
A Middleware-Based Implementation for Data Integration of Remote Devices

Xianyong Liu*
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University City

E-mail: ayongwust_sjtu@sjtu.edu.cn†

Yanping Liu
School of Ocean Science, Zhejiang Ocean University

Email: liuyp80@gmail.com

Lizhuang Ma
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University

Email: ma-lz@sjtu.edu.cn

Qing Gao
Inner Mongolia Autonomous Region Disabled Rehabilitation Service Center

Different from existing techniques3-5 that often focus on high level data integration, this paper contributes a novel
solution at device level, implementing a fully scalable and configurable middleware, aiming at releasing the power
of parallel processing with distributed data. It is designed as a soft-gateway to link upper-level PCs with lower-level
data transfer units, and implemented by extracting the key part of data communication out of its original holder
such that the UI only cares about how to display data.

Keywords: middleware, distributed systems, parallel processing, remote sensing, modules and interfaces

*504 Room, SEIEE building 3#, 800 Dongchuan Rd,Min Hang,Shanghai,200240,China.
†ayongwust_sjtu@sjtu.edu.cn.

1. Introduction

According to the “Evaluation Criteria for Modern Urban
Waterworks in Zhejiang”, water supply companies are
required to establish a pre-detection mechanism for
auto-electrical equipment and machinery, using online
instruments for status monitoring and fault
determination.

Lower-level controllers interact with upper-level
PCs by executing commands and reporting device
status. The interaction, in essence, is conducted by
exchanging data packets that are transmitted through
GPRS-based network. Upper-PC functions as either a
callee or a caller. As a callee, it monitors a certain
computer port, receives data packets, unpacks them and

displays the values on User Interface (UI). As a caller, it
packs instructions and data, writes to the output buffer,
then to the device via a serial port.

It is advisable for an enterprise to cut manpower
cost by utilizing the network and auto-control.
Unfortunately, an undesirable fact is that companies are
greatly constrained in buying and upgrading devices.
Because each vendor has its own Information System
(IS) to support device management. What's worse, data,
in different IS, is organized with discretionary protocols
which are not public.

Although a large screen could be setup to show all
providers' software with a window for each, this would
still be inconvenient for operators to check and manage
all targets because the operational style of each window

International Journal of Networked and Distributed Computing, Vol. 1, No. 2 (April 2013), 72-78

Published by Atlantis Press
 Copyright: the authors
 72

willieb
Typewritten Text
Received 4 April 2012

willieb
Typewritten Text
Accepted 13 November 2012

 Xianyong Liu, Yanping Liu, Lizhuang Ma and Qing Gao

would be quite different. The consequence is that the
information construction costs paid by the company
increase:

(i) Duplicate investment on a workstation with

software
The company has to buy the accompanying
software though needs the lower device only;

(ii) Additional resource payment
Additional network, hardware, system and
computer room space are allocated for a new
controlling PC as a workstation;

(iii) More maintenance
System administrators have more servers and
databases to maintain; the staffs in service center
frequently switch between different software to
monitor terminal devices;

(iv) Harder for data integration
It gets harder to integrate and share remote data
internally/externally, because they are organized
with different format and stored in dispersed
storage.

With the number of device vendors, the company
either finds a way to integrate heterogeneous remote
data, or has to give up trading with other suppliers even
though their equipment had a good price/performance
ratio. The companies' evolving application landscape
was becoming more and more complex as long as no
standardization took place. 1-2

In this paper, we focus on remote terminal data
integration, which is the fundamental for inter-
organizational integration that helps to exchange data, to
unify software components, and to streamline business
processes.

Different from those existing solutions and
techniques, which focus on high-level data integration,
our key contribution is a data integration solution for
device-level. From the view of practical applications
within companies, we believe lower level data
integration plays fundamental part. Proposing a feasible
and robust solution, aiming at solving this problem, is of
vital interest. In this paper, a fully scalable middleware
implementation is described by using a range of
advanced technologies, such as component oriented
programming, multiple thread, message queuing, XML,
topic-based publish/subscribe design pattern.

2. Solution

The root of the trouble is that each equipment provider
uses its own protocol for packing data. In the water
industry, as in many other fields, there is no unified
standard available for the makers.

The communication between an upper-level PC and
lower-level Data Transfer Units (DTU) is the key part in
IS considered in this project. It is generally designed as
a component that is tightly coupled with the upper-level
software (We use workbench to refer to upper-level
software as well).

Our work in this project is to separate the data
communication functionality from its container,
construct a middleware proxy, and have it run in the
background as a common service. Figure 1 shows a
comparison between the existing problematic
architecture and the improved architecture after
involving remote device data integration middleware.

The middleware takes charge of communication and
bridges lower-level DTUs and upper-level software. It
converts multi-source raw packets into parsed values in
a general view of XML, which can be shared via
Message Bus and consumed by all applications,
including the device management workbench and other
information systems.

3. Implementation

The toughest issues to resolve in design and
implementation are that remote data is heterogeneous
and there is a large amount of it. Unlike the high-level
software of a particular vendor, the middleware needs to
talk to all devices from any vendor.

Fig.1. Existing problematic architecture vs. Improved
architecture.

Published by Atlantis Press
 Copyright: the authors
 73

Middleware-based Implementation for Data Integration of Remote Devices

A component-based technique is useful; each
individual component is a software package (or module)
that encapsulates a set of related functions. Following
this principle, the middleware is composed of four child
modules. They are packet transceiver, message
reader/writer, packet parser/re-packer, and data
forwarder. Furthermore, each module is comprised of
independent components. Figure 2 illustrates the data
processing flow in the data integration middleware.
Such implementation guarantees the middleware has
full flexibility and robustness.

It is fairly evident that the original higher-level
software, used as a workbench, is much thinned out in
functionalities; it only cares about how to display data
in a nice way.

3.1. Data layer design

Yin and Zhang6, analyzing information construction in
the water industry, gave a result that the difficulties of
data integration mainly reside in the difference of data
structure, specification and technology architecture.

Before development, therefore, making a reasonable
logic design in the data layer is quite important. It must
make sure all parsed values of diverse data sources
finally stream into a centralized storage. Such design is
device independent, and offers a general data view for
later global data integration. Having a thorough analysis
of the logic design of existing legacy databases is also
necessary.

Considering that the amount of data grows fast, the
normalization rule is indispensable. For instance, the
relation schema of tables in the database should be at
least 3NF.

Given iA is the set of parameters of device type jT ,

A is defined as the union set of tuples in
IndicatorParam table.

1 2 .nA A A A← ∪ ∪ ∪L (1)
In database logic design, both “horizontal pattern”

and “vertical pattern” are adoptable approaches. We
adopt the latter because not all RTUs have the same
number of properties, especially when equipment types
are different. For example, serial SM510-PF has 29
parameters, while NEW_JK has 24. Devices located in
different places have different business uses. Data from
a factory is comprised of residual chlorine, turbidity, PH,
water level etc. A pressure checking point in a pipeline
reports only the current pressure value. In “horizontal
pattern”, the number of columns in table RTUIndicator
equals 1 2 nA A A∪ ∪ ∪L . This pattern doesn’t
accord with the rule of normalization.

3.2. Packet transceiver

The packet transceiver component plays a role as a Data
Service Center (DSC). A DSC does not interact with
lower-level controllers, such as PLCs, directly. Instead
they are linked by a data transfer unit. DTU is designed
as a GPRS-support solution. It transfers data to the
controlling PC as data gathering device, and connects to
lower-level devices via serial port RS-232/442/485 or
TTL.

Normally, the packet transceiver is designed to
comprise several sub-modules. Each module is used to
communicate with a particular type of DTU. Two cases
need to be taken into account during development:

(a) Is the DTU a third-party product?

Most equipment providers use a DTU from a third
party, as the access point to the GPRS mobile
network.

(b) Is DTU a proprietary product?
A few makers provide their own DTU with devices.
In this case, free library available for interacting
with lower-level devices as in the above case
cannot be expected. As an alternative, developers
could use auxiliary tools, like WinPcap, to grab raw
TCP/UDP packets as a data source.

Figure 3 shows the configuration of the packet
transceiver in our project. “Hongdian” and “PCapNet”
are two sub modules in this component. The former

Fig.2. The data processing flow in the data integration
middleware.

Published by Atlantis Press
 Copyright: the authors
 74

 Xianyong Liu, Yanping Liu, Lizhuang Ma and Qing Gao

calls a third party API to fetch packets on port 5002,
while the latter grabs raw packets on port 5003.

IP address and the port number, set in Fig. 3., are
not the same as those set on DTU. In order to channel
data packets into the physical gateway through the
GPRS network, an IP address and port are configured
for the DTU, and then a security rule could be defined
by a firewall like Microsoft ISA server, which forwards
raw packets to an intranet computer where the packet
transceiver component resides.

The configurability is a typical characteristic of the
packet transceivers, so that a new child component can
be added or an old one removed on demand. A property
switch named “enabled” (enabled=true/false) is
provided for <DSC> node such that it is easy to turn on
or shut down a sub module in this component.

3.3. Message reader/writer

Previously, packet processing in the vendor's software
has been often synchronized. Namely a new packet will
get no response until the packet on-hand is dealt with. It
works well when the number of devices is small and the
data load not heavy, however, in our scenario, an
asynchronous mechanism is more appropriate. The
middleware needs to interact with DTUs provided by all

vendors. In addition, we need to leave place for future
device expansion while designing it.

Microsoft Message Queuing (MQ) technique is
introduced to resolve the data load problem mentioned
above. It enables applications running at different times
to communicate across heterogeneous networks and
interact with systems that may be temporarily offline.
From the perspective of development, there is no much
difference from using other messaging systems, like
IBM MQSeries. Also, many custom-built MQ models
and implementations are available for reference. 7-9

Figure 4 shows the configuration of the message
reader/writer component.

The transceiver defined in subsection 3.2 is the
message sending application. When a packet arrives, the
transceiver first checks the identity of the DTU and
recognizes the packet's device type, then creates a
message entity and tags it with a processor label, and
finally pushes the message into a message queue. After
that, it turns to the next-new-comer immediately without
caring about what will subsequently happen to the

<!--MQ Processors-->
 <WorkQueueConfig>
 <service enabled="true" workerthreadcount="10"

receivetimeout="90" >
 <logging enabled="true" debug="true" info="true"

warning="true" error="true" logdir="d:\..\logs" />
 </service>
 <queues>
 <queue priority="1" path=".\PRIVATE$\zswaterone"

messagetypes="HongDian,PCapNet" />
 <queue priority="1"
path=".\PRIVATE$\zswateronepackagetodb"

messagetypes="PackageToDB" />
 </queues>
 <messagetypes>
 <messagetype id="HongDian"

useconstructorparm="true"
type="Com.Maya.Fcrm.BusinessRules.HongDianPr

ocessor"
assembly="BusinessRules.dll" />

 <messagetype id="PCapNet"
useconstructorparm="true"

type="Com.Maya.Fcrm.BusinessRules.PCapNetPro
cessor"

assembly="BusinessRules.dll" />
 <messagetype id="PackageToDB"

useconstructorparm="true"
type="Com.Maya.Fcrm.BusinessRules.PackageToD

BProcessor"
assembly="BusinessRules.dll" />

 </messagetypes>
 </WorkQueueConfig>

Fig.4. The configuration of message read/writer

<DscConfig>
 <DSCs enabled="true">
 <DSC id="HongDian" enabled="true"

type="Com.Maya.Fcrm.Services.Package.GPRSHon
gDian"

assembly="PackageManager.dll">
 <GPRS intervalunit="ms" packageToFile="true"

packageFileRollsize="1024">
 <ServerParam ip="*.*.*.*" port="5002"

workmode="1" protocol="0" />
 <DataParam displaywithhex="true" />
 <NonBlockParam interval="100" />
 </GPRS>
 </DSC>
 <DSC id="PCapNet" enabled="true"

type="Com.Maya.Fcrm.Services.Package.PCapNet"
assembly="PackageManager.dll">

 <GPRS intervalunit="s" packageToFile="true"
 packageFileRollsize="1024">

 <ServerParam ip="*.*.*.*" port="5003"
workmode="1" protocol="0" />

 <DataParam displaywithhex="true" />
 <NonBlockParam interval="1" />
 </GPRS>
 </DSC>
 </DSCs>
</DscConfig>

Fig.3. The configuration of packet transceiver

Published by Atlantis Press
 Copyright: the authors
 75

Middleware-based Implementation for Data Integration of Remote Devices

previous one. The message reader/writer component is
the receiving application. It continuously fetches entities
from the message queue, and triggers the corresponding
processor by recognizing message labels.

3.4. Packet parser/re-packer

The data parser/re-packer component is the processor
called by the message receiving application discussed in
the previous section. It can also be regarded as the
counterpart of the sub communication module in
subsection 3.2.

The message processor first determines the packet's
device type which is in the message entity, and then
queries the database to get the list of parameters
associated with that device type. Usually, the parameter
list is queried once and then cached into the memory.
Each item in the list contains a set of definitions, such as
parameter index, bytes, type, conversion ratio. They are
used to parse values from binary data stream. Finally, it
calls the re-packer to encapsulate the parsed values.

The re-packer is a key component for data
integration in the middleware. The goal of remote data
integration in this paper is to finally output data to
applications in a unified form by eliminating the
heterogeneity of data that are from a multitude of
sources. They can be shared by every IS no matter what
technology it uses and what business it concentrates on.

XML is undoubtedly the most recommended form
to re-encapsulate parsed values. As Alon10 points out,
one cannot ignore the role of XML in the development
of data integration over the past decade. In a nutshell,
XML fueled the desire for data integration, because it
offered a common syntactic format for sharing data
sources. The success of other technologies, like XPath,
XQuery, XSLT, XML Data to UML Diagrams, and
Web DB, shows the XML's popularity. 11-13

Figure 5 demonstrates how the parser decodes
values and the re-packer encapsulates data in XML
format.

3.5. Data forwarder and workbench

Applications, such as the high-level device monitoring
workbench, can get values from underlying data
inventory, while, from the viewpoint of management,
this way is less ideal, and potentially risky, because it
leads to certain delay in obtaining data on-site. In
practice, the greatest value of an information system is
its sensitivity to business change.

In order to meet the rule, a socket server is put in
place as a data forwarder to overcome that problem,
such that all applications are able to consume real-time
values. A topic-based Publish/Subscribe design pattern
is applyed in the implementation of the data forwarder
component. This pattern is a very loosely coupled
architecture, in which a data sender does not even know
who the subscribers are. Sender applications tag each
message with the name of a topic, instead of referencing
specific receivers. The messaging system then sends the
message to all applications that have asked to receive
messages on that topic. Message senders need only
concern themselves with creating the original message,
and can leave the task of servicing the receivers to the
messaging infrastructure. 14

Workbench runs as an independent data subscriber
like other enterprise applications, which only care about
how to display the values in the User Interface layer.
Since it becomes device-compatible directly, companies
are no longer forced to invest in upper-level software.
As times goes on, replacing or upgrading workbench
won't cause any trouble.

Figure 6 is a screen-shot of a device management
workbench in Chinese version.

Having the previously distributed data stream into a
centered work station, not only does the company avoid
duplicate investment on both software and hardware,
but also achieve higher efficiency in management. In

Fig.6. An upper-level device management workbench.

Fig.5. The parser decodes values and the re-packer encapsulates

data in XML format.

Published by Atlantis Press
 Copyright: the authors
 76

 Xianyong Liu, Yanping Liu, Lizhuang Ma and Qing Gao

addition, lower level data integration obviously paves
the way for future data analysis, which becomes feasible
only when the data is in a uniform view. Figure 7 shows
daily archive data statistics from 11/17/2010 to
05/10/2011 in our project. The first one is daily total
records. The second reflects fluctuation of data size. The
peak value of rows appears on 03/22/2011 with
1,393,132 rows while 77,832KB is the peak data size
value that emerges on 04/28/2011.

3.6. Middleware deployment

For many reasons, like data load, performance, security,
and robustness, the rules, defined in a firewall, forward
data packets to multiple servers by group. In this case, it
is better to deploy the middleware on multiple servers,
dealing with data of distributed sources in
parallelization. By controlling “enabled” switch of
component, the administrator is able to decide which
modules to turn on and which to shut down. In our
project, the middleware was deployed on two separate
servers; one is for HongDian DSC and the other for
PcapNet DSC.

It is also allowed to setup a message queue server
and a socket server separate from the one where the
middleware runs. Because the remote data integration
middleware is designed to comply with the COP
principle and each component is completely
configurable.

4. Data Integration Extension

In order to respond to fast changing business, more and
more information systems are involved in companies'
daily operations. Many “How & What” questions have
been emerging as this trend grows. How to construct
information efficiently? How to avoid duplicate

investment? What might existing data tell? What can we
do before undesired things happen? Scholars and
engineers seek aids and solutions from intra-
organizational data integration.

Enterprise Application Integration (EAI) and
Service Oriented Architecture (SOA) are feasible
approaches people are trying. Nevertheless, they have
difference because EAI emphasizes ''Seamlessness'' and
SOA stresses “Capability”. Thus, the architectures of
their implementation are different. EAI is commonly
realized by establishing a Bus where messages flow
through seamlessly to carry real-time data. Web Service
is the most widely used method to implement SOA; data
can be shared offshore by exposing reachable web
methods.

Recently, the role of Radio Frequency Identification
(RFID) applications in water supply companies has
been gradually expanding. RFID readers can upload
data via a GPRS-based DTU automatically. Our
middleware can be extended when needed to operate in
the framework of Wireless Sensors and RFID for
ubiquitous Smart Environments (WISSE) raised by
Sanchez Lopez et al. 15

5. Conclusion and Future work

Remote data integration middleware described in this
project resolved a vexing problem that Zhoushan Water
Supply Company faced. When every vendor tightly
couples upper-level software with lower-level
equipment as an integrated solution, this greatly narrows
the space for companies, choosing or upgrading devices
on demand. Meanwhile, it also becomes an obstacle for
intra-organizational data integration.

This paper describes the procedure for implementing
a middleware in detail. The middleware is designed as a
soft-gateway to link upper-level PCs with lower-level
data transfer units, and implemented by extracting the
key part of data communication out of its original
holder so that the UI only cares about how to display
data in a friendly way.

In order to endow middleware with enough
robustness and flexibility, a component-oriented
technique is used for program development. Here are
brief descriptions of four child modules contained in the
middleware. 1). The data transceiver plays the role of
entrance for raw packets in and out, recognizes the
device type of packets, and pushes messages into a
queue with the packet as the entity body. 2). The

Fig.7. Daily archive data statistics from 11/17/2010 to
05/10/2011..

Published by Atlantis Press
 Copyright: the authors
 77

Middleware-based Implementation for Data Integration of Remote Devices

message reader/writer fetches messages from the queue
continuously and triggers the corresponding message
processor. 3). The data parser/re-packer parses a packet
contained as the body of message entities according to
the device type that determines which protocol is used
for data organization, and re-packs parsed values with
XML format. 4). The data forwarder communicates
with a socket server that publishes the data as topics. All
applications including the instrument monitoring
workbench itself, reacting as subscribers, will get a copy
of data that can be consumed without any difficulty
since the data is re-defined and encapsulated in plain
XML format. The data is pushed into another separate
message queue and eventually streams out of a
centralized database.

Many advanced techniques, like Component
Oriented Programming (COP), Message Queuing,
XML, Topic-based Publish/Subscribe design pattern,
EAI and SOA, are used to get robust middleware with
flexibility for future application extensions.

Geographical Information Systems (GIS) are
commonly used in water supply companies and play a
key role. They provide an e-perspective opened for
water supply maintenance, consumer and water quality
management, planning pipeline layouts, etc. From the
viewpoint of management, it is necessary that devices
including all distributed meters and gauges can be
displayed in GIS with their real time running states. In
the next step, in this project, we will look into
cooperating with our GIS vendor to create a plug-in,
which works as a topic-based subscriber (see section E),
aiming to integrate remote device data with GIS. For
other information systems like Equipment Management
System (EMS) that have no special requirement for data
in real-time, some web methods are to be exposed for
retrieving and exchanging device information.

Acknowledgements

The authors would like to thank LvBo Cai, the promoter
of this project. We are also grateful to the anonymous
reviewers for their helpful comments. This work has
been partially supported by the Science and Technology
department of Zhejiang province, public welfare
technology research project No.2010C31037.

References

1. A. Schwinn and J. Schelp, Data Integration Patterns,
Proceedings of Business Information Systems BIS,
Colorado, Springs, (2003).

2. S. Dirk, F. Daniel and N. Ina, A Framework for
Assessing Inter-organizational Integration of Business
Information Systems, International Journal of
Interoperability in Business Information Systems, Issue
2(2), (2006), pp. 9-20.

3. Pervasive, Integration for Industry, (web resource),
http://integration.pervasive.com/Integration-
Scenarios/Industry-Integration.aspx.

4. Progress, Real Time Data Integration, (web resource),
http://www.progress.com/en/real-time-data-integration.html.

5. A. P. Kalogeras, P. K. Athanasios, V. G. John, E. A.
Christos, J. G. Manos and A. K. Stavros, Vertical
integration of enterprise industrial systems utilizing web
services, IEEE Trans. on Industrial Informatics, vol.2,
no.2, (May 2006), pp. 120- 128.

6. M. Yin and X.G. Zhang, Water Service Information
System Analysis of Data Integration, China Management
Informationization, vol.11, no.18, (2008), pp. 77-80.

7. G. Min, M. Ould-Khaoua, D.D. Kouvatsos and I.U.
Awan, A Queuing Model of Dimension-Ordered Routing
under Self-Similar Traffic Loads, 18th International
Parallel and Distributed Processing Symposium
(IPDPS'04) - Workshop 14, (2004), vol. 15, pp.251a.

8. A. E. Kostin, I. Aybay and G. Oz, A Randomized
Contention-Based Load-Balancing Protocol for a
Distributed Multiserver Queuing System, IEEE Trans. on
Parallel and Distributed Systems, vol. 11, no. 12, (2000),
pp. 1252-1273.

9. S. Vinoski, Advanced Message Queuing Protocol, IEEE
Internet Computing, vol. 10, no. 6, (2006), pp. 87-89.

10. H. Alon, R. Anand and O. Joann, Data integration: the
teenage years, Proceedings of the 32nd international
conference on Very large data bases, (September, 2006),
Seoul, Korea., pp. 12-15.

11. V. S. Lakes and F. Sadri, XML interope-rability,
Proceedings of the Sixth WebDB Workshop on the Web
and Databases (WebDB), (June, 2003), pp. 19-24.

12. V. Braganholo, S. Davidson and C. Heuser, On the
updatability of XML views over relational databases,
Proceedings of the Sixth WebDB Workshop on the Web
and Databases (WebDB), (June, 2003), pp. 31-36.

13. R. J. Mikael, H. M. Thomas and T. B. Pedersen,
Converting XML DTDs to UML diagrams for conceptual
data integration, Data and Knowledge Engineering,
vol.44, no.3, (2003), pp. 323-346.

14. Razan Paul, Topic-based Publish/Subscribe design
pattern implementation in C# - Part I (Using socket
programming),
www.codeproject.com/KB/IP/SocketBasedPubSub.aspx.

15. L. T. Sanchez, D. Kim and T. Park, A Service
Framework for Mobile Ubiquitous Sensor Networks and
RFID, 1st International Symposium on Wireless
Pervasive Computing, (2006), pp. 16-18.

Published by Atlantis Press
 Copyright: the authors
 78

