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Abstract

The suq(2) algebra is shown to provide a natural dynamical algebra for some nonli-
near models in Quantum Optics. Applications to the computation of eigenvalues and
eigenvectors for the Hamiltonian describing second harmonics generation are proposed.

1 Introduction

The trilinear boson Hamiltonian

H = ωa a† a+ωb b† b+ωc c† c+λ (a† b† c+c† b a), (1.1)

with a, b, c being boson operators for three different modes of the radiation field, describes
(under certain conditions) nonlinear quantum optical processes as frequency conversion
and Raman and Brillouin scattering [1]. Through a Jordan–Schwinger transformation,
this model is algebraically equivalent to the resonant interaction of a sample of two-level
atoms with a single mode of the quantized radiation field (the so called Dicke model, see [2]
and references therein):

H = H0+HD = ω a† a+ωat Sz+g(a† S−+a S+). (1.2)

Here, Si =
N∑

k=1

S
(k)
i , where N is the number of atoms in the sample and S

(k)
i are the

pseudospin operators of the k-th atom.
Exact general solutions for the Dicke Hamiltonian are very difficult to obtain. Bethe

ansatz techniques have been used [3] but they reduce the problem to an algebraic equation
that does not lead to a useful form for the general eigenvalues and eigenfunctions of H.
In [2, 4] a perturbative approach based on an approximate su(2) dynamical symetry of H
was introduced. This approach is based on a block-diagonal form of the Dicke interaction
Hamiltonian HD = (a† S− + a S+) whose blocks are of the form

H
(s)
D =




0 Al 0 . . . 0
Al 0 Al−1 . . . 0
. . . . . . . . . . . . . . .
0 . . . A−l+2 0 A−l+1

0 . . . 0 A−l+1 0




. (1.3)
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These operators can be obtained provided we consider that the initial state of the system
is a given eigenstate of the excitation number operator ŝ = n̂a+Sz+N/2, where n̂a is the
photon number operator and N is the number of atoms in the sample. The dimension of
the matrix (1.3) is (2 l + 1) and l is related to the number of atoms through 2 l = N . In
this basis, the matrix elements of H

(s)
D read

Am =
√
(l +m)(l − m+ 1)(2s − l − m+ 1), m = −l+1,−l+2, . . . , l. (1.4)

Here 2 s (with s ≥ l) is just the (constant) eigenvalue of the excitation number operator
in that subspace.
Under certain dynamical conditions (essentially, in either a strong or weak field regimes)

the matrix (1.3) can be written as the (2 l + 1) dimensional irreducible representation of
the 2Jx = J+ + J− generator of su(2) plus some additional smaller terms. In this way, a
perturbative approach to the spectrum and dynamical properties of the Dicke model can
be developed [2].
In this contribution we show that the suq(2) quantum algebra can be also used to de-

fine a Hamiltonian of the type H
(s)
D whose eigenvalues and eigenvectors can be analytically

found [5]. The spectrum of the suq(2) model is essentially anharmonic, and we show that
this q-deformed Hamiltonian can efficiently serve as the zero-th order operator in order to
work out the corresponding perturbation theory for the regimes with the strongest non-
linear properties and for which the su(2) perturbation theory is not useful. In particular,
we shall analyse the case s = l that corresponds, in the three-boson language, to second
harmonics generation.

2 A tridiagonal Hamiltonian defined on suq(2)

The quantum algebra suq(2) [6]–[8] is generated by Jz , J± and has the following commu-
tation rules

[Jz, J±] = ±J±, [J+, J−] = [2Jz], (2.1)

where the following symbol is introduced

[x] :=
qx − q−x

q − q−1
, q = ez. (2.2)

Note that we can always recover ‘classical’ (undeformed) su(2) results when q → 1 (or,
equivalently, in the limit z → 0).
Representation theory of suq(2) is a smooth deformation of the su(2) one and it can

be constructed by introducing the ‘bare’ basis of eigenvectors of Jz,

2 Jz|l, m〉 = 2m |l, m〉. (2.3)

Therefore, q2Jz |l, m〉 = q2m|l, m〉. In this basis, the (2 l + 1)-dimensional irreducible rep-
resentation of suq(2) is given by (2.3) and

J±|l, m〉 =
√
[l ∓ m][l ± m+ 1] |l, m+ 1〉. (2.4)

Let us consider the following operator defined on suq(2):

Hq = qJz/2 (J++J−) qJz/2 . (2.5)
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We stress that the q → 1 limit of H is just the 2Jx generator used in [2]. The (2 l + 1)-
dimensional representation for H takes the tridiagonal form (1.3) with

Am(q) = qm−1/2
√
[l+m][l−m+1] . (2.6)

By making use of the algebraic properties of suq(2) (in particular, by exploiting the
coproduct map in order to construct tensor product representations) it can be proven
that the spectrum of this operator for a given l is given by the q-numbers [2m], with
m = −l, . . . , l (see Fig. 1, in which the anharmonicity of Hq is clearly shown). Moreover,
the corresponding normalized eigenvectors can be also explicitly found as well as the
q-Clebsch–Gordan coefficients in both the ‘bare’ and ‘dressed basis’ [5].
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Figure 1. Spectrum of Hq in the l = 4 representation as a function of z = log q.

3 Second harmonics generation through suq(2)

Let us now consider the second harmonics generation (SHG) analogue of the Dicke Hamil-
tonian, that is obtained when s = l. This is a strongly nonlinear regime of HD, as it can
be appreciated in Fig. 2, where we have assumed Am to be a continuous function of m and
we have plotted it together with the 2Jx matrix elements of su(2) (the symmetric curve).
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Figure 2. Matrix elements of H
(s)
D and of a su(2) model for l = 200 and s = l.
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Figure 3. Matrix elements of Hq for z = 0,−1.10−3,−2.10−3,−3.10−3,−4.10−3 and l = 200.

However, if we plot the function Am(q) corresponding to the Hq Hamiltonian, it be-
comes clear that we could approach the SHG model by fitting an appropriate deformation
parameter (Fig. 3). Therefore, let us try to approximate analytically the Dicke/SHG
operator H

(s)
D through a Hamiltonian of the type

T0 = ΩHq. (3.1)

Here we have two free parameters (q and Ω) in order to get the closest T0 to H
(s)
D . The

simplest way to do this is to choose both parameters in such a way that the matrix
elements Am of H

(s)
D and the matrix elements Ãm(q) = ΩAm(q) of the Hamiltonian T0

coincide in their maxima. This choice gives rise (for s = l) to the following relations
defining q and Ω in terms of the number of atoms N :

α = N log q =
3
2
log

√
5− 1
2

≈ −0.7218 , (3.2)

Ω =
4(N + 1)3/2

√
27[N + 1]

. (3.3)

In this way, both the maxima of Am and Ãm(q) (considered as functions of m) occur in
the point m0 = −(l − 1)/3 (see Fig. 4).
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Figure 4. Fitting between ΩHq with z = −1.8 10−3 and SHG hamiltonian (l = 200).
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In the neighbourhood of m0, it can be proven that the Dicke/SHG matrix elements can
be approximated as [5]:

Am ≈ ΩAm(q)φ(m), φ(m) = 1+φ1∆−φ2∆2+φ3∆3 , ∆ = m−m0 . (3.4)

If we substitute ∆ = m − m0 = Jz + (l − 1)/3 we can rewrite (3.4) in the matrix form:

H
(s)
D ≈ Ω [J+φ(Jz − m0) + φ(Jz − m0)J−] = 2Ω {Hq, f(Jz)} . (3.5)

The (degree three) polynomial f(Jz) can be explicitly obtained. This formula leads to a
straightforward estimation of the ground state energy of H

(s)
D as follows:

〈−l, l|H(s)
D |−l, l〉 ≈ −Ω [2l]

3∑
k=0

fk〈−l, l|(Jz)k|−l, l〉, (3.6)

where |−l, l〉 is the ground state for the Hq hamiltonian in the dressed basis. This method
turns out to be valid for arbitrary eigenstates, and no higher order expansion is needed
to obtain the correct N → ∞ properties (large photon numbers). As a conclusion,suq(2)
dynamical symmetry provides a powerful algebraic approach to the dynamics of trilinear
quantum optical Hamiltonians, thus improving in an essential way the already known
approaches to this problem [9].
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