
International Journal of Networked and Distributed Computing, Vol. 1, No. 2 (April 2013), 89-96

Published by Atlantis Press
Copyright: the authors

89

Parallel Implementation of Apriori Algorithm Based on MapReduce

Ning Li*
The Key Laboratory of Intelligent Information Processing,

Institute of Computing Technology, Chinese Academy of Sciences,Beijing,100190,China
Graduate University of Chinese Academy of Sciences, Beijing,100139,China

Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei
University, Baoding, 071002, Hebei, China

Li Zeng
The Key Laboratory of Intelligent Information Processing,

Institute of Computing Technology, Chinese Academy of Sciences,Beijing,100190,China

Qing He
The Key Laboratory of Intelligent Information Processing,

Institute of Computing Technology, Chinese Academy of Sciences,Beijing,100190,China

Zhongzhi Shi
The Key Laboratory of Intelligent Information Processing,

Institute of Computing Technology, Chinese Academy of Sciences,Beijing,100190,China

E-mail:lin@ics.ict.ac.cn, heq@ics.ict.ac.cn

Received 22 March 2012

Accepted 13 November 2012

Searching frequent patterns in transactional databases is considered as one of the most important data mining
problems and Apriori is one of the typical algorithms for this task. Developing fast and efficient algorithms that can
handle large volumes of data becomes a challenging task due to the large databases. In this paper, we implement a
parallel Apriori algorithm based on MapReduce, which is a framework for processing huge datasets on certain
kinds of distributable problems using a large number of computers (nodes). The experimental results demonstrate
that the proposed algorithm can scale well and efficiently process large datasets on commodity hardware.

Keywords: Apriori algorithm; Frequent itemsets; MapReduce; Parallel implementation; Large database

* Address :No.6 Kexueyuan South Road Zhongguancun,Haidian District Beijing,China

1. Introduction

Data Mining has attracted a great deal of attention in the
information industry and in society as a whole in recent
years. One of the important problems in data mining is
discovering association rules from databases of
transactions where each transaction consists of a set of
items. Many algorithms have been proposed to find
frequent item sets from a large database. However, there

has not yet been published implementation performing
the best under whatever conditions[1]. Apriori is one of
the typical algorithms, which is a seminal algorithm
proposed by R.Agrawal and R.Srikant in 1994 for mining
frequent itemsets for Boolean association rules[2]. It
aggressively prunes the set of potential candidates of size
k by using the following observation: a candidate of size
k can be frequent only if all of its subsets also meet the
minimum threshold of support. Even with the pruning,

Ning Li, ,Li Zeng, Qing He, Zhongzhi Shi

Published by Atlantis Press
Copyright: the authors

90

the task of finding all association rules requires a lot of
computation power and memory. Parallel computing
offers a potential solution to the computation requirement
of this task, if the efficient and scalable parallel
algorithms can be designed.

MapReduce is a patented software framework introduced
by Google in 2004. It is a programming model and an
associated implementation for processing and generating
large data sets in a massively parallel manner [3][4].
Some data preprocessing, clustering and classification
algorithms have been implemented based on
MapReduce[5][6][7].

In this paper, we implemented the parallel Apriori
algorithm based on MapReduce, which makes it
applicable to mine association rules from large databases
of transactions.

The rest of the paper is organized as follows. In
Section 2, we introduce the basic Apriori algorithm.
Section 3 gives an overview of MapReduce. In Section 4,
we present the details of the parallel implementation of
Apriori algorithms based on MapReduce. Experimental
results and evaluations are showed in Section 5 with
respect to speedup, scaleup, and sizeup. Finally, Section 6
concludes the paper.

2. Apriori Algorithm

2.1. Problem statement

The problem of mining association rules over market
basket analysis was introduced in [8]. It consists of
finding associations between items or itemsets in
transactional data [9].

As defined in [11], the problem can be formally stated
as follows. Let 1 2{ , , , }mI i i i= … be a set of literals,
called items. Let D be a set of transactions, where each
transaction T is a set of items such that T I⊆ . Each
transaction has a unique identifier TID. A transaction T
is said to contain X , a set of items in I , if X T⊆ .
An association rule is an implication of the form
“ X Y⇒ ”, where X I⊆ , Y I⊆ and
X Y =∅∩ .

Each itemset has an associated measure of statistical
significance called support. For An itemset X , we say
its support is s if the fraction of transactions in D
containing X equals s . The rule X Y⇒ has a
support s in the transaction set D if s of the
transactions in D contain X Y∪ . The problem of

discovering all association rules from a set of transactions
D consists of generating the rules that have a support
and confidence greater than given thresholds. These rules
are called strong rules.

This association-mining task can be broken into two
steps:

Step1. The large or frequent itemsets which have
support above the user specified minimum support are
generated.

Step2. Generate confident rules from the frequent
itemsets.

2.2. Apriori algorithm

The name of the Apriori algorithm is based on the fact
that the algorithm uses prior knowledge of frequent
itemset property which is that all nonempty subsets of a
frequent itemset must also be frequent [2]. The main idea
is to find the frequent itemsets.

The process of the algorithm is as follows.
Step1. Set the minimum support and confidence

according to the user definition.
Step2. Construct the candidate 1-itemsets. And then

generate the frequent 1-itemsets by pruning some
candidate 1-itemsets if their support values are lower than
the minimum support.

Step3. Join the frequent 1-itemsets with each other to
construct the candidate 2-itemsets and prune some
infrequent itemsets from the candidate 2-itemsets to
create the frequent 2-itemsets.

Step4. Repeat the steps likewise step3 until no more
candidate itemsets can be created.

The main steps consist of join and prune actions and
the process is followed.
(i) The join step: To find kL , a set of candidate k

-itemsets is generated by joining (1)k − -itemsets.
This set of candidates is denoted as kC . Let 1l and

2l be itemsets in 1kL − . The notation []il j refers
to the j th item in il . The items within an itemset
are sorted in lexicographic order. The join 1kL −

1kL − , is performed, where members 1l and 2l of
1kL − are joinable if their first (k-2) items are in

common. The resulting itemsets formed by joining
1l and 2l is
1 1 1 1 2[1], [2], , [2], [1], [1].l l l k l k l k− − −…

(ii) The prune step: kC is a superset of kL , its
member may or may not be frequent. According to
the Apriori property, any (1)k − -itemsets that is not
frequent cannot be a subset of a frequent k -itemsets.

Parallel Implementation of Apriori Algorithm Based on MapReduce

Published by Atlantis Press
Copyright: the authors

91

Hence, if any subset with length (1)k − of a
candidate k -itemsets is not in 1kL − , then the
candidate cannot be frequent either and so can be
removed from kC .

3. Introduction to MapReduce

MapReduce is a programming model and an associated
implementation for processing and generating large data
sets. As the framework showed in Figure 1, MapReduce
specifies the computation in terms of a map and a reduce
function, and the underlying runtime system
automatically parallelizes the computation across
large-scale clusters of machines, handles machine failures,
and schedules inter-machine communication to make
efficient use of the network and disks.

Figure 1. Illustration of the MapReduce framework

Map takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library
groups together all intermediate values associated with
the same intermediate key and passes them to the reduce
function [4]. That is, a map function is used to take a
single key/value pair and outputs a list of new key/value
pairs. It could be formalized as:

map :: (key1, value1) list(key2, value2)
The reduce function, also written by the user, accepts

an intermediate key and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. The intermediate values are supplied to the
users reduce function via an iterator. This allows us to
handle lists of values that are too large to fit in memory.
The reduce function is given all associated values for the
key and outputs a new list of values. Mathematically, this
could be represented as:

reduce :: (key2, list(value2)) (key3, value3)

The MapReduce model provides sufficient high-level
parallelization. Since the map function only takes a single
record, all map operations are independent of each other
and fully parallelizable. Reduce function can be executed
in parallel on each set of intermediate pairs with the same
key.

4. Parallel Apriori Algorithm based on
MapReduce

4.1. The main idea of the parallel Apriori algorithm

As described in Section 2, the key step in Apriori
algorithm is to find the frequent itemsets. In the k th
iteration, it computes the occurrences of potential
candidates of size k in each of the transactions. It is
obviously that the occurrences counting of candidate
itemsets in one transaction is irrelevant with the counting
in another transaction in the same iteration. Therefore, the
occurrences computation process in one iteration could be
parallel executed. After this phase, all the occurrences of
candidate itemsets are summed up. Furthermore, the join
actions are done on the frequent k-itemsets and prune
actions are performed on the candidate (k+1)-itemsets.
Finally, the frequent (k+1)-itemsets are found. According
to the frequent itemsets, the rules that have a support and
confidence greater than given thresholds are generated.

Figure 2 shows the flow chart of parallel Apriori
algorithm, which is denoted as PApriori. The steps are as
follows.

Step1. Use MapReduce model to find the frequent
1-itemsets.

Step2. Set 1k = .
Step3.If the frequent (k+1)-itemsets cannot be

generated, then goto Step6.
Step4. According to the frequent k -itemsets, use

MapReduce model to generate the frequent
(k+1)-itemsets.

Step5. If k is less than the max iteration times, then
k + + , goto Step3; Otherwise, continue to the next step.

Step6. According to the frequent itemsets L ,
generate the strong rules.

Ning Li, ,Li Zeng, Qing He, Zhongzhi Shi

Published by Atlantis Press
Copyright: the authors

92

k kL∪

Figure 2. The flow chart of the parallel Apriori algorithm

4.2. The parallel implementation of the Apriori
algorithm based on MapReduce

As the analysis mentioned above, PApriori algorithm
needs one kind of MapReduce job. The map function
performs the procedure of counting each occurrence of
potential candidates of size k and thus the map stage
realizes the occurrences counting for all the potential
candidates in a parallel way. Then, the reduce function
performs the procedure of summing the occurrences
counts. For each round of the iteration, such a job is
carried out to implement the occurrences computing for
potential candidates of size k.

Map-function The input dataset is stored on HDFS[5]
as a sequence file of <key, value> pairs, each of which
represents a record in the dataset. The key is the offset in
bytes of this record to the start point of the data file, and
the value is a string of the content of this record. The
dataset is splitted and globally broadcasted to all mappers.
Consequently, the occurrence computations are parallel
executed. For each map task, once the items in the
candidate itemsets occur in the transactions, the <key’, 1>
pair will be outputted, where key’ is the candidate
itemsets. We use m_cycles to represent the maximum
cycles of the PApriori. The pseudo-code of map function
is shown in Algorithm 1.

Algorithm1. Map(key, value)

Input: Global variable m_cycles, the offset key, the
sample value
Output: <key’, value’> pair, where the key’ is the
candidate itemsets and value’ is the once occurrence of
the key’, actually, it equals to 1.
1. if (m_cycles>1) /*for the case k>1*/
2. For each itemset kiC in the

candidate k -itemsets

3. If kiC
 is a subset of value

4. Output(kiC , 1);
5. Endif
6. End For
7. Else For each itemset iI in value

/*k=1*/
8. If 0iI ≠

9. Output(iI ,1);

10. Endif
11. End For

Reduce-function The input of the reduce function is
the data obtained from the map function of each host. In
reduce step, we sum up all the values with the same key
and get the final result. In another word, we can get the
total occurrences of potential candidates in the
transactions. The pseudo-code for reduce function is
shown in Algorithm 2.

Algorithm2. Reduce(key, Value)
Input: key is the element of the candidate itemsets, Value
is once occurrence of the key
Output: <key’, value’> pair, where the key’ is identical
to key and value’ is total occurrence of the key’.
1. sum=0;
2. while(values.hasNext()){
3. sum+=values.next();
4. }
5.output (key, sum);

5. Experimental Results

In this section, we evaluate the performance of our
proposed PApriori algorithm in terms of sizeup, speedup
and scaleup to deal with large scale dataset.

5.1. The datasets

The transactional data for an AllElectronics branch and
T10I4D100K dataset are used in our experiments. As
shown in Table1, there are nine transactions in the
transactional data. We denote it as dataset1and replicate it

Parallel Implementation of Apriori Algorithm Based on MapReduce

Published by Atlantis Press
Copyright: the authors

93

to get 1GB, 2GB, 4GB, and 8GB datasets respectively.
They have many short transactions with few frequent
itemsets. For the T10I4D100K dataset, we replicate it to 2
times, 4 times, 8 times and get 0.6G, 1.2G, 2.4G datasets,
we denote them as T10I4D200K, T10I4D400K and
T10I4D800K respectively. They have fewer larger
transactions with many frequent itemsets. Performance
experiments were run on a cluster of 10 computers, six
with four 2.8GHz cores and 4GB memory, the rest four
with two 2.8GHz cores and 4GB memory. Hadoop
version 0.20.2 and Java 1.5.0_14 are used as the
MapReduce system for all the experiments. Experiments
were carried on 10 times to obtain stable values for each
data point.

Table1. Transactional data for an AllElectronics branch

TID List of item_IDs
T100 I1,I2,I5
T200 I2,I4
T300 I2,I3
T400 I1,I2,I4
T500 I1,I3
T600 I2,I3
T700 I1,I3
T800 I1,I2,I3,I5
T900 I1,I2,I3

5.2. Optimal number of reducers assigning

In Hadoop version 0.20.2, the number of mappers is
automatically determined by the cluster system while the
number of reducers needs to be given by users. So before
the parallel performance experiments, we can choose the
optimal number of reducers by assigning different ones in
the experiments.

The 2GB replication of Dataset1 is used and we
choose two nodes in our assigning experiments. The
execution times under different number of reducers are
shown in Figure 3.

Figure 3. Executing times under different number of reducers

As shown in Figure 3, with the increase of reducers,
the degree of parallelism increases, the execution time
decreases gradually and reaches its minimum when the
number of reducers is 4. After that, the execution time
increases with the increase of reducers due to the
additional management time and the extra
communication time.

As we all known, the total computing time of a
Hadoop program is mainly composed of two parts, one
part is computing time of each map and reduce phases,
the other part is communication and networking between
map and reduce phases. The more the number of reduces
is, the shorter the computing time of each map and reduce
phases trends. However, the longer will be the time of
communication and networking between map and reduce
phases. Thus there can be some tradeoff between the two
parts.

Generally speaking, in a cluster of computers without
job fails in the running time, the optimal number of
reducers is 0.95 or 1.75 × number of nodes ×
mapred.tasktracker.tasks.maximum. In case of 0.95, all
the reduces can be invoked at the same time when all the
maps finish. In case of 1.75, a faster node may execute
multiple reduces, thus each node could be loaded in more
balance.

According to the configuration of our cluster, each
node has 4 cores, so the
mapred.tasktracker.tasks.maximum of each node is 2.
And there are 2 nodes used in the experiments, therefore,
it can get the shortest computing time when the number
of reduces is 4 on condition that there are no job fails in
the running time.

Ning Li, ,Li Zeng, Qing He, Zhongzhi Shi

Published by Atlantis Press
Copyright: the authors

94

5.3. The evaluation measure

We use scaleup, sizeup and speedup to evaluate the
performance of PApriori algorithm.

Scaleup: Scaleup evaluates the ability of the
algorithm to grow both the system and the dataset size.
Scaleup is defined as the ability of a m-times larger
system to perform a m-times larger job in the same
run-time as the original system. The definition is as
follows.

1(,)
mm

TScaleup data m
T

= (1)

Where, 1T is the execution time for processing data
on 1 core, mmT is the execution time for processing
m*data on m cores.

Sizeup: Sizeup analysis holds the number of cores in
the system constant, and grows the size of the datasets by
the factor m. Sizeup measures how much longer it takes
on a given system, when the dataset size is m-times larger
than the original dataset. It is defined by the following
formula:

1

(,) mTSizeup data m
T

= (2)

Where, mT is the execution time for processing
m*data, 1T is the execution time for processing data.

Speedup: Speedup refers to how much a parallel
algorithm is faster than a corresponding sequential
algorithm. It is defined by the following formula:

1

p

TSpeedup
T

= (3)

Where, p is the number of processors, 1T is the
execution time of the algorithm with one processor, pT
is the execution time of the parallel algorithm with p
processors.

Linear speedup or ideal speedup is obtained when
Speedup p= . When running an algorithm with linear
speedup, doubling the number of processors doubles the
speed. In practice, linear speedup is difficult to achieve
because the communication cost increases with the
number of records becomes large.

5.4. The performance and analysis

We examine the scaleup, sizeup and speedup
characteristics of the PApriori algorithm.

To demonstrate how well the PApriori algorithm
handles larger datasets when more cores of computers are

available, we have performed scaleup experiments where
we have increased the size of the datasets in direct
proportion to the number of cores in the system. For
dataset1, the datasets size of 1GB, 2GB, 4GB and 8GB
are executed on 4, 8, 16 and 32 cores respectively. For
dataset T10I4D100K, T10I4D100K, T10I4D4200K,
T10I4D400K and T10I4D1800K are executed in the
same way.

Figure4 shows the scaleup performance of the
datasets. Clearly, the PApriori algorithm scales well, the
scaleup fall shortly as the database and multiprocessor
sizes increase. It always maintains a higher than 78%
scalability for dataset1 and 80% for T10I4D100K.

To measure the performance of sizeup, we fix the
number of cores to 4, 8, 16 and 32 respectively. Figure 5
shows the sizeup results on different cores. When the
number of cores is small such as 4 and 8, the sizeup
performances differ little. However, as more cores are
available, the sizeup value for 16 or 32 cores decreases
significantly compared to that of 4 or 8 cores on the same
data sets. The results show sublinear performance for the
PApriori algorithm, the program is actually more efficient
as the database size is increased. Increasing the size of the
dataset simply makes the noncommunication portion of
the code take more time due to more I/O and more
transaction processing. This has the result of reducing the
percentage of the overall time spent in communication.
Since I/O and CPU processing scale well with sizeup, we
get sublinear performance.

To measure the speedup, we kept the dataset constant
and varied the number of cores. The number of cores
varies from 4 to 32. We have performed four experiments,
the size of the dataset increases from 1GB to 8GB for
dataset1, and from 0.3GB to 2.4GB for T10I4D100K.

We have performed the speedup evaluation on
datasets with different sizes and systems. Figure6 shows
the speedup for different datasets. As the result shows,
the speedup performance does however not to be very
good in the case of 1GB for dataset1 and 0.3GB for
T10I4D100K. This is an artifact of the small amount of
data each node processing. In this case, communication
cost becomes a significant percentage of the overall
response time. This is easily predicted from our sizeup
experiments where we notice that the more data a core
processes, the less significant becomes the
communication cost giving us better performance.
Therefore, PApriori algorithm can deal with large

Parallel Implementation of Apriori Algorithm Based on MapReduce

Published by Atlantis Press
Copyright: the authors

95

datasets efficiently. Larger datasets would have shown
even better speedup characteristics.

(a) Scaleup for dataset1

(b) Scaleup for T10I4D100K

Figure4. Scaleup performance evaluation

 (a) Sizeup for dataset1

(b) Sizeup for T10I4D100K

Figure5. Sizeup performance evaluation

 (a) Speedup for dataset1

(b) Speedup for T10I4D100K

Figure6. Speedup performance evaluation

To sum up, for the datasets either have many short
transactions with few frequent itemsets or fewer larger
transactions with many frequent itemsets, PApriori
algorithm has shown good performance.

Ning Li, ,Li Zeng, Qing He, Zhongzhi Shi

Published by Atlantis Press
Copyright: the authors

96

5.5. Application to transaction logs mining

The PApriori algorithm we proposed has been applied on
some transaction logs from a telecommunications
company.

The raw data contains 3249144 transaction logs
consisting of 34 attributes, such as transaction number,
transaction type, transaction source, user ID, product ID
and so on. Each log record that one user buy or download
one application program by mobile phone or PC. The aim
is to find the association rules among the products.

We have done some pre-processing on the raw data.
First, we choose the necessary items for association rules
mining. In other words, we choose the user ID, product
ID as the attributes needed. Since one user may download
several products, then we combine the products
downloaded by the same user. Finally, we get the data
that the PApriori algorithm can deal with, i.e. each line of
the dataset record the produces that one user download.
For example, 50,60,61,126,1915 indicate that the user
download the products whose IDs are 50,60,61,126,1915.

We run PApriori algorithm on the transaction logs
and get the association rules within 10 minutes. It
indicates that PApriori algorithm can deal with large real
datasets showing good performance.

6. Conclusion

Searching for frequent patterns in transactional databases
is considered one of the most important data mining
problems. The task of finding all association rules
requires a lot of computation power and memory. In this
paper, we propose a fast parallel Apriori algorithm based
on MapReduce, We use sizeup, speedup and scaleup to
evaluate the performances of PApriori. The experimental
results show that the program is actually more efficient as
the database size is increased. Therefore, the proposed
algorithm can process large datasets on commodity
hardware effectively.

Acknowledgments

The work is supported by the National Natural
Science Foundation of China (No.61175052, 61203297,
60933004, 61035003), National High-tech R&D Program

of China (863 Program) (No.2013AA01A606,
2012AA011003), National Program on Key Basic
Research Project (973 Program) (No.2013CB329502).

References

1. Yanbin Ye, Chia-Chu Chiang, A Parallel Apriori
Algorithm for Frequent Itemsets Mining, Proceedings of
the Fourth International Conference on Software
Engineering Research, Management and Applications
(SERA’06), pp. 87-93,2006

2. Jiawei Han and Micheline Kamber. Data Mining, Concepts
and Techniques. Morgan Kaufmann, 2001

3. Dean J., Ghemawat S. MapReduce: Simplified Data
Processing on Large Clusters. In: Proc. of Operating
Systems Design and Implementation, San Francisco, CA,
pp. 137–150 , 2004

4. Lammel, R. Google’s MapReduce Programming Model -
Revisited. Science of Computer Programming 70, 1–30,
2008

5. Borthakur, D. The Hadoop Distributed File System:
Architecture and Design, 2007

6. Q. He, F.Z. Zhuang, J.C. Li, Z.Z. Shi. Parallel
implementation of classification algorithms based on
MapReduce. RSKT, LNAI 6401, pp. 655-662, 2010

7. W. Z. Zhao, H. F. Ma, Q. He. Parallel k-means clustering
based on MapReduce. In CloudCom’09: Proceedings of
the 1st International Conference on Cloud Computing, pp.
674-679, Berlin, Heidelberg, 2009

8. R. Agrawal, T. Imielinski, and A. Swami, “Mining
Association Rules between Sets of Items in Large
Database,” Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Vol.22,
Issue 2, pp. 207-216, 1993

9. Osmar R. Zaiane, Mohammad El-Hajj, Paul Lu. Fast
Parallel Association Rule Mining Without Candidacy
Generation, Technique Report

10. Ghemawat, S., Gobioff, H., Leung, S. The Google File
System. In: Symposium on Operating Systems Principles, pp.
29-43, 2003

11. Hadoop: Open source implementation of MapReduce,
Available: http://hadoop.apache.org, June 24, 2010

12. Q. He, Q. Tan, X.D. Ma, Z.Z. Shi. The high-activity
parallel implementation of data preprocessing based on
MapReduce. RSKT, LNAI 6401, pp. 646-654, 2010

13. R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 Int. Conf. VeryLarge Data
Bases, pages 487-499, Santiago, Chile, September 1994

14. Rakesh Agrawa, John C.shafer. Parallel Mining of
Association Rules, IEEE transactions on knowledge and data
engineering, Vol. 8, No.6, pp.962-969,1996

