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Abstract

We review the construction of Lax pairs with spectral parameter for twisted and un-
twisted elliptic Calogero-Moser systems defined by a general simple Lie algebra G, and
the corresponding solution of N = 2 SUSY G Yang-Mills theories with a hypermulti-
plet in the adjoint representation of G.

1 Introduction

A particularly important development in the theory of integrable models in recent years
has been their unexpected close relation with N = 2 SUSY Yang–Mills theories. In this
talk, we review aspects related to Calogero–Moser systems, which have played a central
role.

2 N = 2 SUSY Yang–Mills with adjoint matter

In a general N = 2 SUSY Yang–Mills theory with gauge group G in 4 space-time dimen-
sions, the N = 2 multiplet of the gauge field Aµ consists of (Aµ λα± φ), where λα± form a
Dirac spinor and φ is a complex scalar, all transforming in the adjoint representation of G.
N = 2 SUSY also allows for additional matter hypermuliplets, of the form (ψα+ H± ψα−),
where ψα± form a Dirac spinor, H± are complex scalars, transforming in a representa-
tion R of the gauge group G. In this paper, we shall be mainly concerned with the theories
with adjoint matter, that is, the theories where R is the adjoint representation of G. In
these theories, the complex gauge coupling τ = 4π

g2 + i θ
2π does not get renormalized. Nor

does the mass of the hypermultiplet, which we denote by m. We also set q = e2πiτ .
The vacua are given by Fµν = 0, Dµφ = 0, [φ, φ†] = 0, so that the theory admits a

moduli space of inequivalent vacua of dimension r = rankG. If we let hj , j = 1, . . . , r =
rankG be a basis for the Cartan subalgebra of G, we can set

〈0|φ|0〉 =
r∑

j=1

ajhj . (2.1)

The complex parameters aj , j = 1, . . . , r, are the quantum moduli or order parameters of
the theory.

For generic vacua, the vacuum expectation value has distinct eigenvalues, so that the
gauge group is spontaneously broken down to U(1)r by the Higgs mechanism. Since
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the N = 2 SUSY remains unbroken, the effective theory is a N = 2 SUSY theory of r
interacting U(1) multiplets (Ajµ λj± φj). The N = 2 SUSY constrains the low energy
Wilson effective action to be expressible in terms of a single function F(φ, τ) called the
prepotential:

I = Im (τij)F i
µνF

jµν+Re (τij)F i
µνF̃

jµν+Im (∂µφ̄j∂µφDj)+fermions. (2.2)

Here the effective couplings τij(φ) between the U(1) gauge fields are given by τij = ∂2F
∂φiφj ,

and φDj = ∂F
∂φj . In the large φ regime, perturbative quantum field methods show that F

is of the form

F = τ
r∑

j=1

φ2
j+

∑
α∈R(G)

{
ln(α · φ)2 − ln(α · φ+m)2

}
+

∞∑
n=1

qnF (n). (2.3)

The terms on the right correspond respectively to the classical prepotential, the one-loop
perturbative contributions, and the instanton contributions. The set R(G) denotes the
roots of G. The key Ansatz due to Seiberg and Witten [1] is that F can be determined
in the following manner from a fibration of Riemann surfaces Γ over the moduli space of
vacua, equipped with a meromorphic 1-form dλ

aj =
1
2πi

∮
Aj

dλ, aDj =
1
2πi

∮
Bj

dλ, aDj =
∂F
∂aj

. (2.4)

Here Aj and Bj are suitable homology cycles on the surface Γ. The Seiberg–Witten Ansatz

gives rise to a symplectic structure ω = δ

(
r∑

j=1
dλ(zj)

)
on (a subspace of) the Jacobian

of Γ, with respect to which the vacuum moduli of the gauge theory are commuting Hamil-
tonians [2]. Thus to the 4-dimensional gauge theory corresponds an integrable model. The
main problem is to determine which theory corresponds to which model. For the SU(N)
theory with adjoint matter, Donagi and Witten [2] have produced strong evidence that
the corresponding integrable model is the SU(N) Hitchin system [3]. Our goal here is to
describe the results in [5, 6, 7, 8], which show that for general gauge group G given by a
simple Lie algebra, the integrable model corresponding to the N = 2 SUSY G Yang–Mills
theory with matter in the adjoint representation is the twisted elliptic Calogero–Moser
system associated to G. This is in accord with the Donagi–Witten proposal, since the
spectral curves of the SU(N) Hitchin system and the SU(N) twisted elliptic Calogero–
Moser system are the same.

3 Twisted elliptic Calogero–Moser systems

The original elliptic Calogero–Moser system is the N particle dynamical system with
potential m2

∑
i
=j

℘(xi − xj) [11]. Olshanetsky and Perelomov [12] recognized very early

on that the system can actually be generalized to any simple Lie algebra, with potential∑
α∈R(G)

m2
|α|℘(α · x). It turns out that for the purpose of studying gauge theories, we need

rather a new twisted version of these systems, first introduced in [5] and with Hamiltonian

Htwisted
G =

1
2

r∑
j=1

p2
j−

1
2

∑
α∈R(G)

m2
|α|℘ν(α)(α·x). (3.1)
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Here m|α| are mass parameters depending only on the length of the root α, ν(α) ∈ {1, 2, 3}
is the relative ratio of the roots of G, and ℘ν(z) is the following twisted version of the
Weierstrass ℘-function

℘ν(z) =
ν−1∑
k=0

℘

(
z + 2ωa

k

ν

)
, (3.2)

where ωa is a half-period of ℘(z). The twisted system coincides of course with the usual
system for G simply laced.

4 The SU(N) Calogero–Moser system

We begin by discussing the basic case of SU(N). The starting point is the Lax pair
L(z), M(z) with spectral parameter obtained in 1980 by Krichever [13] for the elliptic
Calogero–Moser system

L(z) = piδij−m(1−δij)Φ(xi−xj , z), (4.1)

M(z) = mδij
∑
k 
=i

℘(xi−xk)+m(1−δij)Φ′(xi−xj , z). (4.2)

The function Φ(x, z) is the Lamé function, defined by Φ(x, z) = σ(x−z)
σ(x)σ(z)e

xζ(z), where σ(z),
ζ(z) are the usual Weierstrass elliptic functions. Given a Lax pair with spectral parameter,
the spectral curve Γ and the differential dλ can be defined by Γ={(k, z); det(kI−L(z))=0}
and dλ = kdz. The main difficulty in establishing a correspondence between this model
and the SU(N) gauge theory is how to identify the vacua moduli in the context of
Calogero–Moser systems. This is overcome by the following key fact [4], which provides a
new parametrization of spectral curves for the SU(N) Calogero–Moser systems

det(λI−L(z)) =
ϑ1

(
1

2ω1

(
z −m d

dk

) |τ)
ϑ1

(
z

2ω1
|τ

) H(k)|
k=λ+m∂z ln ϑ1

(
z

2ω1
|τ

) (4.3)

Here H(k) =
N∏
j=1

(k − kj) is a monic polynomial. Its zeroes kj are manifestly integrals

of motion for the Calogero–Moser system. On the other hand, they can be shown to
be classical limits of the vacua moduli for the gauge theory. Once the classical vacua
moduli have been identified, we can apply the methods of [18] to determine the logarithmic
singularities of the prepotential from the Calogero–Moser system. We find agreement with
the one-loop contributions in (2.3), which is the main criterion for the correct integrable
model. A complete correspondence can now be summarized in the following table:

The function F (y) in the table is defined by

F (y) =
∞∑

n=1

q
1
2
n(n+1)(−)n [

y−nηn(k, β)− yn+1ηn(k − βm,−β)] , β = − iπ

ω1
,

(4.4)

ηn(k, β) =
H(k + βmn)H(k − βm)n

H(k)n+1
. (4.5)



72 E D’Hoker and D H Phong

N = 2 SUSY Gauge Theory Calogero–Moser

Γ det(kI − L(z)) = 0

dλ kdz

lim
q→0

1
2πi

∮
Aj
dλ kj − 1

2m

aj = 1
2πi

∮
Aj
dλ aj = 1

2πi

∮
Aj
k d ln H(k)

H(k−m)

(
1 +

∞∑
n=1

qn

n!
∂n

∂ynFn(y)|y=1

)

Renormalization Group ∂F
∂τ = TrL(z)2

Equation Beta Function Hamiltonian TrL(z)2

Table 1. Gauge Theory and Calogero–Moser Correspondence for SU(N)

Note that the expressions of aj in terms of kj can be inverted recursively. It follows that
the renormalization group equation in table 1 allows us to solve for instanton contribu-
tions to all orders. The decoupling limits as m → ∞ (see below) also agree with all
instanton contributions computed by other methods [18, 19]. We observe also that the
integrals of motion kj can be expressed explicitly in terms of Calogero–Moser dynamical
variables p, x [8]. This requires some remarkable identities relating Φ(x, z) to free fermion
determinants [10].

5 The case of G general simple Lie algebra

5.1 Scaling limits of Calogero–Moser systems

We begin by explaining why the Calogero–Moser systems have to be twisted. As the
hypermultiplet becomes infinitely heavy, it decouples and the gauge theory should reduce
to a pure N = 2 SUSY Yang–Mills theory without additional matter hypermultiplet. Now
standard renormalization group arguments show that the gauge coupling τ and the mass
should be related by

m =Mq−
1
2
δ∨G , (5.1)

where M is fixed, and 1
δ∨G

is the quadratic Casimir of G, or equivalently the dual Cox-
eter number of G. It turns out that for G not simply laced, the finiteness of the scaling
limits under (5.1) of the G elliptic Calogero–Moser system is not compatible with other
requirements such as the retention of simple roots. The point of (3.2) is the following im-

provement in the asymptotics for the ℘-function, ℘ν(x) = ν2

2

∞∑
n=−∞

1
ch ν(x−2nω2)−1 , thanks

to which

Htwisted
G → HToda

(G(1))∨ ≡ 1
2
p2−M2

∑
α∈R∗

(
(G(1))∨

) e
−α·x (5.2)

when x = X + 2ω2
1
h∨
G
ρ, ρ = 1

2

∑
α∈R+(G)

α is the Weyl vector, and q → 0, m → ∞ as

in (5.1). Since the Toda system defined by the affine algebra
(G(1)

)∨
is the integrable
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model corresponding to the pure Yang–Mills theory [14], the above limit is a crucial
consistency requirement. The usual elliptic Calogero–Moser systems also have a finite
scaling limit

HG → HToda
G(1) ≡ 1

2
p2−M2

∑
α∈R∗(G(1))

e−α·x (5.3)

but under the scaling law x = X + 2ω2
1
hG ρ

∨, ρ∨ = 1
2

∑
α∨∈R+(G)∨

α∨ is the level vector, and

q → 0, m =Mq−
1
2
δG → ∞ with M fixed and 1

δG equal to the Coxeter number hG [6].

5.2 Lax pairs for G general simple algebra

Lax pairs with spectral parameter were known only for SU(N) (Olshanetsky and Perelo-
mov [12] had constructed Lax pairs for the classical Lie algebras in the untwisted case of
Calogero–Moser systems, but these were without spectral parameter). Our general Ansatz
for Lax pairs with spectral parameter for both twisted and untwisted Calogero–Moser sys-
tems is as follows.

Let L be a representation of G of dimension N , of weights λI , 1 ≤ I ≤ N . We fix
a Cartan subalgebra H for GL(N,C) which contains the Cartan subalgebra HG of G.
A basis for H consists then of a basis hi, 1 ≤ i ≤ r, of Cartan generators for G, together
with a complementary set h̃i, r+1 ≤ i ≤ N , of generators of GL(N,C) satisfying [hi, hj ] =
[hi, h̃j ] = [h̃i, h̃j ] = 0. By adding to the h̃i suitable linear combinations of the hi, we may
assume that the hi and h̃i are mutually orthogonal with respect to the Cartan–Killing
form tr [Adhi ,Adh̃j

] = 0.
Let uI ∈ CN be the weights of the fundamental representation of GL(N,C). Project

orthogonally the uI ’s onto the λI ’s as

suI = λI +vI , λI ⊥ vJ . (5.4)

The coefficient s is easily determined to be s2 = 1
r

N∑
I=1

λ2
I = I2(Λ), where I2(Λ) is

by definition the second Dynkin index of the representation Λ of G. We note that αIJ =
λI−λJ is a weight of L⊗L∗ associated to the root uI−uJ of GL(N,C). The centralizer of
HG in GL(N,C) may be larger that the Cartan subalgebra H of GL(N,C). We denote it
by H⊕GL0. For all simple Lie algebras in their lowest dimensional faithful representation,
we have GL0 = 0, except in the cases of F4 and E8, where the dimension of GL0 is 2 and
56 respectively.

The Lax pairs for both untwisted and twisted Calogero–Moser systems will be of the
form

L = P +X, M = D+Y, (5.5)

where the matrices P , X, D and Y are given by

X =
∑
I 
=J

CIJΦIJ(αIJ , z)EIJ , Y =
∑
I 
=j

CIJΦ′
IJ(αIJ , z)EIJ , (5.6)

P = p ·h, D = d ·(h⊕ h̃)+∆. (5.7)
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Here ∆ is an element of GL0, and EIJ = uIu
T
J are the usual generators of GL(N,C). The

functions ΦIJ(x, z) and the coefficients CIJ are yet to be determined. It is convenient to
introduce the following notation

ΦIJ = ΦIJ(αIJ ·x), Φ′
IJ = Φ′

IJ(αIJ ·x), (5.8)

℘′
IJ = ΦIJ(αIJ ·x, z)Φ′

JI(−αIJ ·x, z)−Φ′
IJ(αIJ ·x, z)Φ′

JI(−αIJ ·x, z). (5.9)

Then the Lax equation L̇(z) = [L(z),M(z)] implies the (twisted or untwisted) Calogero–
Moser system if and only if the following three identities are satisfied∑

I 
=J

CIJCJI℘
′
IJαIJ = s2

∑
α∈R(G)

m2
|α|℘ν(α)(α·x), (5.10)

∑
I 
=J

CIJCJI℘
′
IJ(vI −vJ) = 0, (5.11)

∑
K 
=I,J

CIKCKJ(ΦIKΦ′
KJ − Φ′

IKΦKJ)

= sCIJΦIJd · (uI − uJ) +
∑

K 
=I,J

∆IJCKJΦKJ −
∑

K 
=I,J

CIKΦIK∆KJ .

(5.12)

Theorem. A representation Λ, functions ΦIJ , and coefficients CIJ with a spectral param-
eter z satisfying (5.10), (5.11), (5.12) can be found for all twisted and untwisted elliptic
Calogero–Moser systems associated with a simple Lie algebra G, except possibly in the case
of twisted G2. In the case of E8, we have to assume the existence of a ±1 cocycle.

Some important features of the Lax pairs we obtain in this manner for the untwisted
Calogero–Moser systems are the following.

• In the case of the untwisted Calogero–Moser systems, we can choose ΦIJ(x, z) =
Φ(x, z), ℘IJ(x) = ℘(x) for all G.

• ∆ = 0 for all G, except for E8.

• For An, the Lax pair (5.5) corresponds to the choice of the fundamental representa-
tion for L. A different Lax pair can be found by taking L to be the antisymmetric
representation.

• For the BCn system, the Lax pair is obtained by imbedding Bn in GL(N,C) with
N = 2n+ 1. When z = ωa (half-period), the Lax pair obtained this way reduces to
the Lax pair obtained by Olshanetsky and Perelomov [12].

• For the Bn and Dn systems, additional Lax pairs with spectral parameter can be
found by taking L to be the spinor representation.

• For G2, a first Lax pair with spectral parameter can be obtained by the above
construction with L chosen to be the 7 of G2. A second Lax pair with spectral
parameter can be obtained by restricting the 8 of B3 to the 7 ⊕ 1 of G2.

• For F4, a Lax pair can be obtained by taking L to be the 26 ⊕ 1 of F4, viewed as
the restriction of the 27 of E6 to its F4 subalgebra.

• For E6, L is the 27 representation.
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• For E7, L is the 56 representation.

• For E8, a Lax pair with spectral parameter can be constructed with L given by
the 248 representation, if coefficients cIJ = ±1 exist with the following cocycle
conditions

c(λ, λ−δ)c(λ−δ, µ) = c(λ, µ+δ)c(µ+δ, µ) when
δ · λ = −δ · µ = 1,
λ · µ = 0,

(5.13)

c(λ, µ)c(λ−δ, µ) = c(λ, λ−δ) when δ·λ = λ·µ = 1, δ·µ = 0, (5.14)

c(λ, µ)c(λ, λ−µ) = −c(λ−µ,−µ) when λ·µ = 1. (5.15)

The matrix ∆ in the Lax pair is then the 8× 8 matrix given by

∆ab =
∑

δ·βa=1
δ·βb=1

m2

2
(
c(βa, δ)c(δ, βb) + c(βa, βa − δ)c(βa − δ, βb)

)
℘(δ · x)

−
∑

δ·βa=1
δ·βb=−1

m2

2
(
c(βa, δ)c(δ, βb) + c(βa, βa − δ)c(βa − δ, βb)

)
℘(δ · x),

∆aa =
∑

βa·δ=1

m2℘(δ · x) + 2m2℘(βa · x),

(5.16)
where βa, 1 ≤ a ≤ 8, is a maximal set of 8 mutually orthogonal roots.

Explicit expressions for the constants CIJ and the functions d(x), and thus for the Lax
pair are particularly simple when the representation Λ consists of only a single Weyl orbit
of weights. This is the case when Λ is either

• the defining representation of An, Cn or Dn;

• any rank p totally anti-symmetric representation of An;

• an irreducible fundamental spinor representation of Bn or Dn;

• the 27 of E6; the 56 of E7.

For the twisted elliptic Calogero–Moser systems, we have:

• For Bn, the Lax pair is of dimension N = 2n, admits two independent couplings m1

and m2, and

ΦIJ(x, z) =




Φ(x, z), if I − J �= 0,±n;

Φ2

(
1
2
x, z

)
, if I − J = ±n.

(5.17)

Here a new function Φ2(x, z) is defined by

Φ2

(
1
2
x, z

)
=

Φ
(

1
2x, z

)
Φ

(
1
2x+ ω1, z

)
Φ(ω1, z)

. (5.18)
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• For Cn, the Lax pair is of dimension N = 2n+ 2, admits one independent coupling
m2, and

ΦIJ(x, z) = Φ2(x+ωIJ , z), (5.19)

where ωIJ are given by

ωIJ =




0, if I �= J = 1, 2, · · · , 2n+ 1;

ω2, if 1 ≤ I ≤ 2n, J = 2n+ 2;

−ω2, if 1 ≤ J ≤ 2n, I = 2n+ 2.

(5.20)

• For F4, the Lax pair is of dimension N = 24, two independent couplings m1 and m2,

Φλµ(x, z) =




Φ(x, z), if λ · µ = 0;

Φ1(x, z), if λ · µ = 1
2 ;

Φ2

(
1
2
x, z

)
, if λ · µ = −1.

(5.21)

where the function Φ1(x, z) is defined by

Φ1(x, z) = Φ(x, z)−eπiζ(z)+η1zΦ(x+ω1, z) (5.22)

Here it is more convenient to label the entries of the Lax pair directly by the weights
λ = λI and µ = λJ instead of I and J .

• For G2, candidate Lax pairs can be defined in the 6 and 8 representations of G2,
but it is still unknown whether elliptic functions ΦIJ(x, z) exist which satisfy the
required identities.

We observe that other Lax pairs have subsequently been proposed in [15]. However,
they do not have finite limits under the scaling law (5.1), and hence do not appear as
relevant to N = 2 super Yang–Mills.

5.3 Spectral curves for super Yang–Mills

We obtain now the Seiberg–Witten curves for the L = 2 SUSY G gauge theory with
adjoint matter by setting Γ = {(k, z) ∈ C × Σ; det(kI − L(z)) = 0}, dλ = kdz, where
L(z),M(z) is the Lax pair of the twisted elliptic Calogero–Moser system associated to the
Lie algebra G [7].

This prescription satisfies all the available consistency requirements. In particular, the
spectral curve Γ is invariant under the Weyl group of G, the position and residues of the
poles of dλ are independent of the moduli, and the residues are linear in the hypermultiplet
mass m. The logarithmic singularities of the prepotential are more difficult to check in
general, but they can be seen to be verified in the case of Dr, at least in the trigonometric
limit, which is dependable when r ≤ 5. More precisely, in the trigonometric limit τ → i∞,
change from variables z, k to new variables Z, A by

1
Z

=
1
2
coth

z

2
, 0 = A2+mA+2k

m

Z
−k2. (5.23)
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Then the equation R(k, z) = det(kI − L(z)) for the spectral curve can be expressed in
terms of a polynomial H(A) just as in the case of SU(N)

R(k, z) =
m2 +mA− 2km

Z

m2 +mA
H(A)+

mA+ 2km
Z

m2 + 2mA
H(A+m). (5.24)

The methods of [4] can now be applied as in the SU(N) case to show that the prepotential
obtained from our construction has the desired logarithmic singularities.

Finally, we note that Seiberg–Witten curves for many models have also been obtained
from M Theory [16] as well as geometric engineering [17].
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