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Abstract

The modeling and analysis of lifetimes is an important aspect of statistical work in a wide variety of scien-
tific and technological fields. For the first time, the called Kumaraswamy Pareto distribution, is introduced
and studied. The new distribution can have a decreasing and upside-down bathtub failure rate function
depending on the values of its parameters. It includes as special sub-models the Pareto and exponenti-
ated Pareto (Gupta et al., 1998) distributions. Some structural properties of the proposed distribution are
studied including explicit expressions for the moments and generating function. We provide the density
function of the order statistics and obtain their moments. The method of maximum likelihood is used for
estimating the model parameters and the observed information matrix is derived. A real data set is used
to compare the new model with widely known distributions.

Keywords: Hazard function; Kumaraswamy distribution; moments; maximum likelihood estimation;
Pareto distribution.

1. Introduction

The Pareto distribution is a very popular model named after a professor of economics: Vilfredo Pareto. The
various forms of the Pareto distribution are very versatile and a variety of uncertainties can be usefully modelled
by them. For instance, they arise as tractable ‘lifetime’ models in actuarial sciences, economics, finance, life
testing and climatology, where it usually describes the occurrence of extreme weather.

The random variable X has the Pareto distribution if its cumulative distribution function (cdf) for x > β is
given by

G(x;β ,k) = 1−
(

β

x

)k

, (1)

where β > 0 is a scale parameter and k > 0 is a shape parameter. The probability density function (pdf) corre-
sponding to (1) is

g(x;β ,k) =
k β k

xk+1 .

Several generalized forms of the Pareto distribution can be found in the literature. The term “generalized
Pareto” (GP) distribution was first used by Pickands (1975) when making statistical inferences about the upper
tail of a distribution function. As expected, the Pareto distribution can be seen as a special case of the GP
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distribution. It can also be obtained as a special case of another extended form generated by compounding
a heavy-tailed skewed conditional gamma density function with parameters α and β−1, where the weighting
function for β has a gamma distribution with parameters k and θ (Hogg et al., 2005).

Gupta et al. (1998) extended the Pareto distribution by raising (1) to a positive power. In this note, we refer
to this extension as the exponentiated Pareto (EP) distribution. Recently, many authors have considered various
exponentiated-type distributions based on some known distributions such as the exponential, Rayleigh, Weibull,
gamma and Burr distributions; see, for example, Gupta and Kundu (2001), Kundu and Raqab (2005) and Silva
et al. (2010). The methods of moments and maximum likelihood have been used to fit these models.

Further, Akinsete et al. (2008) and Mahmoudi (2011) extended the Pareto and GP distributions by defining
the beta Pareto (BP) and beta generalized Pareto (BGP) distributions, respectively, based on the class of gener-
alized (so-called “beta-G”) distributions introduced by Eugene et al. (2002). The generalized distributions are
obtained by taking any parent G distribution in the cdf of a beta distribution with two additional shape param-
eters, whose role is to introduce skewness and to vary tail weight. Following the same idea, many beta-type
distributions were introduced and studied, see, for example, Barreto-Souza et al. (2010) and Silva et al. (2010).

In this context, we propose an extension of the Pareto distribution based on the family of Kumaraswamy
generalized (denoted with the prefix “Kw-G” for short) distributions introduced by Cordeiro and de Castro
(2011). Nadarajah et al. (2011) studied some mathematical properties of this family. The Kumaraswamy (Kw)
distribution is not very common among statisticians and has been little explored in the literature. Its cdf (for 0 <
x < 1) is F(x) = 1−(1−xa)b, where a > 0 and b > 0 are shape parameters, and the density function has a simple
form f (x) = abxa−1(1− xa)b−1, which can be unimodal, increasing, decreasing or constant, depending on the
parameter values. It does not seem to be very familiar to statisticians and has not been investigated systematically
in much detail before, nor has its relative interchangeability with the beta distribution been widely appreciated.
However, in a very recent paper, Jones (2009) explored the background and genesis of this distribution and,
more importantly, made clear some similarities and differences between the beta and Kw distributions.

In this note, we combine the works of Kumaraswamy (1980) and Cordeiro and de Castro (2011) to derive
some mathematical properties of a new model, called the Kumaraswamy Pareto (Kw-P) distribution, which
stems from the following general construction: if G denotes the baseline cumulative function of a random
variable, then a generalized class of distributions can be defined by

F(x) = 1− [1−G(x)a]b , (2)

where a > 0 and b > 0 are two additional shape parameters which govern skewness and tail weights. Because
of its tractable distribution function (2), the Kw-G distribution can be used quite effectively even if the data are
censored. Correspondingly, its density function is distributions has a very simple form

f (x) = abg(x)G(x)a−1 [1−G(x)a]b−1 . (3)

The density family (3) has many of the same properties of the class of beta-G distributions (see Eugene et
al., 2002), but has some advantages in terms of tractability, since it does not involve any special function such
as the beta function.

Equivalently, as occurs with the beta-G family of distributions, special Kw-G distributions can be gener-
ated as follows: the Kw-normal distribution is obtained by taking G(x) in (2) to be the normal cumulative
function. Analogously, the Kw-Weibull (Cordeiro et al. (2010), Kw-generalized gamma (Pascoa et al., 2011),
Kw-Birnbaum-Saunders (Saulo et al., 2012) and Kw-Gumbel (Cordeiro et al., 2011) distributions are obtained
by taking G(x) to be the cdf of the Weibull, generalized gamma, Birnbaum-Saunders and Gumbel distributions,
respectively, among several others. Hence, each new Kw-G distribution can be generated from a specified G
distribution.
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This paper is outlined as follows. In section 2, we define the Kw-P distribution and provide expansions for
its cumulative and density functions. In addition, we study the limit behavior of its pdf and hazard rate function.
A range of mathematical properties of this distribution is considered in sections 3-7. These include quantile
function, simulation, skewness and kurtosis, order statistics, generating and characteristic functions, incomplete
moments, L-moments and mean deviations. The Rényi entropy is calculated in section 8. Maximum likelihood
estimation is performed and the observed information matrix is determined in section 9. In section 10, we
provide an application of the Kw-P distribution to a flood data set. Finally, some conclusions are addressed in
section 11.

2. The Kw-P distribution

If G(x;β ,k) is the Pareto cumulative distribution with parameters β and k, then equation (2) yields the Kw-P
cumulative distribution (for x > β )

F(x;β ,k,a,b) = 1−

{
1−

[
1−
(

β

x

)k
]a}b

, (4)

where β > 0 is a scale parameter and the other positive parameters k,a and b are shape parameters. The corre-
sponding pdf and hazard rate function are

f (x;β ,k,a,b) =
abk β k

xk+1

[
1−
(

β

x

)k
]a−1{

1−

[
1−
(

β

x

)k
]a}b−1

, (5)

and

τ(x;β ,k,a,b) =
abk β k

[
1− (β/x)k

]a−1

xk+1 {1− [1− (β/x)k]a}
, (6)

respectively.
The Kw-P distribution is not in fact very tractable. However, its heavy tail can adjust skewed data that cannot

be properly fitted by existing distributions. Furthermore, the cumulative and hazard rate functions are simple.
In Figures 1 and 2, we plot the density and failure rate functions of the Kw-P distribution for selected

parameter values, respectively. We can verify that this distribution can have a decreasing and upside-down
bathtub failure rate function depending on the values of its parameters.

2.1. Expansions for the cumulative and density functions

Here, we give simple expansions for the Kw-P cumulative distribution. By using the generalized binomial
theorem (for 0 < a < 1)

(1+a)ν =
∞

∑
i=0

(
ν

i

)
ai, (7)

where (
ν

i

)
=

n(n−1) . . .(ν− i+1)
i!

,

in equation (4), we can write

F(x;β ,k,a,b) = 1−
∞

∑
i=0

(−1)i
(

b
i

)[
1−
(

β

x

)k
]ai

= 1−
∞

∑
i=0

ηi H(x;β ,k, ia),
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Figure 1: Plots of the Kw-P density function for some parameter values.
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Figure 2: Plots of the Kw-P hazard function for some parameter values.
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where ηi = (−1)i
(b

i

)
and H(x;β ,k, ia) denotes the EP cumulative distribution (with parameters β , k and ia)

given by

H(x;β ,k,α) =

[
1−
(

β

x

)k
]α

.

Now, using the power series (7) in the last term of (5), we obtain

f (x;β ,k,a,b) =
abk β k

xk+1

∞

∑
i=0

(−1)i
(

b−1
i

) [
1−
(

β

x

)k
]a(i+1)−1

=
∞

∑
j=0

w j g(x;β ,k( j+1)),

where

w j =
ab

( j+1)

∞

∑
i=0

(−1)i+ j
(

b−1
i

)(
a(i+1)−1

j

)
and g(x;β ,k( j+1)) denotes the Pareto density function with parameters β and k( j+1) and cumulative distri-
bution as in (1). Thus, the Kw-P density function can be expressed as an infinite linear combination of Pareto
densities. Thus, some of its mathematical properties can be obtained directly from those properties of the Pareto
distribution. For example, the ordinary, inverse and factorial moments, moment generating function (mgf) and
characteristic function of the Kw-P distribution follow immediately from those quantities of the Pareto distribu-
tion.

2.2. Limiting behaviour of Kw-P density and hazard functions

Lemma 1. The limit of the Kw-P density function as x→ ∞ is 0 and the limit as x→ β are

lim
x→β

f (x;β ,k,a,b) =


∞, for 0 < a < 1,
bk
β
, for a = 1,

0, for a > 1.

Proof. It is easy to demonstrate the result from the density function (5).

Lemma 2. The limit of the Kw-P hazard function as x→ ∞ is 0 and the limit as x→ β are

lim
x→β

τ(x;β ,k,a,b) =


∞, for 0 < a < 1,
bk
β
, for a = 1,

0, for a > 1.

Proof. It is straightforward to prove this result from (6).

3. Moments and generating function

Here and henceforth, let X be a Kw-P random variable following (5).
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3.1. Moments

The rth moment of X can be obtained from (8) as

E(X r) =
∞

∑
j=0

w j

∫
∞

β

xr g(x;β ,k( j+1))dx

= k β
r

∞

∑
j=0

( j+1)w j

[k( j+1)− r]
, (8)

for r < bk. In particular, setting r = 1 in (8), the mean of X reduces to

µ = E(X) = k β

∞

∑
j=0

( j+1)w j

[k( j+1)−1]
, for bk > 1. (9)

Setting a = b = 1, we have

w j =

{
1, for j = 0,
0, for j > 1 .

Then, equation (9) reduces to (for k > 1)

E(X) =
kβ

k−1
,

which is precisely the mean of the Pareto distribution.

3.2. Incomplete moments

If Y is a random variable with a Pareto distribution with parameters β and k, the rth incomplete moment of
Y , for r < k, is given by

Mr(z) =
∫ z

β

yr g(y;β ,k)dy =
kβ r

(k− r)

[
1−
(

β

z

)k−r
]
.

From this equation, we note that Mr(z)→ E(Y r) when z→ ∞, whenever k > r. Let X ∼ Kw-P(β ,k,a,b).
The rth incomplete moment of X is then equal to

Mr(z) =
∫ z

β

xr f (x;β ,k,a,b)dx = k β
r

∞

∑
j=0

( j+1)w j

[k( j+1)− r]

[
1−
(

β

z

)k( j+1)−r
]
, (10)

which provided that r < bk.

3.3. Generating function

First, the mgf MY (t) corresponding to a random variable Y with Pareto distribution with parameters β and k
is only defined for non-positive values of t. It is given by

MY (t) = k (−β t)k
Γ(−k,−β t) , if t < 0,

where Γ(·, ·) denotes the incomplete gamma function

Γ(s,x) =
∫

∞

x
ts−1e−tdt .
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Thus, using MY (t) and (8), we can write for t < 0

MX(t) =
∞

∑
j=0

w j

∫
∞

β

etx g(x;β ,k( j+1))dx

= k
∞

∑
j=0

( j+1)(−β t)k( j+1) w j Γ(−k( j+1),−β t). (11)

4. Quantile function and simulation

We present a method for simulating from the Kw-P distribution (5). The quantile function corresponding to
(4) is

Q(u) = F−1(u) =
β

{1− [1− (1−u)1/b]1/a}1/k . (12)

Simulating the Kw-P random variable is straightforward. Let U be a uniform variate on the unit interval
(0,1). Thus, by means of the inverse transformation method, we consider the random variable X given by

X =
β

{1− [1− (1−U)1/b]1/a}1/k ,

which follows (5), i.e., X ∼ Kw-P(β ,k,a,b).
The plots comparing the exact Kw-P densities and histograms from two simulated data sets for some param-

eter values are given in Figure 3. These plots indicate that the simulated values are consistent with the Kw-P
theoretical density function.
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Figure 3: Plots of the Kw-P densities for simulated data sets: (a) a = 1.5,b = 3.5,β = 1.5,k = 1.5 and (b)
a = 5.0,b = 3.0,β = 1.5,k = 1.5.
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5. Skewness and Kurtosis

The shortcomings of the classical kurtosis measure are well-known. There are many heavy-tailed distribu-
tions for which this measure is infinite. So, it becomes uninformative precisely when it needs to be. Indeed, our
motivation to use quantile-based measures stemmed from the non-existance of classical kurtosis for many of the
Kw distributions.

The Bowley’s skewness (see Kenney and Keeping, 1962) is based on quartiles:

B =
Q(3/4)−2Q(1/2)+Q(1/4)

Q(3/4)−Q(1/4)

and the Moors’ kurtosis (see Moors, 1998) is based on octiles:

M =
Q(7/8)−Q(5/8)−Q(3/8)+Q(1/8)

Q(6/8)−Q(2/8)
,

where Q(·) represents the quantile function.
Plots of the skewness and kurtosis for some choices of the parameter b as function of a, and for some choices

of the parameter a as function of b, for β = 1.0 and k = 1.5, are shown in Figure 4. These plots show that the
skewness and kurtosis decrease when b increases for fixed a and when a increases for fixed b.

6. Order statistics

Moments of order statistics play an important role in quality control testing and reliability, where a practi-
tioner needs to predict the failure of future items based on the times of a few early failures. These predictors are
often based on moments of order statistics. We now derive an explicit expression for the density function of the
ith order statistic Xi:n, say fi:n(x), in a random sample of size n from the Kw-P distribution. We can write

fi:n(x) =
n!

(i−1)!(n− i)!
f (x)F i−1(x)[1−F(x)]n−i,

where f (·) and F(·) are the pdf and cdf of the Kw-P distribution, respectively. From the above equation and
using the series representation (7) repeatedly, we obtain a useful expression for fi:n(x) given by

fi:n(x) =
∞

∑
r=0

c(r)i:n g(x;k(r+1),β ), (13)

where

c(r)i:n =
n!ab

(i−1)!(n− i)!

∞

∑
l=0

∞

∑
m=0

(−1)l+m+r

r+1

(
i−1

l

)(
b(n+ l +1− i)−1

m

)(
a(m+1)−1

r

)
and g(x;k(r+1),β ) denotes the Pareto density function with parameters k(r+1) and β . So, the density function
of the order statistics is simply an infinite linear combination of Pareto densities. The pdf of the ith order statistic
from a random sample of the Pareto distribution comes by setting a = b = 1 in (13). Evidently, equation (13)
plays an important role in the derivation of the main properties of the Kw-P order statistics.

For example, the sth raw moment of Xi:n can be expressed as

E(X s
i:n) = k β

s
∞

∑
r=0

(r+1)c(r)i:n
k(r+1)− s

. (14)
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Figure 4: Plots of the Kw-P skewness and kurtosis as a function of a for selected values of b and as a function
of b for selected values of a.
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The L-moments are analogous to the ordinary moments but can be estimated by linear combinations of order
statistics. They are linear functions of expected order statistics defined by

λm+1 =
1

m+1

m

∑
k=0

(−1)k
(

m
k

)
E(Xm+1−k:m+1), m = 0,1, . . .

The first four L-moments are: λ1 = E(X1:1), λ2 = 1
2 E(X2:2−X1:2), λ3 = 1

3 E(X3:3− 2X2:3 +X1:3) and λ4 =
1
4 E(X4:4− 3X3:4 + 3X2:4−X1:4). The L-moments have the advantage that they exist whenever the mean of the
distribution exists, even though some higher moments may not exist, and are relatively robust to the effects of
outliers. From equation (14) with s = 1, we can easily obtain explicit expressions for the L-moments of X .

7. Mean deviations

The mean deviations about the mean and the median can be used as measures of spread in a population. Let
µ = E(X) and m be the mean and the median of the Kw-P distribution, respectively. The mean deviations about
the mean and about the median can be calculated as

D(µ) = E(|X−µ|) =
∫

∞

β

|x−µ| f (x)dx

and
D(m) = E(|X−m|) =

∫
∞

β

|x−m| f (x)dx ,

respectively. We obtain

D(µ) =
∫

∞

β

|x−µ| f (x)dx = 2µF(µ)−2M1(µ) ,

where M1(µ) denotes the first incomplete moment calculated from (10) for r = 1. Similarly, the mean deviation
about the median follows as

D(m) =
∫

∞

β

|x−m| f (x)dx = µ−2M1(m) .

8. Rényi entropy

The entropy of a random variable X is a measure of uncertainty variation. The Rényi entropy is defined as

IR(δ ) =
1

1−δ
log [I(δ )] ,

where I(δ ) =
∫
R f δ (x)dx, δ > 0 and δ 6= 1. We have

I(δ ) = aδ bδ kδ
β

kδ

∫
∞

β

1
xδ (k+1)

[
1−
(

β

x

)k
]δ (a−1){

1−

[
1−
(

β

x

)k
]a}δ (b−1)

dx.

By expanding the last term of the above integrand as in equation (7), we obtain

I(δ ) = aδ bδ kδ
β

kδ
∞

∑
j=0

(−1) j
(

δ (b−1)
j

)∫
∞

β

1
xδ (k+1)

[
1−
(

β

x

)k
]a(δ+ j)−δ

dx.
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Transforming variables, this equation becomes

I(δ ) = aδ bδ kδ−1
β

δ+1
∞

∑
j=0

(−1) j
(

δ (b−1)
j

)
B
(

a(δ + j)−δ +1,
δ (k+1)−1

k

)
,

where

B(a,b) =
∫ 1

0
ta−1(1− t)b−1dt

denotes the beta function. Hence, the Rényi entropy reduces to

IR(δ ) =
δ log(ab)

1−δ
− logk+ logβ +

1
1−δ

log
∞

∑
j=0

(−1) j
(

δ (b−1)
j

)
B
(

a(δ + j)−δ +1,
δ (k+1)−1

k

)
.

9. Estimation and information matrix

In this section, we discuss maximum likelihood estimation and inference for the Kw-P distribution. Let
x1, . . . ,xn be a random sample from X ∼ Kw-P(β ,k,a,b) and let θ = (β ,k,a,b)> be the vector of the model
parameters. The log-likelihood function for θ reduces to

`(θ) = n loga+n logb+n logk+nk logβ − (k+1)
n

∑
i=1

log(xi)

+ (a−1)
n

∑
i=1

log

[
1−
(

β

xi

)k
]
+(b−1)

n

∑
i=1

log

{
1−

[
1−
(

β

xi

)k
]a}

. (15)

The score vector is U(θ) = (∂`/∂k,∂`/∂a,∂`/∂b)>, where the components corresponding to the model
parameters are calculated by differentiating (15). By setting zi = 1− (β/xi)

k, we obtain

∂`

∂k
=

n
k
+

1
k

n

∑
i=1

log(1− zi)−
(a−1)

k

n

∑
i=1

(1− zi) log(1− zi)

zi

+
a(b−1)

k

n

∑
i=1

za−1
i (1− zi) log(1− zi)

(1− za
i )

,
∂`

∂a
=

n
a
+

n

∑
i=1

logzi− (b−1)
n

∑
i=1

za
i logzi

1− za
i

and

∂`

∂b
=

n
b
+

n

∑
i=1

log(1− za
i ).

The maximum likelihood estimates (MLEs) of the parameters are the solutions of the nonlinear equations
∇`= 0, which are solved iteratively. The observed information matrix given by

Jn(θ) = n

 Jkk Jka Jkb
Jak Jaa Jab
Jbk Jba Jbb

 ,
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whose elements are

Jkk =−
n
k2 −

2(a−1)
k

n

∑
i=1

(1− zi) log(1− zi)

z2
i

+
2a(b−1)

k

n

∑
i=1

za−1
i (1− zi) log(1− zi)

[
a− (a−1)(za

i + z−1
i )+(a−2)za−1

i

]
(1− za

i )
2 ,

Jka =
(b−1)

k

n

∑
i=1

za−1
i (1− zi) log(1− zi) [1− za

i −a logzi]

(1− za
i )

2 − 1
k

n

∑
i=1

(1− zi) log(1− zi)

zi
,

Jkb =
a
k

n

∑
i=1

za−1
i (1− zi) log(1− zi)

1− za
i

, Jaa =−
n
a2 −2(b−1)

n

∑
i=1

za
i logzi

(1− za
i )

2 , Jab =−
n

∑
i=1

za
i logzi

1− za
i

and Jbb =−
n
b2 .

10. Simulation study and application

In this section, we illustrate the usefulness of the Kw-P distribution.

10.1. Simulation study

We conduct Monte Carlo simulation studies to assess on the finite sample behavior of the MLEs of β ,k,a and
b. All results were obtained from 1000 Monte Carlo replications and the simulations were carried out using the
statistical software package R. In each replication, a random sample of size n is drawn from the Kw-P(β ,k,a,b)
distribution and the BFGS method has been used by the authors for maximizing the total log-likelihood function
`(θ). The Kw-P random number generation was performed using the inversion method. The true parameter
values used in the data generating processes are β = 1.5,k = 1.0,a = 0.5 and b = 2.5. Table 1 lists the means
of the MLEs of the four parameters that index the Kw-P distribution along with the respective biases for sample
sizes n = 30,n = 50 and n = 100. The figures in Table 1 indicate that the biases of the MLEs of β ,k,a, and b
decay toward zero as the sample size increases, as expected.

Table 1: Mean estimates and biases of the MLEs of β , k, a and b.

n Parameter Mean bias

30 β 0.0002 1.4998
k 1.6956 −0.6956
a 4.9281 −4.4281
b 0.8979 1.6021

50 β 1.5002 −0.0002
k 0.7398 0.2602
a 0.6686 −0.1686
b 2.3205 0.1795

100 β 1.5001 −0.0001
k 0.9063 0.0937
a 0.6923 −0.1923
b 2.4386 0.0614
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10.2. The Wheaton River data

The data correspond to the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in
Yukon Territory, Canada. The data consist of 72 exceedances for the years 1958–1984, rounded to one decimal
place. They were analysed by Choulakian and Stephens (2001) and are listed in Table 2. The distribution is
highly skewed to the left. Recently, Akinsete et al. (2008) and Mahmoudi (2011) analysed these data using
the BP and BGP distributions, respectively. We fit the Kw-P distribution to these data and compare the results
with those by fitting some of its sub-models such as the EP and Pareto distributions, as well as the non-nested
BP distribution. The required numerical evaluations are implemented using the SAS (PROCNLMIXED) and R
softwares.

Table 2: Exceedances of Wheaton River flood data

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3
1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6
0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6
9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6
5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0
1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0

Tables 3 and 4 provide some descriptive statistics and the MLEs (with corresponding standard errors in
parentheses) of the model parameters. Since x > β , the MLE of β is the first-order statistic x(1), accordingly to
Akinsete et al. (2008). Since the values of the Akaike information criterion (AIC), Bayesian information crite-
rion (BIC) and consistent Akaike information criterion (CAIC) are smaller for the Kw-P distribution compared
with those values of the other models, the new distribution seems to be a very competitive model to these data.

Table 3: Descriptive statistics

Min. Q1 Q2 Mean Q3 Max. Var.
0.100 2.125 9.500 12.200 20.120 64.000 151.221

Table 4: MLEs of the model parameters, the corresponding SEs (given in parentheses) and the statistics AIC,
BIC and CAIC

Estimates Statistic

Model a b k β AIC BIC CAIC

Kw-P 2.8553 85.8468 0.0528 0.1 548.4 555.3 548.8
(0.3371) (60.4213) (0.0185) −

BP 3.1473 85.7508 0.0088 0.1 573.4 580.3 573.8
(0.4993) (0.0001) (0.0015) −

EP 2.8797 1 0.4241 0.1 578.6 583.2 578.8
(0.4911) − (0.0463) −

Pareto 1 1 0.2438 0.1 608.2 610.4 608.2
− − (0.0287) −

Plots of the estimated pdf and cdf of the Kw-P, BP, EP and Pareto models fitted to these data are given in
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Figure 5. They indicate that the Kw-P distribution is superior to the other distributions in terms of model fitting.
Table 5 gives the values of the Kolmogorov-Smirnov (K-S) statistic and of −2`(θ̂). From these figures, we

conclude that the Kw-P distribution provides a better fit to these data than the BP, EP and Pareto models.

Table 5: K-S and −2`(θ̂) statistics for the exceedances of flood peaks data

Model Kw-P BP EP Pareto

K–S 0.1700 0.1747 0.1987 0.3324
−2`(θ̂) 542.4 567.4 574.6 606.2

11. Concluding remarks

The well-known two-parameter Pareto distribution is extended by introducing two extra shape parameters,
thus defining the Kumaraswamy Pareto (Kw-P) distribution having a broader class of hazard rate functions.
This is achieved by taking (1) as the baseline cumulative distribution of the generalized class of Kumaraswamy
distributions defined by Cordeiro and de Castro (2011). A detailed study on the mathematical properties of
the new distribution is presented. The new model includes as special sub-models the Pareto and exponentiated
Pareto (EP) distributions (Gupta et al., 1998). We obtain the moment generating function, ordinary moments,
order statistics and their moments and Rényi entropy. The estimation of the model parameters is approached by
maximum likelihood and the observed information matrix is derived. An application to a real data set shows
that the fit of the new model is superior to the fits of its main sub-models. We hope that the proposed model may
attract wider applications in statistics.
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Figure 5: Estimated pdf and cdf from the fitted Kw-P, BP, EP and Pareto models for the exceedances of flood
peaks data.
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