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Orthogonalization of Graded Sets of Vectors
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Abstract

I propose an orthogonalization procedure preserving the grading of the initial graded
set of linearly independent vectors. In particular, this procedure is applicable for
orthonormalization of any countable set of polynomials in several (finitely many) in-
determinates.

There are two well-known procedures for orthogonalization of any set of linearly indepen-
dent vectors in a linear space. The first of them boils down, essentially, to calculation of
the

(−1
2

)
-th power of the Gram matrix of the initial set (we refer to it as Gram method),

and another one is the Gram–Schmidt process. The result of the Gram–Schmidt process
essentially depends of the order of the elements in the set and the operations with Gram
matrix seem to be impossible to perform in infinite dimensional spaces.
There are, however, some situations when one has to orthogonalize a finite or infinite

set of linearly independent vectors in a linear space in such a way that the result would
have some properties of the initial set. Observe that the set considered is not necessarily
a basis. Any set consisting of linearly independent vectors will do. Observe also that I
deal here with algebraic problems, no analytical problem (convergence, completeness, etc.)
arises.
We consider some examples:

1. Let
{
em = eimx

}∞
m=−∞ be a set of linearly independent vectors in L2([0, 2π], ρ),

where ρ is any positive weight. If ρ is not constant, the elements of this set are not
orthogonal, but have an important property em = e−m, where the bar means complex
conjugation. Is it possible to preserve this property under orthogonalization?

2. Let x = (x1, . . . , xn), where xj ∈ R, and m = (m1, . . . , mn), where mj ∈ Z+.
Then the set

{
xm : m ∈ Z

n
+

}
, where xm = xm1

1 · · ·xmn
n , is, due to Stone–Weierstrass

theorem, a basis in L2(Ω) for a “good” bounded domain Ω ⊂ R
n. This basis has

no natural order, but has a natural grading: the degree of xm is equal to |m| =
m1 + · · · +mn. How to orthogonalize this basis and preserve the natural grading?
Is this possible?
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It is very strange that a very simple and natural answer to these and similar questions
seems to be unknown. For this reason I present here the orthogonalization procedure,
which combines some features of the Gram method and Gram–Schmidt process (in par-
ticular, it can be applied in infinite dimensional case) and gives a solution to the above
problems and similar ones. Note in this connection that, although the orthogonalization
problem is more than hundred years old, various aspects of the propblem arise from time
to time in connection with very interesting practical problems, see, e.g., [4].
Let

{
ek
α : α ∈ Ik, k ∈ Z+

}
be a set of linearly independent vectors in a Hilbert space.

We assume that all index sets Ik are finite. Let us inductively define the sets of vectors{
fk

α : α ∈ Ik

}
by the formula

fk
α =

∑
β∈Ik

Qk
βαek

β +
k−1∑
j=0

∑
β∈Ij

P kj
βαf j

β , (1)

where the unknown matrices Qk and P kj are determined from the orthonormality condi-
tions for the system f :(

fk
α, fk

β

)
= δαβ, α, β ∈ Ik,

(
fk

α, f j
β

)
= 0, α ∈ Ik, β ∈ Ij , j �= k.

(2)

Note, first of all, that the system f is linearly independent if and only if the matrices Qk

are nondegenerate. We will use this fact later.
From the last line in (2) and the definition (1) one immediately deduces that

P kj
βα = −

∑
γ∈Ik

Dkj
βγQk

γα, (3)

where we define the matrix Dkj to be Dkj
βγ =

(
ek
γ , f j

β

)
. Let us substitute this expression

for P in terms of Q and D into the first line in (2). We obtain, after simplification, a
matrix equation of the form

Qk†BkQk = E, where Bk = Γk −
k−1∑
j=0

∆kj (4)

and where † denotes the Hermitian conjugation, ∆kj = Dkj†Dkj , Γk
αβ = (ek

α, ek
β) is the

Gram matrix of the system {ek
α}α∈Ik

and E is the unit matrix.
Note that the matrix B is the Gram matrix for the linearly independent system of

vectors in the Hilbert space

hk
α = ek

α −
k−1∑
j=0

∑
β∈Ij

(
ek
α, f j

β

)
f j

β .

Hence, Bk is positive definite. So one can write the unique positive definite solution of
the equation (4) in the “Gram” form

Qk =


Γk −

k−1∑
j=0

∆kj




−1/2

. (5)
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This completes the orthonormalization process.
We consider now some simple examples.

3. If for all k the sets Ik are one-element sets, then the process described is exactly the
Gram–Schmidt one.

4. In the above procedure Z+ can be replaced with any its finite subset. If such subset
is a one-element set, then our process is exactly the Gram method.

These two examples show that the process suggested is simply a combination of two
well-known processes.

5. Let I0 = {0} and Ik = {+,−} for nonzero k’s. Let further ek
α ∈ L2([0, 2π], ρ) and

e0 = 1, ek± = e±imx. (This is Example 1.) Then, clearly, f0 = const ∈ R. Let us

show now that if f j
+ = f j

− for all j < k, then the same is true for k also.

Indeed, due to relations (2) and (3) we obtain

fk
± = Qk

±+

(
ek
+ −

(
ek
+, f0

)
f0

)
−

k−1∑
j=1

((
ek
+, f j

+

)
f j
+ +

(
ek
+, f j

−
)

f j
−
)

+Qk
±−

(
ek
− −

(
ek
−, f0

)
f0

)
−

k−1∑
j=1

((
ek
−, f j

+

)
f j
+ +

(
ek
−, f j

−
)

f j
−
)

.

Now using inductive hypothesis and the fact that Q are Hermitean matrices, i.e., Qk
++,

Qk−− ∈ R and Qk
+− = Qk−+, it is easy to see that the vectors fk± are complex conjugate.

So we have obtained a simple affirmative answer to the question in Example 1.
It is interesting whether or not the above construction can be generalized to the vector

systems in pseudo-euclidean spaces? Two problems arise in this case:

1) What shall we do with “isotropic” vectors?

2) For which matrix in the right hand side instead of the identity one, is equation (4)
solvable?

Note in this connection that the Gram–Schmidt orthogonalization process is not ap-
plicable in the pseudo-euclidean case because even if the initial vector system does not
contain isotropic vectors, such vectors can appear under execution of the process and
terminate it.
We consider an example: if vector e1 is isotropic, there does not exist any number

α such that vector e1 + αe2 is pseudo-orthogonal to e1 (of course, unless e1 and e2 are
initially orthogonal).
Certain properties of bases and linear independent systems in pseudo-euclidean spaces

are discussed in [1, 2]. In particular, Bognár proposes a “forceful” method for general-
ization of Gram–Schmidt process to pseudo-euclidean case for linearly ordered systems of
vectors [1]. We use something like his method for graded systems.
In what follows we suppose that the pseudo-euclidean scalar product is “nondegene-

rate”, i.e., for any linearly independent finite system of vectors consisting of more than
one element its Gram matrix is nondegenerate. In other words, this means that the
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dimension of any maximal isotropic subspace (all of whose vectors are isotropic) does not
exceed 1. Then any finite system of vectors, excluding one-element ones, may be “pseudo-
orthonormalized” in the sense that the pseudo-norm, or “length”, of each final vector will
be equal to ±1.
To this end, it suffices to determine the signature (p, q) of the Gram matrix Γ of the

initial system of vectors and then solve the equation

R†ΓR = Ep ⊕ (−Eq) (6)

for unknown matrixR. If we write the Hermitean matrix Γ in the form Γ = UΛU †, where U
is a unitary matrix and Λ = Λp⊕(−Λq) is a diagonal matrix with p positive and q negative

elements, then the solution of (6) can be written in the form R = U
(
Λ−1/2

p ⊕
(
−Λ−1/2

q

))
.

Therefore, it is clear that the only trouble which might appear when dealing with
graded systems of vectors in pseudo-euclidean spaces is when after the k-th step the set{
fk

α : α ∈ Ik

}
consists of exactly one isotropic vector. There does not exists any general

natural way to resolve this situation and details depend on the concrete case. A most
simple idea is to include such a vector into the next, (k + 1)-th, level set of vectors and
then continue the process. This trick slightly violates the initial grading, but preserves
the filtration.
The problems discussed stem from several sources. One is numerical analysis and data

processing. Here the role of discrete Fourier transformation is well-known, but what should
we do if our data is given on a nonuniform grid? For the answer see Example 1.
Another problem is orthonormalization of splines which constitute a not linearly or-

dered, but a graded set of functions.
D Leites and A Sergeev pointed out a totally different area in which the same question

arises. These problems concern with new polynomials in several indeterminates connected
with some Lie algebras and superalgebras and the space of these polynomilas is naturally
endowed with a nondegenerate indefinite metric, see [3]. For one indeterminate D Leites
and A Sergeev can orthogonalize their polynomials; for several indeterminates these poly-
nomials are not linearly ordered and they got stuck. By our method one can orthogonalize
the polynomials in several indeterminates proposed in [3].
For the reader who wishes to compare various orthogonalization methods I suggest very

transparent and user friendly paper by Srivastava [4].
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