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Abstract—The Soil Moisture and Ocean Salinity (SMOS) 

remotely sensed sea surface salinity (SSS) observations, on a 

global scale and with various resolutions, have been applied as 

inputs in three representative retrieval techniques. The purpose 

is to evaluate the SSS observations’ performance, concerning the 

accuracy of the salinity (S) profiles they retrieve, the spatial 

scales they can effectively resolve, and the way their errors are 

projected at depth. The SMOS SSS errors are small in the tropics 

and large in the extratropics. The spatial resolution, rather than 

temporal one, is an important factor for the accuracy of retrieved 

S. In the upper ~ 100 m mixed layer, on average, the root mean 

square (rms) of retrieved S is larger than, equivalent to, or 

smaller than the signal rms, with a SSS resolution of 1/4°, 1/2°, 1°, 

respectively, in the tropics, and always larger elsewhere. This can 

be explained by the SSS-S regression coefficients, which are 

uniformly large in the mixed layer and thus project vertically 

most of the surface error features. Meanwhile, the projection 

generally reduces the mesoscale structures in the 1/4° SSS fields. 

Below the mixed layer, mainly influenced by the sea level 

anomaly instead, the regions with high-accuracy retrieved S 

displace to higher latitudes. The SSS error patterns disappear, 

except in the southern oceans where the abnormally large SSS-S 

regression coefficients project SSS errors down to 400 ~ 500 m.  

Index Terms—SMOS, sea surface salinity, salinity retrieval, 

performance evaluation, spatial resolution. 

I. INTRODUCTION 

The performance of remotely sensed sea surface salinity 

(SSS) observations in reconstructing global 3-D temperature (T) 

and salinity (S) fields has never been evaluated using data from 

the Soil Moisture and Ocean Salinity (SMOS) [1] or 

Aquarius/SAC-D missions. Among studies on the SSS 

measurements’ role in reconstructing profiles or on the 

retrieval methods’ sensitivity to SSS errors, the SSS 

measurements were obtained only through drifting/moored 

buoys [2], Argo floats [3], low-resolution [4] or high-resolution 

[5] in-situ-observation-based gridded products. It should be 

emphasized that a simple/ideal error analysis, e.g., adding 

random white noises to the surface in situ values used as input 

for the vertical reconstruction seems inadequate, because fully 

independent remotely sensed SSS data from the SMOS or 

Aquarius missions could be contaminated by various kind of 

errors, and there are still many uncertainties about their real 

accuracy and geographical flavors. For SMOS mission, for 

instance, SSS errors potentially stem from instrument 

observation, brightness temperature reconstruction, salinity 

retrieval, gridding processing, etc., and differ at different 

regions [6], which together complicate the practical application 

of SSS data. Even in the operational system newly developed 

within the MESCLA [5], the SSS fields used as inputs are still 

based on in situ observations. This work thus represents the 

first attempt to apply purely remotely sensed SSS observations, 

on a global scale and with various resolutions, in retrieval 

techniques and evaluates their performance. 

II. DATA 

The in situ T/S profiles are from the CORA3 dataset of the 

Coriolis data center. Only Argo profiles containing both T and 

S (used to calculate a dynamic height (anomaly), i.e. DH(A)) 

and valid up to 1000 m depth are selected to give a total of 

631982 profiles. These observations are pre-processed 

according to Argo recommendations for data quality control 

and interpolated to standardized levels, and used as training 

data (during 2000 ~ 2010) and test data (during 2011). 

The monthly ARIVO T/S fields defined on a 1/2° Mercator 

grid from 0 to 2000 m depth are used for comparison with the 

gridded S fields estimated from satellite inputs, and the 

averages over 2004 to 2010 are used as monthly climatologies. 

The SMOS SSS data are obtained from the Ocean Salinity 

Expertise Center (CECOS) of the CNES-IFREMER Centre 

Aval de Traitemenent des Donnees SMOS (CATDS), at 

IFREMER, Plouzane (France), 2010-2012, V02. Six types of 

products are used: 10 days composite with 1/4°, 1/2°, and 1° 

resolution; monthly composite with 1/4°, 1/2°, and 1° 

resolution. The sea surface temperature (SST) data with daily 

and 1/4° resolution are from Reynolds L4 analyses distributed 

by the National Climatic Data Center at NOAA. The altimeter 

sea level anomalies (SLA) data with daily and 1/4° resolution 

are from the Ssalto/Duacs center (AVISO, 2012). The SLA 

fields are recalculated using the 11 yr time mean from 2000 to 

2010. The steric components of SLA are extracted using 

regression coefficients from an in situ/altimeter comparison 

study [7]. The SLA and SST maps are combined over the SSS 

composite period (10 days or one month) and remapped on the 

SSS grids (when necessary) using a bilinear interpolation. The 

satellite data of the year 2011 have been used. 
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III. METHODS 

A. Retrieval methods  

For generalization, three representative methods are used. 

Linear regression (Method I): The S can be directly 

estimated through simple or multiple linear regressions [5, 8]: 

 δS(z) = γ(z)·δSLA, (1) 

 δS(z) = λ(z)·δSLA + θ(z)·δSSS, (2) 

where δ denotes anomalies with respect to monthly 

climatologies; γ and λ/θ which vary with depth, location, and 

time (only depth z are displayed for clarity) are regression 

coefficients of SLA or SLA/SSS onto S. 

EOF decomposition (Method II): This method begins with 

the empirical orthogonal function (EOF) decomposition of 

observed S profiles, and then computes a regression between 

the amplitudes of the EOF modes (i.e., PCs) and SLA or 

SLA/SSS. The univariate EOF method by Carnes et al. [9] is 

adopted here, despite of the more recent but intrinsically same 

bivariate/multivariate EOF methods [2].  

Intelligent method (Method III): Several nonlinear 

intelligent methods, such as neural networks and genetic 

algorithm [3], have been applied in T/S retrieval. The self-

organizing map (SOM) classification [4] using SST/SLA or 

SST/SLA/SSS, as a reliable retrieval technique, is adopted here. 

B. Evaluation scheme 

First, for each method, a global description of the statistical 

relationships between surface and subsurface fields is 

performed using historical (2000-2010) in situ observations. 

For Method I, II, seasonal regression coefficients are computed 

on each 1° grid using all observations in an influence radius of 

5° in latitude and 10°~25° in longitude to reach a minimum 

number of 500 profiles; for Method III, SOM maps was trained 

from all the data within each 15°×15° box (as in Fig. 3).  

Then, the methods are tested using independent (2011) in 

situ and satellite surface values, respectively. The retrieved 

profiles, as well as climatology, are compared with the 

independent in situ profiles. The root mean square (rms) 

difference between in situ S and the ARIVO climatology, the S 

estimated from in situ surface values (e.g., Eq. 2), the S from 

collocated satellite surface values (e.g., Eq. 2), and the S from 

collocated satellite SST/SLA only (e.g., Eq. 1) are denoted by 

σ0, σ1, σ2, and σ3, respectively. Among them, σ0 represents the 

signal rms of the S fields, σ1 represents the errors due to the 

methods, while the errors due to the inaccuracy in satellite 

surface values can be associated to the regression coefficients 

in this way (e.g. in Method I):  

 σ2(z) —σ1(z)≈λ(z)·σSLA + θ(z)·σSSS, (3) 

where σSLA and σSSS are errors in remote sensed SLA and SSS. 

In addition, as the S used to be estimated from SST/SLA only 

(e.g., Eq. 1), the modification to include additional SSS 

information (e.g., Eq. 2) needs to be proved necessary in terms 

of introducing smaller errors. That is why σ3 is introduced. 

These rms differences could be alternately expressed as 

percentage of signal rms: p1 =σ1/σ0, p2 =σ2/σ0, p3 =σ3/σ0. 

IV. RESULTS 

The evaluation first concerns the tropical Pacific Ocean 

where the accuracy of SMOA SSS data is relatively reasonable, 

and begins with qualitatively looking at the salinity patterns, at 

the surface, namely the input fields, and at 100 m depth, which 

corresponds approximately to the base of the mixed layer in the 

basin (Fig. 1). At the surface, the ARIVO SSS field and SMOS 

1° SSS field show uniform and smooth patterns, such as the 

Western Pacific Salinity Front clearly denoted by the 34.6 

isohaline, and the Eastern Pacific Fresh Pool off the Panama 

Bight. The SMOS 1/2° SSS field show basically identical but 

less smooth appearance. The SMOS 1/4° SSS field, in contrast, 

appears strikingly “noisy”, with the 34.6 isohaline, e.g., 

connecting to each other from the west and east, which leads to 

the aliasing of largescale signals. At 100 m, except in parts of 

the southeastern tropical Pacific Ocean for SMOS 1/4° S field, 

the S fields estimated from all the inputs display consistently 

smooth patterns, despite of their discrepancies in surface 

structures. Additional analysis using Method II and III (not 

shown) came to analogous conclusions. Thus, the vertical 

projection generally reduces the mesoscale features. However, 

it remains questionable whether they are real signals or just 

noises. A quantitative analysis is thus required on the spatial 

scales that the SMOS SSS can effectively resolve.  

As in Fig. 2, even the use of in situ SSS measurements 

reduces the rms differences of S by 90~100% at the surface 

down to ~10% at depth, the use of satellite SSS measurements, 

owning to their large errors of 0.25~0.3 psu, can improve the S 

estimates to a very limited extent. In the upper ~ 100 m mixed 

layer, dependent on the spatial resolutions of satellite SSS, σ2 is 

larger than (1/4°), roughly equal to (1/2°), or smaller than (1°) 

σ0 (and σ3). Between 100 and 300 m (Method I, II) or 250 m 

 

Fig. 1.  SSS (left columns) and retrieved salinity at 100 m (right columns) 

using Method I (Eq. 2) and inputs from (from top to bottom) monthly 

SMOS SSS with 1/4°, 1/2°, 1° resolution, and monthly ARIVO SSS on 
1/2° Mercator grids, for July 2011. Bold white lines are the 34.6 

isohalines. 
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(Method III), σ2 and σ3 are ~ 10% less than σ0. Below that, σ2 

and σ3 are very close to σ0. It suggests that the spatial 

resolution is an important factor for accuracy of the SSS inputs 

as well as of the retrieved S in the mixed layer; in contrast, the 

satellite SSS observations incline to play an insignificant role 

below the mixed layer. In additional tests (not shown) in which 

the remote SLA inputs were replaced with the in situ DHA 

inputs, the σ2 patterns stayed roughly unchanged, implying that 

σ2-σ1 is mainly induced by σSSS rather than σSLA (Eq. 3).  

A global performance description is shown in Fig. 3. On 

the whole, the SMSO SSS inputs perform in retrieving S 

increasingly better as its spatial resolution decreases; the 

temporal resolution is much less influential on S accuracy; the 

differences between high- and low- resolution maps gradually 

decrease as depth increases. At the surface and 50 m, p2 is 

smaller than 1 only delimited in the tropical oceans. In detail, 

the SMSO 1/4° SSS input performs worse than climatology 

over most of the global oceans, in contrast to the 1° SSS input 

which performs better throughout the tropical oceans. At 150 

m, below the mixed layer, the regions where p2<1 expand to 

the extratropics, but excluding the southern oceans. At 300 m, 

in the ocean interior, the regions with p2>=1 begin to prevail 

along the narrow equatorial bands. Below 400 m, the patterns 

are gradually reshaped: the regions where p2<1 are 

concentrated around the northwestern Pacific Ocean, 

southwestern tropical Pacific Ocean, southern Indian Ocean, 

northern and southern Atlantic Ocean. For each map, p2 is 

always greater than 1 in regions south of 45°S and within the 

Arabian Sea and the Bengal Bay. For most areas, p2 stays 

above 0.8, which indicates that the use of SMSO SSS inputs 

reduces the rms differences of S by less than 20%. On the 

 

Fig. 2.  Left three columns: profiles of σ0 (solid red), σ1 (solid green), σ2 (solid 

blue), and σ3 (black cross). Right three columns: profiles of p1 =σ1/σ0 

(dashed green), p2 =σ2/σ0 (dashed blue), and p3 =σ3/σ0 (black cross). The 

methods used are (from top to bottom) Method I, II and III. The SMOS 
SSS data used are 10 days composite with (first and fourth columns) 

1/4°, (second and fifth columns) 1/2°, and (third and sixth columns) 1° 

resolution. Up to 20046 independent S profiles in the tropical Pacific 
Ocean (120°E~70°W; 30°S~30°N) for the year 2011 are used. 

Fig. 3.  The p2 =σ2/σ0 (left six columns) and p3 =σ3/σ0 (seventh column) at (from top to bottom) 0, 50, 150, 300, 400, 500 m. The SMOS SSS data used are (first to 

sixth columns) 10 days composite with 1/4°, 1/2°, 1° resolution, and monthly composite with 1/4°, 1/2°, 1° resolution. Up to 97475 independent S profiles 

for the year 2011 are used. Values are computed in 15°×15° boxes and the S is averaged from the outputs of the three methods. 
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Fig. 4.  Depth-latitude sections of θ and λ along (from left to right) 70°E in the 

Indian Ocean, 160°W in the Pacific Ocean, 30°W in the Atlantic Ocean.  

other hand, the distribution of p3 is uniform at all depths, and 

the corresponding reconstructed S is slightly better than the 

climatology on the global scale. In the mixed layer, p2 is 

slightly smaller than p3 in the tropical oceans; below that, p2 is 

distributed basically consistent with p3, except, again, in the 

areas south of 45°S.  

Figure 4 conclusively illustrates the way the SSS errors are 

projected at depth (see Eq. 3). In the top mixed layer, the θ has 

uniformly high values at all latitudes. This explains why in that 

layer σ2 varies sensitively with the SSS resolution (Fig. 2), and 

p2 keeps the surface structures (Fig. 3). Below 100 m, most θ 

values are close to zero, except that a vertical tongue of 

maximum θ value reaches down to 400 ~ 500 m in the southern 

oceans, indicating that the SSS errors there can stay influential 

at depth. This accounts for the gradually disappearing surface 

p2 patterns below 150 m, and the discrepancy between p2 and 

p3 patterns in deep oceans south of 45°S, where large SMOS 

SSS errors offset the influence of SLA (Fig. 3). As regard λ, 

the tropics are dominated by negative values from surface 

down to ~ 100 m, then positive values downwards. The 

maximum positive values are concentrated between 100 ~ 300 

m, which is consistent with the σ2 and σ3 profiles, robustly 

smaller than σ0, in that layer (Fig. 2). At higher latitudes, the 

northern Atlantic and Pacific Ocean show striking negative and 

positive tongues respectively, and the southern Indian and 

Atlantic Ocean each shows a clear negative tongue from near-

surface to depths. It reminds of the displacement of small p2 to 

mid-high-latitudes below 150 m (Fig. 3).  

V. DISCUSSION AND CONCLUSION 

The SMOS SSS inputs have been evaluated in retrieving S 

profiles and proved to work differently at different depths and 

regions. In the mixed layer, the retrieved S is mainly influenced 

by the SSS information. The higher the SSS-S regression 

coefficients, the more errors in S projected from the SSS. The 

spatial resolution confirmed to be an important factor for the S 

retrieval. The SMOS SSS inputs perform better than, 

equivalent to, or worse than the climatology, with a resolution 

of 1°, 1/2°, 1/4°, respectively, in the tropics, and always worse 

elsewhere. This is consistent with Jordà and Gomis [6] who 

concluded that “the greatest error reductions come from the 

increase in the spatial-data coverage, even if the temporal 

coverage is scarce”. Besides, the projection generally reduces 

the mesoscale structures in the 1/4° SSS fields. Below that 

layer, the retrieved S is mainly influenced by the SLA 

information. The higher the SLA-S regression coefficients, the 

higher the S accuracy benefiting from the SLA. The SSS-S 

regression coefficients, by contrast, are negligible, leading to 

the disappeared surface error patterns. An exception is the 

southern oceans where the maximum SSS-S regression 

coefficients propagate the SSS errors down to 400 ~ 500 m. 

Up to now, the SMOS SSS measurements have not greatly 

improved the estimates of vertical salinity structures, especially 

in the extratropics and with “eddy permitting” resolution. For 

this reason, more accurate satellite SSS measurements are 

needed and currently under development. 
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