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Abstract

We extend a previous result, namely we show that the solution of the Whitham equa-
tions is asymptotically self-similar for generic monotone polynomial initial data with
smooth perturbation.

1 Introduction

It is known [1, 2, 3] that the evolution of the smooth initial data

u(x, t = 0) = u0(x), t, x ∈ R, (1)

according to the Korteweg de Vries (KdV) equation

ut+6uux+ ε2uxxx = 0, (2)

is described locally as ε → 0 by the solution of an initial value problem for the Whitham
equations. Lax Levermore [2] and Venakides [3] studied the Cauchy problem for (2) as
ε → 0 for certain particular classes of initial data in the frame of the zero-dispersion
asymptotics for the solution of the inverse scattering problem of KdV. According to their
results, to the solution u(x, t, ε) as ε → 0 of KdV it corresponds a decomposition of the
(x, t) plane into a number of domains Dg, g = 0, 1, . . .. In the domain Dg the principal
term of the asymptotics is given by the so called g-phase solution [4] of the KdV equation
with the wave parameters depending on the functions u1(x, t) > · · · > u2g+1(x, t) which
satisfy the g-phase Whitham equations

∂ui

∂t
+λi(�u)

∂ui

∂x
= 0, i = 1, . . . , 2g+1, g ≥ 0. (3)

Here �u = (u1, . . . , u2g+1), u1 > u2 > · · · > u2g+1, and the λi(�u), i = 1, . . . , 2g+1, depends
on complete hyperelliptic integrals of genus g.

The equations (3) were found by Whitham [5] in the single phase case g = 1 and more
generally by Flaschka, Forest and McLaughlin [6] in the multiphase case.

The hyperbolic nature of the equations has been shown by Levermore [7]. Dubrovin
and Novikov [8] found the geometric Hamiltonian structure of the equations (3). Based on
this structure, Tsarev [9] showed that equations (3) can be integrated by a generalization
of the method of characteristics. This result was put into an algebro-geometric setting by
Krichever [10]. In this frame he build the so called self-similar solutions of the Whitham
equations, namely solutions which are time-free.
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The investigation of the initial value problem of the Whitham equations began with
Gurevich and Pitaevskii [1]. In the case g ≤ 1 they solved the initial value problem
of system (3) numerically for cubic initial data The Cauchy problem for the Whitham
equations was widely investigated by Tian in the case g ≤ 1. He proved that, for monotone
decreasing initial data x = f(u)|t=0 satisfying the condition f ′′′(u) < 0 except at one point,
the solution of the Whitham equations exists for all times t > 0 and the phase is just zero
or one [12]. In [13] we considered monotone decreasing initial data of the form x = fa(u)+
fs(u), where fa(u) is an analytic function and fs(u) is a smooth function rapidly decreasing
at infinity. It was shown that, if such initial data satisfies the condition f (2m+1)(u) < 0
except for some number of isolated points, then the solution of the Whitham equations
has genus g ≤ m for all x and t ≥ 0. In [14] it was shown that for polynomial initial
data of degree 2N + 1 the solution of the Whitham equations is asymptotically close to
the solution of the Whitham equations with initial data x = −u2N+1. Here we extend
this result considering a smooth perturbation of the polynomial initial data. Namely we
consider monotone decreasing initial data of the form x = PN (x)+fs(x), where PN (x) is a
polynomial of degree 2N +1 and fs(u) is a smooth function rapidly decreasing at infinity.
Under certain conditions on such initial data the solution of the Whitham equations is
asymptotically close to the solution of the Whitham equations with initial data x =
−u2N+1.

2 Preliminaries on the theory of the Whitham equations

In the following we give a brief review concerning the theory of the Whitham equations
and their solution in the case g ≤ 1. The one phase Whitham equations are a system of 3
quasi-linear hyperbolic PDE’s defined by the expression [5, 6]

∂ui

∂t
+λi(u1, u2, u3)

∂ui

∂x
= 0, u1 > u2 > u3, i = 1, 2, 3, (4)

where

λi(u1, u2, u3) = 2(u1 + u2 + u3) + 4

∏
j �=i

(ui − uj)

α0 + ui
, j, i = 1, 2, 3,

α0 = −u1 − (u3 − u1)
E(s)
K(s)

,

(5)

and K(s) and E(s) are the complete elliptic integrals of the first and second kind respec-
tively of modulus s = u3−u2

u3−u1
. The zero-phase Whitham equation coincides with the so

called Burgers equation

ut +6uux = 0. (6)

For monotone decreasing initial data x = f(u)|t=0, the solution of the Burgers equation (6)
is obtained by the method of characteristics and is given by the expression

x = 6tu+ f(u). (7)

This solution is globally well defined only for t < tc, where tc = 1
6 min

u∈R

[−f ′(u)] is the time

of gradient catastrophe of the solution. The breaking is caused by an inflection point in
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the initial data. At later time the solution of the Whitham equations is obtained gluing
together C1-smoothly solutions of different genera.

We consider the case g ≤ 1.

u

u

u u(x,t)

u(x,t)

1 (x,t)

2 (x,t)

3 (x,t)

u

x

On the picture the evolution of u1(x, t) > u2(x, t) > u3(x, t) is ruled by the one-phase
Whitham equations (4), while u(x, t) satisfies the Burgers equation. The quantities u1,
u2, u3 match the Burgers solution at the boundaries of the multi-valued region, namely:

a) trailing edge

{
u1 = solution of the Burgers equation outside the multi-valued region,
u2 = u3;

(8)

b) leading edge

{
u1 = u2,
u3 = solution of the Burgers equation outside the multi-valued region.

(9)

The solution of the one phase equations which matches the solution of the zero phase
equation at the boundaries of the multi-valued region can be written in the form [12]

x = λi(u1, u2, u3)t+wi(u1, u2, u3), i = 1, 2, 3, (10)

where the λi = λi(u1, u2, u3) have been defined in (4) and wi = wi(u1, u2, u3) is given by
the expression

wi =
(
1
2
λi − u1 − u2 − u3

)
∂q

∂ui
+q, i = 1, 2, 3. (11)

The function q = q(u1, u2, u3) reads [12]

q(u1, u2, u3) =
1

2
√
2π

∫ 1

−1

∫ 1

−1

f
(

1+µ
2

1+ν
2 u1 + 1+µ

2
1−ν
2 u2 + 1−µ

2 u3

)
√
(1− µ) (1− ν2)

dµdν, (12)

where f is the initial data.
The next theorem provides conditions for the existence of a global solution of the

Whitham equations.
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Theorem 2.1 [13]. Suppose that the monotone decreasing initial data x = f(u) is of the
form f(u) = PN (u) + fs(u) where PN (u) is a polynomial of degree 2N + 1 and fs(u) is a
smooth function rapidly decreasing at infinity. If the initial data satisfies the condition

f (2m+1)(u) < 0 ∀u ∈ R, m < N, (13)

except for some number of isolated points, then the solution of the Whitham equations
exists for all x and t > 0 and it has genus at most equal to m.

The following theorem characterizes the solution of the Whitham equations for all times
bigger than a certain time T > 0.

Theorem 2.2 [11]. Let us assume that the solution of the Cauchy problem for the
Whitham equations with monotone decreasing initial data x = f(u) exists for any x, t ≥ 0.
Suppose that the function f(u) defined on the whole real axis satisfies the conditions

lim
u→−∞ f ′′(u) = +∞, f ′′(u) < 0 for u → +∞,

f ′′′(u) < 0 for u > u+ and u < u−,
(14)

where u+ ≥ u− are some real numbers. Then there is a time T ≥ 0 such that for all
t > T the solution of the Whitham equations is of genus one inside the interval x−(t) <
x < x+(t), where x−(t) < x+(t) are two real functions of t. For x = x±(t) boundary
conditions (8) and (9) are satisfied. It is of genus zero outside this interval.

3 Self-similar asymptotic solutions

When the initial data is of the form f(u) = −uk, k = 3, 5, 7, . . ., one obtains the distin-
guished self-similar solutions [15, 10]. Their genus is at most equal to one.

These solutions have the form ui(x, t) = t
1

k−1Ui

(
t−

k
k−1x

)
, i = 1, 2, 3. Indeed, intro-

ducing the new variables

X = t−
k

k−1x, u(x, t) = t
1

k−1U
(
t−

k
k−1x

)
,

ui(x, t) = t
1

k−1Ui

(
t−

k
k−1x

)
, i = 1, 2, 3

(15)

the system (10) becomes time free:

X = λi(�U)+
[
1
2
λi(�U)− U1 − U2 − U3

]
∂

∂Ui
qk(�U)+qk(�U), (16)

where �U = (U1, U2, U3) and qk = qk(�U) is the function defined in (12) for the initial data
X = −Uk. The characteristic equation (7) becomes

X = 6U −Uk. (17)

We have the following corollary [12].

Corollary 3.1. For x = −uk, k = 3, 5, 7, . . ., the Whitham equations have a global
self-similar one-phase solution u1 > u2 > u3:

ui(x, t) = t
1

k−1Ui

(
t−

k
k−1x

)
, i = 1, 2, 3 (18)
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within a cusp in the x − t plane: x−(k) t
k

k−1 < x < x+(k) t
k

k−1 , where x−(k) < x+(k)
are two real constants and t > 0. On the boundary of the cusp the one-phase solution is
attached C1-smoothly to the solution u(x, t) of the zero-phase equation.

Let us consider monotone decreasing initial data of the form

x = f(u) = −u2N+1−(
c0 + c1u+ · · ·+ c2Nu2N

)
+fs(u), (19)

where fs(u) is a smooth function rapidly decreasing at infinity. Suppose that such initial
data satisfies (13). It follows from Theorem 2.1 that the solution of the Whitham equations
for such initial data exists for all x and t ≥ 0 and it has a number of interacting oscillatory
phases less or equal than m < N .

If the monotone decreasing initial data (19) satisfies (13) then it also satisfies the
hypothesis of Theorem 2.2. Hence there exists a time T > 0 such that for all times t > T
the solution of the Whitham equations for such initial data has genus g ≤ 1.

From the above considerations and doing the rescaling (16) for k = 2N+1 to the initial
data (19) we obtain the next theorem.

Theorem 3.2. The solution of the Whitham equations (4) with initial data (19) is
asymptotically close for t → +∞ to the self-similar solution (16)–(17) with initial data
x = −u2N+1.
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