} ; q^{-2}\right)_{k} \\
& =[2 m+3] \sum_{k=0}^{m+1}\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q^{2}}(x-1)^{2 m+2-2 k}\left(q^{2 m+1} ; q^{-2}\right)_{k}=[2 m+3] \tilde{S}_{2 m+2}
\end{aligned}
$$

because

$$
\begin{equation*}
[2 m+3-2 k]\left(q^{2 m+3} ; q^{-2}\right)_{k}=[2 m+3]\left(q^{2 m+1} ; q^{-2}\right)_{k} \tag{1.25}
\end{equation*}
$$

for N even, we find

$$
\begin{aligned}
\frac{d \tilde{S}_{2 m+2}}{d_{q} x} & =\sum_{k=0}^{m+1}\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q^{2}}[2 m+2-2 k](x \dot{-} 1)^{2 m+1-2 k}\left(q^{2 m+1} ; q^{-2}\right)_{k} \\
& =[2 m+2] \sum_{k=0}^{m}\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}(x-1)^{2 m+1-2 k}\left(q^{2 m+1} ; q^{-2}\right)_{k}=[2 m+2] \tilde{S}_{2 m+1}
\end{aligned}
$$

because

$$
\left[\begin{array}{c}
m+1 \tag{1.26}\\
k
\end{array}\right]_{q^{2}}[2 m+2-2 k]=[2 m+2]\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}},
$$

which is true in view of the obvious relation

$$
\begin{equation*}
[u]_{q^{2}}=[2 u]_{q} /[2]_{q} . \tag{1.27}
\end{equation*}
$$

It remains to verify formula (1.19), which is nothing but the Gauss formula (1.7). We shall verify the latter in 4 easy steps.
$1^{\text {st }}$ Step is formula (1.7a):

$$
\begin{aligned}
s_{2 m+1 \mid 0} & =-\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m+1 \\
\ell
\end{array}\right](-1)^{\ell}=\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m+1 \\
2 m+1-\ell
\end{array}\right](-1)^{\ell-1} \\
& =\sum_{L \geq 0}\left[\begin{array}{c}
2 m+1 \\
L
\end{array}\right](-1)^{2 m-L}=-s_{2 m+1 \mid 0},
\end{aligned}
$$

so that $s_{2 m+1 \mid 0}=0$;
$\underline{2}^{\text {nd }}$ Step is formula (1.10b):

$$
s_{2 m \mid 1}=\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m \tag{1.28}\\
\ell
\end{array}\right](-q)^{\ell}=\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m \\
\ell
\end{array}\right](-1)^{\ell}=s_{2 m \mid 0} .
$$

Indeed,

$$
\frac{s_{2 m \mid 1}-s_{2 m \mid 0}}{q-1}=\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m \\
\ell
\end{array}\right](-1)^{\ell}[\ell][\text { by }(1.22)]=-[2 m] \sum_{\ell \geq 1}\left[\begin{array}{c}
2 m-1 \\
\ell-1
\end{array}\right](-1)^{\ell-1}
$$

$[$ by (1.7a) $]=0$;
$3^{3^{r d} \text { Step }}$ is formula (1.10a):

$$
\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m+1 \tag{1.29}\\
\ell
\end{array}\right](-q)^{\ell}=\left(1-q^{2 m+1}\right) \sum_{\ell \geq 0}\left[\begin{array}{c}
2 m \\
\ell
\end{array}\right](-1)^{\ell}
$$

Indeed, since

$$
\left[\begin{array}{c}
2 m+1 \tag{1.30}\\
\ell
\end{array}\right]=\left[\begin{array}{c}
2 m \\
\ell
\end{array}\right]+q^{2 m+1-\ell}\left[\begin{array}{c}
2 m \\
\ell-1
\end{array}\right],
$$

we have:

$$
\begin{gathered}
\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m+1 \\
\ell
\end{array}\right](-q)^{\ell}=\sum_{\ell \geq 0}(-q)^{\ell}\left[\begin{array}{c}
2 m \\
\ell
\end{array}\right]+\sum_{\ell \geq 1}(-q)^{\ell} q^{2 m+1-\ell}\left[\begin{array}{c}
2 m \\
\ell-1
\end{array}\right][\text { by }(1.28)] \\
=s_{2 m \mid 0}-q^{2 m+1} \sum\left[\begin{array}{c}
2 m \\
\ell-1
\end{array}\right](-1)^{\ell-1}=\left(1-q^{2 m+1}\right) s_{2 m \mid 0}
\end{gathered}
$$

$4^{\text {th }}$ Step is the last one: we prove that

$$
\begin{equation*}
s_{2 m+2 \mid 0}=\left(1-q^{2 m+1}\right) s_{2 m \mid 0}, \tag{1.31}
\end{equation*}
$$

from which the Gauss formula (1.76) follows at once, since

$$
\begin{equation*}
s_{2 \mid 0}=1-[2]+1=1-(1+q)+1=1-q . \tag{1.32}
\end{equation*}
$$

Now,

$$
\begin{aligned}
s_{2 m+2 \mid 0} & =\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m+2 \\
\ell
\end{array}\right](-1)^{\ell}[\operatorname{by}(1.28)]=\sum_{\ell \geq 0}\left[\begin{array}{c}
2 m+2 \\
\ell
\end{array}\right](-q)^{\ell} \quad[\operatorname{by}(1.30)] \\
& =\sum_{\ell \geq 0}(-q)^{\ell}\left[\begin{array}{c}
2 m+1 \\
\ell
\end{array}\right]+\sum_{\ell \geq 1}(-q)^{\ell} q^{2 m+2-\ell}\left[\begin{array}{c}
2 m+1 \\
\ell-1
\end{array}\right][\operatorname{by}(1.29)] \\
& =\left(1-q^{2 m+1}\right) s_{2 m \mid 0}-q^{2 m+2} \sum_{\ell \geq 1}\left[\begin{array}{c}
2 m+1 \\
\ell-1
\end{array}\right](-1)^{\ell-1} \quad[\operatorname{by}(1.7 \mathrm{a})] \\
& =\left(1-q^{2 m+1}\right) s_{2 m \mid 0} .
\end{aligned}
$$

We are done. Formula (1.16) is thereby proven. Substituting into this formula $x=0$, we get an interesting identity

$$
\sum_{k=0}^{\lfloor N / 2\rfloor}\left[\begin{array}{c}
\lfloor N / 2\rfloor \tag{1.33}\\
k
\end{array}\right]_{q^{2}} q^{\left(\left(_{2}^{N-2 k}\right)\right.}\left(q^{N-\epsilon(N)} ; q^{-2}\right)_{k}=1
$$

2 A different proof

To prove polynomial identities (1.12) generalizing Gauss' formulae (1.7), we had to prove independently the Gauss result along the way. This is not entirely agreeable. One ought to prove formulae (1.12) directly, by-passing the verification of the original Gauss formulae.

Such a proof follows.
Let $R_{N}(x)$ stand for either $S_{N}(x)$ or $\tilde{S}_{N}(x)$. We shall verify that

$$
\begin{equation*}
R_{N+1}(x)=x R_{N}(x)-R_{N}(q x) \tag{2.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
S_{0}(x)=\tilde{S}_{0}(x)=1, \quad S_{1}(x)=\tilde{S}_{1}(x)=x-1 \tag{2.2}
\end{equation*}
$$

such a verification will prove that $S_{N}(x)=\tilde{S}_{N}(x)$ for all N.
We start with $R_{N}(x)=S_{N}(x)$. Let's look for a relation of the form

$$
\begin{equation*}
S_{N+1}(x)=B x S_{N}(b x)+A S_{N}(a x) \tag{2.3}
\end{equation*}
$$

The x^{0} - coefficients (recall that $\left.S_{n}(x)=(-1)^{n} \sum_{\ell}\left[\begin{array}{l}n \\ \ell\end{array}\right](-x)^{\ell}\right)$ yield

$$
\begin{equation*}
A=-1 \tag{2.4}
\end{equation*}
$$

The x^{N+1} - coefficients yield

$$
\begin{equation*}
B b^{N}=1 \Leftrightarrow B=b^{-N} \tag{2.5}
\end{equation*}
$$

Finally, for $0<r<N+1$, the x^{r} - coefficients provide

$$
\left[\begin{array}{c}
N+1 \tag{2.6}\\
r
\end{array}\right]=B b^{r-1}\left[\begin{array}{c}
N \\
r-1
\end{array}\right]+a^{r}\left[\begin{array}{c}
N \\
r
\end{array}\right]
$$

In view of the relation (2.5), formula (2.6) can be rewritten as

$$
\left[\begin{array}{c}
N+1 \tag{2.7}\\
r
\end{array}\right]=\left(b^{-1}\right)^{N+1-r}\left[\begin{array}{c}
N \\
r-1
\end{array}\right]+a^{r}\left[\begin{array}{c}
N \\
r
\end{array}\right] .
$$

Now, since

$$
\begin{align*}
{\left[\begin{array}{c}
N+1 \\
r
\end{array}\right] } & =\left[\begin{array}{c}
N \\
r-1
\end{array}\right]+q^{r}\left[\begin{array}{c}
N \\
r
\end{array}\right] \tag{2.8a}\\
& =q^{N+1-r}\left[\begin{array}{c}
N \\
r-1
\end{array}\right]+\left[\begin{array}{c}
N \\
r
\end{array}\right] \tag{2.8b}
\end{align*}
$$

equation (2.7) has two solutions:

$$
\begin{align*}
& b=1, \quad a=q \tag{2.9a}\\
& b=q^{-1}, \quad a=1 \tag{2.9b}
\end{align*}
$$

Thus,

$$
\begin{align*}
S_{N+1}(x) & =x S_{N}(x)-S_{N}(q x) \tag{2.10a}\\
& =q^{N} x S_{N}\left(q^{-1} x\right)-S_{N}(x) \tag{2.10b}
\end{align*}
$$

(For $q=1$, we get just one relation, $S_{N+1}(x)=(x-1) S_{N}(x)$.)
Denote by \mathcal{O} the linear operator acting on functions of x by the rule:

$$
\begin{equation*}
\mathcal{O}(f(x))=x f(x)-f(q x) \tag{2.11}
\end{equation*}
$$

We need to check that

$$
\begin{equation*}
\mathcal{O}\left(\tilde{S}_{N}\right)=\tilde{S}_{N+1} \tag{2.12}
\end{equation*}
$$

We shall check separately the cases of even and odd N :

$$
\begin{align*}
& \tilde{S}_{2 m+1}(x)=\sum_{k=0}^{m}(x-1)^{2 m+1-2 k} c_{m \mid k}, \tag{2.13}\\
& c_{m \mid k}=\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m+1} ; q^{-2}\right)_{k}, \tag{2.14}\\
& \tilde{S}_{2 m}(x)=\sum_{k=0}^{m}(x-1)^{2 m-2 k} d_{m \mid k}, \tag{2.15}\\
& d_{m \mid k}=\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m-1} ; q^{-2}\right)_{k}, \tag{2.16}
\end{align*}
$$

To proceed further, let's establish first that

$$
\begin{equation*}
\mathcal{O}\left((x-1)^{s}\right)=(x \dot{-} 1)^{s+1}+q^{s-1}\left(1-q^{s}\right)(x \dot{-} 1)^{s-1} \tag{2.17}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\mathcal{O}\left((x-1)^{s}\right) & =x(x-1)^{s}-(q x-1)^{s}=\left(\left(x-q^{s}\right)+q^{s}\right)(x \dot{-} 1)^{s}-q^{s}\left(x-1 q^{-1}\right)^{s} \\
& =\left(x-q^{s}\right)(x-1)^{s}+q^{s}(x-1)^{s-1}\left(x-q^{s-1}\right)-q^{s}\left(x-q^{-1}\right)(x-1)^{s-1} \\
& =(x-1)^{s+1}+q^{s}(x-1)^{s-1}\left(\left(x-q^{s-1}\right)-\left(x-q^{-1}\right)\right) \\
& =(x-1)^{s+1}+q^{s}(x-1)^{s-1} q^{-1}\left(1-q^{s}\right)
\end{aligned}
$$

Now,

$$
\begin{align*}
\mathcal{O}\left(\tilde{S}_{2 m+1}\right) & =\sum_{k=0}^{m} c_{m \mid k} \mathcal{O}\left((x-1)^{2 m+1-2 k}\right) \\
& =\sum_{k=0}^{m} c_{m \mid k}\left((x-1)^{2 m+2-2 k}+q^{2 m-2 k}\left(1-q^{2 m+1-2 k}\right)(x-x 1)^{2 m-2 k}\right) \\
& =\sum_{k=0}^{m+1}(x-1)^{2 m+2-2 k}\left(c_{m \mid k}+c_{m \mid k-1} q^{2 m+2-2 k}\left(1-q^{2 m+3-2 k}\right)\right)
\end{align*}
$$

while

$$
\begin{equation*}
\tilde{S}_{2 m+2}=\sum_{k=0}^{m+1}(x-1)^{2 m+2-2 k} d_{m+1 \mid k} \tag{2.18r}
\end{equation*}
$$

so we need to verify that

$$
\begin{equation*}
d_{m+1 \mid k}=c_{m \mid k}+c_{m \mid k-1} q^{2 m+2-2 k}\left(1-q^{2 m+3-2 k}\right) \tag{2.19}
\end{equation*}
$$

which is

$$
\begin{align*}
& =\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m+1} ; q^{-2}\right)_{k} \\
& =\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m+1} ; q^{-2}\right)_{k}+\left[\begin{array}{c}
m \\
k-1
\end{array}\right]_{q^{2}}\left(q^{2 m+1} ; q^{-2}\right)_{k-1} q^{2 m+2-2 k}\left(1-q^{2 m+3-2 k}\right) \tag{2.20}
\end{align*}
$$

which is equivalent to

$$
\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q^{2}}=\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
m \\
k-1
\end{array}\right]_{q^{2}}\left(1-q^{2 m+1-2(k-1)}\right)^{-1} q^{2 m+2-2 k}\left(1-q^{2 m+3-2 k}\right)
$$

which is finally

$$
\left[\begin{array}{c}
m+1 \\
k
\end{array}\right]_{q^{2}}=\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
m \\
k-1
\end{array}\right]_{q^{2}}\left(q^{2}\right)^{m+1-k}
$$

and this is so by formula (2.8b).
Next,

$$
\begin{align*}
\mathcal{O}\left(\tilde{S}_{2 m}\right) & =\sum_{k=0}^{m} d_{m \mid k} \mathcal{O}\left((x-1)^{2 m-2 k}\right) \\
& =\sum_{k=0}^{m} d_{m \mid k}\left((x-1)^{2 m+1-2 k}+q^{2 m-2 k-1}\left(1-q^{2 m-2 k}\right)(x-1)^{2 m-1-2 k}\right) \\
& =\sum_{k=0}^{m}(x-1)^{2 m+1-2 k}\left(d_{m \mid k}+d_{m \mid k-1} q^{2 m+1-2 k}\left(1-q^{2 m+2-2 k}\right)\right),
\end{align*}
$$

while

$$
\begin{equation*}
\tilde{S}_{2 m+1}=\sum_{k=0}^{m}(x-1)^{2 m+1-2 k} c_{m \mid k} \tag{2.21r}
\end{equation*}
$$

so we need to check that

$$
\begin{equation*}
c_{m \mid k}=d_{m \mid k}+d_{m \mid k-1} q^{2 m+1-2 k}\left(1-q^{2 m+2-2 k}\right), \tag{2.22}
\end{equation*}
$$

which is

$$
\begin{align*}
& {\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m+1} ; q^{-2}\right)_{k}=\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m-1} ; q^{-2}\right)_{k}} \\
& \quad+\left[\begin{array}{c}
m \\
k-1
\end{array}\right]_{q^{2}}\left(q^{2 m-1} ; q^{-2}\right)_{k-1} q^{2 m+1-2 k}\left(1-q^{2 m+2-2 k}\right), \tag{2.23}
\end{align*}
$$

which is equivalent to

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(1-q^{2 m+1}\right)=\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(1-q^{2 m-1-2(k-1)}\right)+\left[\begin{array}{c}
m \\
k-1
\end{array}\right]_{q^{2}} q^{2 m+1-2 k}\left(1-q^{2 m+2-2 k}\right),
$$

which can be rewritten as

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}} q^{2 m+1-2 k}\left(1-q^{2 k}\right)=\left[\begin{array}{c}
m \\
k-1
\end{array}\right]_{q^{2}} q^{2 m+1-2 k}\left(1-q^{2 m+2-2 k}\right),
$$

which is equivalent to

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right][k]=\left[\begin{array}{c}
m \\
k-1
\end{array}\right][m+1-k],
$$

which is obvious.
Remark 2.24. Set

$$
\begin{equation*}
\tilde{S}_{N}(x)=\sum_{k} e_{N \mid k}(x-1)^{N-2 k}, \tag{2.25}
\end{equation*}
$$

so that

$$
\begin{equation*}
c_{m \mid k}=e_{2 m+1 \mid k}, \quad d_{m \mid k}=e_{2 m \mid k} \tag{2.26}
\end{equation*}
$$

Then the pair of equalities (2.19) and (2.22) can be rewritten as the single one:

$$
\begin{equation*}
e_{N+1 \mid k}=e_{N \mid k}+e_{N \mid k-1} q^{N+1-2 k}\left(1-q^{N+2-2 k}\right) \tag{2.27}
\end{equation*}
$$

equivalent to the relation

$$
\tilde{S}_{N+1}=\mathcal{O}\left(\tilde{S}_{N}\right)
$$

3 The Taylor expansions point of view

Formula (1.16) (or (2.25)) is reminiscent of the Taylor expansion:

$$
\begin{equation*}
f(x)=\sum_{k \geq 0} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{(i)}(x)=\left(\frac{d}{d x}\right)^{i}(f(x)) \tag{3.2}
\end{equation*}
$$

There exist many different q-versions of the classical Taylor expansion. We shall make use below of the following particular one:

$$
\begin{equation*}
f(x)=\sum_{k \geq 0} \frac{f^{(k)}(a)}{[k]!}(x-a)^{k} \tag{3.3}
\end{equation*}
$$

where now

$$
\begin{equation*}
f^{(k)}(x)=\left(\frac{d}{d_{q} x}\right)^{k}(f(x)) \tag{3.4}
\end{equation*}
$$

We shall prove formula (3.3) for f being polynomial in x. It's enough to consider the case $f(x)=x^{n}$, so that

$$
f^{(k)}(x)=[k]!\left[\begin{array}{l}
n \tag{3.5}\\
k
\end{array}\right] x^{n-k}
$$

and we thus have to check that

$$
x^{n}=\sum_{k}\left[\begin{array}{l}
n \tag{3.6}\\
k
\end{array}\right] a^{n-k}(x \dot{-} a)^{k}
$$

This can be verified either directly, or deduced from the identity (formula (2.10) in [5], p. 75)

$$
\sum_{k}\left[\begin{array}{l}
n \tag{3.7}\\
k
\end{array}\right] a^{n-k}(x \dot{+} b)^{k}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{n-k}(a \dot{+} b)^{k}
$$

for $b=-a$.
Thus, formula (3.3) is proven. Taking $f(x)$ to be $S_{N}(x)$,

$$
S_{N}(x)=(-1)^{N} \sum_{k}\left[\begin{array}{c}
N \tag{3.8}\\
k
\end{array}\right](-x)^{k},
$$

where, by formula (1.18a),

$$
S_{N}^{(k)}(x)=[k]!\left[\begin{array}{c}
N \tag{3.9}\\
k
\end{array}\right] S_{N-k}(x)
$$

we get

$$
S_{N}(x)=\sum_{k}\left[\begin{array}{c}
N \tag{3.10}\\
k
\end{array}\right] G_{N-k}(x-1)^{k}=\sum_{k}\left[\begin{array}{c}
N \\
k
\end{array}\right](x-1)^{N-k} G_{k},
$$

where, by the Gauss formula (1.7),

$$
G_{k}=S_{k}(1)=\left\{\begin{array}{cl}
0, & k \text { odd, } \tag{3.11}\\
\left(q^{k-1} ; q^{-2}\right)_{\lfloor k / 2\rfloor}, & k \text { even. }
\end{array}\right.
$$

Thus,

$$
S_{N}(x)=\sum_{k}\left[\begin{array}{c}
N \tag{3.12}\\
2 k
\end{array}\right](x-1)^{N-2 k}\left(q^{2 k-1} ; q^{-2}\right)_{k} .
$$

Comparing formulae (1.12) and (3.12), we see that we must have

$$
\left[\begin{array}{c}
N \tag{3.13}\\
2 k
\end{array}\right]_{q}\left(q^{2 k-1} ; q^{-2}\right)_{k}= \begin{cases}{\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m+1} ; q^{-2}\right)_{k},} & N=2 m+1 \\
{\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q^{2}}\left(q^{2 m-1} ; q^{-2}\right)_{k},} & N=2 m\end{cases}
$$

and these relations can be easily verified. Thus,

$$
(-1)^{N} \sum_{k=0}^{N}\left[\begin{array}{c}
N \tag{3.14}\\
k
\end{array}\right](-x)^{k}=\sum_{k=0}^{\lfloor N / 2\rfloor}\left[\begin{array}{c}
N \\
2 k
\end{array}\right](x-1)^{N-2 k}\left(q^{2 k-1} ; q^{-2}\right)_{k} .
$$

Remark 3.15. Euler's formula (1.13) suggests that one should consider more general family of polynomials:

$$
P_{N}(x)=\sum_{\ell=0}^{N}\left[\begin{array}{l}
N \tag{3.16}\\
\ell
\end{array}\right] x^{\ell} q^{\alpha \ell^{2}},
$$

with $\alpha=0$ corresponding to the Gauss case, $\alpha=1 / 2$ corresponding to the Euler case, and $\alpha=1$ corresponding to the Szegö case [1,7]. Applying the arguments used above, we
find:

$$
\begin{align*}
& \frac{d P_{N}(x)}{d_{q} x}=[N] q^{\alpha} P_{N-1}\left(q^{2 \alpha} x\right) \tag{3.17}\\
& \begin{aligned}
P_{N+1}(x) & =q^{\alpha} x P_{N}\left(q^{2 \alpha} x\right)+P_{N}(q x) \\
& =q^{N+\alpha} x P_{N}\left(q^{2 \alpha-1} x\right)+P_{N}(x) \\
P_{N}(x)= & \sum_{k=0}^{N}\left[\begin{array}{c}
N \\
k
\end{array}\right] \rho_{N-k}(x) \theta_{k}
\end{aligned}, \tag{3.18a}
\end{align*}
$$

where

$$
\begin{equation*}
\rho_{n}(x)=q^{(1-2 \alpha)\binom{n}{2}}\left(-q^{(2 n-1) \alpha} x ; q^{-1}\right)_{n} \tag{3.20}
\end{equation*}
$$

satisfies the same q-differential equation (3.17) as $P_{n}(x)$:

$$
\begin{equation*}
\frac{d \rho_{n}(x)}{d_{q} x}=[n] q^{\alpha} \rho_{n-1}\left(q^{2 \alpha} x\right) \tag{3.21}
\end{equation*}
$$

and θ_{k} 's are some x-independent connection coefficients. Unfortunately, I haven't been able to find a compact expression for the coefficients $\theta_{k}=\theta_{k}(q ; \alpha)$.

4 The geometric progressions point of view

Formula (1.2)

$$
\begin{equation*}
\sum_{\ell=0}^{N}\binom{N}{\ell}(-1)^{\ell}=\delta_{0}^{N}, \quad N \in \mathbf{Z}_{+} \tag{4.1}
\end{equation*}
$$

can be equivalently put into the following interesting form:

$$
\begin{equation*}
\sum_{\ell=0}^{\infty} \frac{t^{\ell}}{(1+t)^{\ell+1}}=1 \tag{4.2}
\end{equation*}
$$

(We treat all series as formal power series, and so don't have to pay attention to questions of convergence. The series (4.2) converges for real $t>-1 / 2$.) Indeed, multiply equality (4.1) by $(-t)^{N}$ and then sum on all $N \in \mathbf{Z}_{+}$:

$$
\begin{aligned}
1 & =\sum_{N, \ell}(-t)^{N}\binom{N}{\ell}(-1)^{\ell}=\sum_{s, \ell}(-t)^{s+\ell}\binom{s+\ell}{\ell}(-1)^{\ell}=\sum_{\ell \geq 0} t^{\ell} \sum_{s \geq 0}\binom{s+\ell}{\ell}(-t)^{s} \\
& =\sum_{\ell \geq 0} \frac{t^{\ell}}{(1+t)^{\ell+1}}
\end{aligned}
$$

where we used the following version of the Newton's binomial

$$
\begin{equation*}
\frac{1}{(1-t)^{N+1}}=\sum_{s \geq 0}\binom{N+s}{s} t^{s} \tag{4.3}
\end{equation*}
$$

We can perform similar conversion upon the formula (1.5), an Euler-type q-analogue of formula (4.1). Multiply the equality

$$
\sum_{\ell=0}^{N}\left[\begin{array}{l}
N \tag{4.4}\\
\ell
\end{array}\right](-1)^{\ell} q^{\binom{\ell}{2}}=\delta_{0}^{N}, \quad N \in \mathbf{Z}_{+},
$$

by $(-t)^{N}$ and sum over all $N \in \mathbf{Z}_{+}$:

$$
\begin{aligned}
1 & =\sum_{N, \ell}(-t)^{N}\left[\begin{array}{l}
N \\
\ell
\end{array}\right](-1)^{\ell} q^{\binom{\ell}{2}}=\sum_{s, \ell \geq 0}(-t)^{s+\ell}\left[\begin{array}{c}
s+\ell \\
\ell
\end{array}\right](-1)^{\ell} q^{\ell}\binom{\ell}{2} \\
& =\sum_{\ell} t^{\ell} q^{\binom{\ell}{2}} \sum_{s}\left[\begin{array}{c}
s+\ell \\
\ell
\end{array}\right](-t)^{s}[\operatorname{by}(4.6)]=\sum_{\ell \geq 0} \frac{t^{\ell} q^{\ell}\binom{\ell}{2}}{(1 \dot{+} t)^{\ell+1}} .
\end{aligned}
$$

Thus,
we used in the calculation above the following Euler version of formula (4.3):

$$
\frac{1}{(1-t)^{N+1}}=\sum_{s \geq 0}\left[\begin{array}{c}
N+s \tag{4.6}\\
s
\end{array}\right] t^{s} .
$$

Let us now apply the same conversion device to the Gauss result (1.7):

$$
G_{N}=\sum_{k=0}^{N}\left[\begin{array}{c}
N \tag{4.7}\\
k
\end{array}\right](-1)^{k}=\left\{\begin{array}{cl}
0, & N \text { odd } \\
\left(q^{N-1} ; q^{-2}\right)_{\lfloor N / 2\rfloor}, & N \text { even. }
\end{array}\right.
$$

Multiplying by $(-t)^{N}$ and summing on N we find:

$$
\begin{aligned}
\sum_{N}(-t)^{N} G_{N} & =\sum_{m} t^{2 m}\left(q^{2 m-1} ; q^{-2}\right)_{m}=1+\sum_{m=1}^{\infty}(1-q) \ldots\left(1-q^{2 m-1}\right) t^{2 m} \\
& =\sum_{N}(-t)^{N} \sum_{k}\left[\begin{array}{c}
N \\
k
\end{array}\right](-1)^{k}=\sum_{s, k}(-t)^{k+s}\left[\begin{array}{c}
k+s \\
k
\end{array}\right](-1)^{k} \\
& =\sum_{k} t^{k} \sum_{s}\left[\begin{array}{c}
k+s \\
k
\end{array}\right](-t)^{s}=\sum_{k \geq 0} \frac{t^{k}}{(1+t)^{k+1}}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{k \geq 0} \frac{t^{k}}{(1+i)^{k+1}}=1+\sum_{m=1}^{\infty}(1-q) \ldots\left(1-q^{2 m-1}\right) t^{2 m} \tag{4.8}
\end{equation*}
$$

This formula is the first from a pair found by Carlitz in [3]. The second formula in that pair is the case $\{r=1\}$ of the following general relation

$$
\begin{equation*}
\sum_{\ell=0}^{\infty} \frac{\left(q^{r} t\right)^{\ell} q^{\ell}\binom{\ell}{2}}{(1 \dot{+} t)^{\ell+1}}=\sum_{N \geq 0}\left(1 \dot{-} q^{r}\right)^{N}(-t)^{N} \tag{4.9}
\end{equation*}
$$

which can be proven as follows:

$$
\begin{aligned}
\sum_{\ell=0}^{\infty} \frac{\left(q^{r} t\right)^{\ell} q^{\binom{\ell}{2}}}{(1 \dot{+} t)^{\ell+1}} & =\sum_{\ell} q^{r \ell} t^{\ell} q^{\binom{\ell}{2}} \sum_{s}\left[\begin{array}{c}
\ell+s \\
\ell
\end{array}\right](-t)^{s}=\sum_{N \geq 0} t^{N} \sum_{\ell=0}^{N}(-1)^{N-\ell}\left[\begin{array}{c}
N \\
\ell
\end{array}\right] q^{\binom{\ell}{2}}\left(q^{r}\right)^{\ell} \\
& =\sum_{N}(-t)^{N} \sum_{\ell=0}^{N}\left[\begin{array}{c}
N \\
\ell
\end{array}\right] q^{\binom{\ell}{2}}\left(-q^{r}\right)^{\ell}[\text { by }(1.3)]=\sum_{N}(-t)^{N}\left(1 \dot{-} q^{r}\right)^{N} .
\end{aligned}
$$

For $r=0$, formula (4.9) becomes formula (4.5). Since r is arbitrary, replacing in formula (4.9) $t q^{r}$ by another variable z, we get

$$
\begin{equation*}
\sum_{\ell=0}^{\infty} \frac{z^{\ell} q^{\binom{\ell}{2}}}{(1 \dot{+} t)^{\ell+1}}=\sum_{N \geq 0}(-1)^{N}(t \dot{-} z)^{N} \tag{4.10}
\end{equation*}
$$

a q-analogue of the geometric progression formula

$$
\begin{equation*}
\frac{1}{1+t} \sum_{\ell=0}^{\infty}\left(\frac{z}{1+t}\right)^{\ell}=\sum_{N=0}^{\infty}(z-t)^{N} \tag{4.11}
\end{equation*}
$$

5 Gauss-like non-alternating sums

For $x=-1$, Newton's formula (1.1) yields

$$
\begin{equation*}
\sum_{\ell=0}^{N}\binom{N}{\ell}=2^{N} \tag{5.1}
\end{equation*}
$$

Similarly, the Euler binomial (1.3) for $x=-q$ provides

$$
\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{5.2}\\
\ell
\end{array}\right] q^{\binom{\ell+1}{2}}=(1 \dot{+} q)^{N}
$$

If we apply to these two banalities Gauss-like ansatz, we should look at the sums of the form

$$
\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{5.3}\\
\ell
\end{array}\right]\left(q^{r}\right)^{\ell}
$$

Not much is known about such sums, at least as far as I can tell. (See Remark 6.12.) However, we shall see below that for $r=1 / 2$,

$$
\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{5.4}\\
\ell
\end{array}\right] q^{\ell / 2}=\left(-q^{1 / 2} ; q^{1 / 2}\right)_{N}
$$

Changing q into q^{2}, this formula may be rewritten in the form

$$
\sigma_{N}=\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{5.5}\\
\ell
\end{array}\right]_{q^{2}} q^{\ell}=(1 \dot{+} q)^{N}
$$

Let's prove it. This formula is obviously true for $N=0,1$. Using induction on N and observing that

$$
\sigma_{N}=\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{5.6}\\
\ell
\end{array}\right]_{q^{2}} q^{\ell}=\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \\
N-\ell
\end{array}\right]_{q^{2}} q^{\ell}=\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \\
\ell
\end{array}\right]_{q^{2}} q^{N-\ell},
$$

we find:

$$
\begin{align*}
\sigma_{N+1} & =\sum_{\ell \geq 0}\left[\begin{array}{c}
N+1 \\
\ell
\end{array}\right]_{q^{2}} q^{\ell}[\mathrm{by}(2.8 \mathrm{~b})]=\sum_{\ell=0}\left(\left[\begin{array}{c}
N \\
\ell
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
N \\
\ell-1
\end{array}\right]_{q^{2}} q^{2 N+2-2 \ell}\right) q^{\ell} \\
& =\sigma_{N}+\sum_{\ell \geq 0}\left[\begin{array}{c}
N \\
\ell
\end{array}\right]_{q^{2}} q^{2 N+1-\ell}[\text { by }(5.6)]=\sigma_{N}+q^{N+1} \sigma_{N}=\left(1+q^{N+1}\right) \sigma_{N} . \tag{5.7}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\sigma_{N+1}=\left(1+q^{N+1}\right) \sigma_{N} \tag{5.8}
\end{equation*}
$$

and since $\sigma_{0}=1$, formula (5.5) follows.
The derivation of formula (5.7) above suggests consideration of more general sums

$$
\sigma_{N}(\gamma)=\sum_{k=0}^{N}\left[\begin{array}{l}
N \tag{5.9}\\
k
\end{array}\right]_{q^{2}} q^{\gamma k} .
$$

Since

$$
\sum_{k=0}^{N}\left[\begin{array}{c}
N \\
k
\end{array}\right]_{q^{2}} q^{\gamma k}=\sum_{k=0}^{N}\left[\begin{array}{c}
N \\
N-k
\end{array}\right]_{q^{2}} q^{\gamma k}=\sum_{k=0}^{N}\left[\begin{array}{c}
N \\
k
\end{array}\right]_{q^{2}} q^{\gamma(N-k)}=q^{\gamma N} \sigma_{N}(-\gamma),
$$

we find that

$$
\begin{equation*}
\sigma_{N}(-\gamma)=q^{-\gamma N} \sigma_{N}(\gamma) \tag{5.10}
\end{equation*}
$$

Further,

$$
\begin{aligned}
\sigma_{N+1}(\gamma) & =\sum_{k=0}^{N}\left[\begin{array}{c}
N+1 \\
k
\end{array}\right]_{q^{2}} q^{\gamma k}[\mathrm{by}(2.8 \mathrm{a})]=\sum_{k=0}^{N}\left(q^{2 k}\left[\begin{array}{c}
N \\
k
\end{array}\right]_{q^{2}}+\left[\begin{array}{c}
N \\
k-1
\end{array}\right]_{q^{2}}\right) q^{\gamma k} \\
& =\sigma_{N}(\gamma+2)+q^{\gamma} \sigma_{N}(\gamma),
\end{aligned}
$$

so that

$$
\begin{equation*}
\sigma_{N}(\gamma+2)=\sigma_{N+1}(\gamma)-q^{\gamma} \sigma_{N}(\gamma) \tag{5.11}
\end{equation*}
$$

Since we have already calculated $\sigma_{N}=\sigma_{N}(1)$ (5.5), formula (5.11) allows us to find $\sigma_{N}(\gamma)$ for arbitrary odd γ.

Setting

$$
\begin{equation*}
\sigma_{N}(2 \ell+1)=\sigma_{N}(1) \sum_{s=0}^{\ell} c_{\ell \mid s} q^{\left(\frac{s+1}{2}\right)} Q^{s}, \quad Q=q^{N}, \quad \ell \in \mathbf{Z}_{+} \tag{5.12}
\end{equation*}
$$

we can translate the recurrence relation (5.11) into the form

$$
\begin{equation*}
c_{\ell+1 \mid s}=\left(q^{s}-q^{2 \ell+1}\right) c_{\ell \mid s}+c_{\ell \mid s-1} \tag{5.13}
\end{equation*}
$$

with the understanding that

$$
\begin{equation*}
c_{\ell \mid s}=0 \text { unless } 0 \leq s \leq \ell \tag{5.14}
\end{equation*}
$$

Since

$$
\begin{equation*}
c_{0 \mid 0}=1 \tag{5.15}
\end{equation*}
$$

a little calculation shows that

$$
\begin{align*}
& c_{\ell \mid 2 r}=\left[\begin{array}{c}
\ell-r \\
r
\end{array}\right]_{q^{2}} \frac{g_{\ell-r}}{g_{r}} \tag{5.16a}\\
& c_{\ell \mid 2 r+1}=\left[\begin{array}{c}
\ell-r-1 \\
r
\end{array}\right]_{q^{2}} \frac{g_{\ell-r}}{g_{r+1}} \tag{5.16b}
\end{align*}
$$

where g_{i} 's are the Gauss products:

$$
\begin{equation*}
g_{i}=\sqcap_{t \text { odd }<2 i}\left(1-q^{t}\right), \quad i \in \mathbf{N} ; \quad g_{0}=1 \tag{5.17}
\end{equation*}
$$

It's easy to verify that formulae (5.16) satisfy the recurrence relation (5.13) and the boundary condition (5.15). It's interesting to observe that formula (5.16) exhibits still another form of 2-periodicity.

The first few $\sigma_{N}(2 \ell+1)$'s are written below:

$$
\begin{align*}
\sigma_{N}(3) / \sigma_{N}(1)= & (1-q)+q Q \tag{5.18a}\\
\sigma_{N}(5) / \sigma_{N}(1)= & (1-q)\left(1-q^{3}\right)+q Q\left(1-q^{3}\right)+q^{3} Q^{2} \tag{5.18b}\\
\sigma_{N}(7) / \sigma_{N}(1)= & (1-q)\left(1-q^{3}\right)\left(1-q^{5}\right)+q Q\left(1-q^{3}\right)\left(1-q^{5}\right) \\
& +q^{3} Q^{2}\left(1-q^{3}\right)[2]_{q^{2}}+q^{6} Q^{3} \tag{5.18c}\\
\sigma_{N}(9) / \sigma_{N}(1)= & (1-q)\left(1-q^{3}\right)\left(1-q^{5}\right)\left(1-q^{7}\right)+q Q\left(1-q^{3}\right)\left(1-q^{5}\right)\left(1-q^{7}\right) \\
& +q^{3} Q^{2}\left(1-q^{3}\right)\left(1-q^{5}\right)[3]_{q^{2}}+q^{6} Q^{3}\left(1-q^{5}\right)[2]_{q^{2}}+q^{10} Q^{4} \tag{5.18~d}
\end{align*}
$$

Passing to the limit $N \rightarrow \infty$ and considering $|q|<1$, so that $Q=q^{N} \rightarrow 0$, we find:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sigma_{N}(2 \ell+1) / \sigma_{N}(1)=(1-q)\left(1-q^{3}\right) \ldots\left(1-q^{2 \ell-1}\right), \quad \ell \in \mathbf{N} \tag{5.19}
\end{equation*}
$$

Since

$$
\sigma_{\infty}(\gamma)=\lim _{N \rightarrow \infty} \sigma_{N}(\gamma)=\sum_{k \geq 0}\left[\begin{array}{c}
\infty \tag{5.20}\\
k
\end{array}\right]_{q^{2}} q^{\gamma k}=1+\sum_{k>0} \frac{q^{\gamma k}}{\left(1-q^{2}\right) \ldots\left(1-q^{2 k}\right)}
$$

formula (5.19) can be rewritten as

$$
\begin{equation*}
\sum_{k \geq 0} \frac{q^{2 \ell+1) k}}{\left(q^{2} ; q^{2}\right) k}=\left(q ; q^{2}\right)_{\ell} \sum_{k \geq 0} \frac{q^{k}}{\left(q^{2} ; q^{2}\right)_{k}} \tag{5.21}
\end{equation*}
$$

Now

$$
\begin{equation*}
(a ; \rho)_{\ell}=(a ; \rho)_{\infty} /\left(\rho^{\ell} a ; \rho\right)_{\infty}, \tag{5.22}
\end{equation*}
$$

so that formula (5.21) can be rewritten as

$$
\begin{equation*}
\frac{1}{\left(q ; q^{2}\right)_{\infty}} \sum_{k=0}^{\infty} \frac{z^{k}}{\left(q^{2} ; q^{2}\right)_{k}}=\frac{1}{\left(z ; q^{2}\right)_{\infty}} \sum_{k=0}^{\infty} \frac{q^{k}}{\left(q^{2} ; q^{2}\right)_{k}}, \tag{5.23}
\end{equation*}
$$

where we introduced

$$
\begin{equation*}
z=q^{2 \ell+1} \tag{5.24}
\end{equation*}
$$

Formula (5.23) is true as it stands, for arbitrary z, because the difference of the LHS and the RHS of this formula is an analytic function of z for $|z|<1$, vanishing for an infinite number of different values $z=q^{2 \ell+1}, \ell \in \mathbf{Z}_{+}$, condensing to zero.

Remark 5.25. The alternating Gauss-like sums (1.9)

$$
(-1)^{N} s_{N \mid r}=\sum_{\ell=0}^{N}\left[\begin{array}{l}
N \tag{5.26}\\
\ell
\end{array}\right](-1)^{\ell}\left(q^{r}\right)^{\ell}
$$

have been effectively calculated in Section 1 for integer $r \in \mathbf{Z}$. The non-alternating sums (5.3)

$$
\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{5.27}\\
\ell
\end{array}\right]\left(q^{r}\right)^{\ell}
$$

have been effectively calculated in this section for half-integers $r \in \frac{1}{2}+\mathbf{Z}$. There must be some underlying reasons for this dichotomy.

6 Remarks

Remark 6.1. The basic philosophy of q-language is multiplicative discretization of classical continuous mathematics. Interestingly enough, the formulae in this paper can be interpreted as statements in an additive discrete language, a certain q-analogue of the classical difference calculus. The latter can be summarized as follows.

Let $\boldsymbol{\theta}=(\theta(0), \theta(1), \ldots)$ be a fixed sequence. For every sequence $\left\{a_{n}\right\}$, define the q difference sequences

$$
\begin{align*}
& \left(\Delta^{0} a\right)_{n}=a_{n} \tag{6.1a}\\
& \left(\Delta^{k+1} a\right)_{n}=\left(\Delta^{k} a\right)_{n+1}-q^{\theta(k)}\left(\Delta^{k} a\right)_{n}, \quad k \in \mathbf{Z}_{+} . \tag{6.1b}
\end{align*}
$$

When the parameter $\boldsymbol{\theta}$ has the canonical form

$$
\begin{equation*}
\theta(k)=k, \quad k \in \mathbf{Z}_{+}, \tag{6.2}
\end{equation*}
$$

the sequences $\left\{\left(\Delta^{k} a\right)_{n} \mid k, n \in \mathbf{Z}_{+}\right\}$can be reconstructed from the boundary conditions

$$
\begin{equation*}
b_{k}=\left(\Delta^{k} a\right)_{0}, \quad k \in \mathbf{Z}_{+}, \tag{6.3}
\end{equation*}
$$

by the easily verifiable formula

$$
\left(\Delta^{k} a\right)_{n}=\sum_{s=0}^{n} b_{k+n-s}\left[\begin{array}{l}
n \tag{6.4}\\
s
\end{array}\right] q^{k s} .
$$

In particular, when $k=0$ we get

$$
a_{n}=\left(\Delta^{0} a\right)_{n}=\sum_{s=0}^{n} b_{n-s}\left[\begin{array}{l}
n \tag{6.5}\\
s
\end{array}\right]=\sum_{s=0}^{n} b_{s}\left[\begin{array}{l}
n \\
s
\end{array}\right] .
$$

Thus, evaluation of the sums (5.26) and (5.27):

$$
\sum_{\ell=0}^{N}\left[\begin{array}{c}
N \tag{6.6}\\
\ell
\end{array}\right]\left(\pm q^{r}\right)^{\ell}
$$

can be thought of as the process of reconstruction of the original sequence $\left\{a_{N}\right\}$ given the boundary q-difference sequence $\left\{\left(\Delta^{n} a\right)_{0}=\left(\pm q^{r}\right)^{n}\right\}$.

In a superficially more general direction, say for the nonalternating case, if we fix $r, \rho \in \mathbf{Z}_{+}$and set

$$
b_{s}=\left[\begin{array}{l}
s \tag{6.7}\\
\rho
\end{array}\right] q^{\alpha(s)} \quad, \quad \alpha(s)=(s-\rho)\left(r+\frac{1}{2}\right)
$$

we find

$$
\begin{align*}
a_{n} & =\sum_{s=0}^{n}\left[\begin{array}{l}
n \\
s
\end{array}\right] b_{s}=\sum_{s=0}^{n}\left[\begin{array}{l}
n \\
s
\end{array}\right]\left[\begin{array}{l}
s \\
\rho
\end{array}\right] q^{\alpha(s)}=\left[\begin{array}{l}
n \\
\rho
\end{array}\right] \sum_{s=\rho}^{n}\left[\begin{array}{l}
n-\rho \\
s-\rho
\end{array}\right] q^{\alpha(s)} \\
& =\left[\begin{array}{l}
n \\
\rho
\end{array}\right] \sum_{s=0}^{n-\rho}\left[\begin{array}{c}
n-\rho \\
s
\end{array}\right] q^{s\left(r+\frac{1}{2}\right)}=\left[\begin{array}{l}
n \\
\rho
\end{array}\right] \tilde{\sigma}_{n-\rho}(2 r+1), \tag{6.8}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\sigma}_{N}(\gamma ; q)=\sigma_{N}\left(\gamma ; q^{\frac{1}{2}}\right) \tag{6.9}
\end{equation*}
$$

In particular, for $r=0$ and $\rho=1$, formula (6.8) yields:

$$
\begin{equation*}
a_{n}=[n]\left(-q^{\frac{1}{2}} ; q^{\frac{1}{2}}\right)_{n-1} . \tag{6.10}
\end{equation*}
$$

When $q=1$, this becomes S. Rabinowitz's Crux 946 formula ([6], p. 194)

$$
\begin{equation*}
a_{n}=n \cdot 2^{n-1}, \quad b_{n}=n, \quad n \in \mathbf{Z}_{+} . \tag{6.11}
\end{equation*}
$$

Remark 6.12. Many formulae in this paper can be found in the literature. The polynomials $(-1)^{N} S_{N}(-x)(1.11)$ are called by Andrews "Rogers-Szegö polynomials", and many of their interesting properties are listed on pp. 49-51 in [2]. Andrews also provides a very short proof of the Gauss formulae (1.7), on p. 37 in [2]. N. J. Fine has also studied these polynomials; formula (5.5) can be found on p. 29 of his book [4], as well as on p. 49 of the Andrews book [2].

Remark 6.13. The Gauss device can be thought of as chopping off the naturally occurring factors $q^{\binom{n}{2}}$ from the Euler q-analogue (1.32) of Newton's binomial (1.1). In the opposite spirit, one can ask about what happens when we attach these factors to a place that is naturally missing them, another Euler's form of Newton's binomial, formula (4.6):

$$
V_{N}(t)=\sum_{s \geq 0}\left[\begin{array}{c}
N+s \tag{6.14}\\
s
\end{array}\right] t^{s} q^{\binom{s}{2}} .
$$

Since these objects are no longer polynomials but are in fact infinite series, we won't pursue this avenue here and leave it to the reader as an exercise. The numbers $v_{N}=V_{N}(q)$ can be found on p. 8 of Fine's book [4]:

$$
\begin{align*}
& v_{2 k}=\frac{1}{\left(q^{2} ; q^{2}\right)_{k}} \sum_{n \geq 0} q^{\binom{n+1}{2}}=\frac{1}{\left(q^{2} ; q^{2}\right)_{k}} \sqcap_{n \geq 1}\left(\frac{1-q^{2 n}}{1-q^{2 n-1}}\right), \tag{6.15a}\\
& v_{2 k+1}=\frac{1}{\left(q ; q^{2}\right)_{k}}=\frac{1}{(1-q)\left(1-q^{3}\right) \ldots\left(1-q^{2 k+1}\right)} . \tag{6.15b}
\end{align*}
$$

References

[1] Andrews G., Truncation of the Rogers-Ramanujan Theta Series, Problem 83-13, SIAM Review, 1983, V.25, 402.
[2] Andrews G.E., The Theory of Partitions, Addison-Wesley Publishing Co., Reading, Mass.-LondonAmsterdam, 1976.
[3] Carlitz L., A Pair of Identities, Problem 66-9, SIAM Review, 1966, V.8, 233-234.
[4] Fine N.J., Basic Hypergeometric Series and Applications, American Mathematical Society, Providence, RI, 1988.
[5] Kupershmidt B.A., q-Probability: I. Basic Discrete Distributions, J. Nonlin. Math. Phys., 2000, V.7, 73-93.
[6] Rabinowitz S., Index to Mathematical Problems 1980-1984, Math Pro Press, Westford, MA, 1992.
[7] Szegö G., Ein Beitrag zur Theorie der Thetafunkionen, Sitz. Ber. Preuss. Akad. Wiss. Phys.-Math. Kl., 242-252 (also in G. Szegö, Collected Papers, Vol. 1, Editor R. Askey, Birkhäuser, Boston, 1982, pp. 795-805).

