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Abstract

The inhomogeneity of the media or the external forces usually destroy the integrability
of a system. We propose a systematic construction of a class of quantum models, which
retains their exact integrability inspite of their explicit inhomogeneity. Such models
include variable mass sine-Gordon model, cylindrical NLS, spin chains with impurity,
inhomogeneous Toda chain, the Ablowitz—Ladik model etc.

1 Introduction

The physical systems often encounter the inhomogeneity in the form of impurities, defects
or the density fluctuations in the media or it can enter as variable magnetic fields or other
external forces. Such inhomogeneities can depend on space as well as time variables and
can appear as explicit space-time dependent coefficients in the Hamiltonian. They usually
destroy the integrability of a system making its analytic study almost impossible [1].
However there are several examples of classical models like deformed MKDV [2] or NLS [3],
spherical or cylindrical symmetric NLS [4], inhomogeneous Ablowitz—Ladik (AL) model [5]
etc., where the exact integrability could be retained along with their Lax operators, in
spite of the presence of space-time dependent coefficients in their evolution equations.
Nevertheless, in case of quantum models there seems to be no systematic attempts to
explore such possibilities, except certain construction for the impurity chains [6].

We propose here a scheme for introducing inhomogeneities in the known quantum inte-
grable models, which retains their integrability and allows explicit construction of their R-
matrix as well as the Lax operators. This systematic scheme is based on a novel quadratic
algebra derived from the quantum Yang-Baxter equation, where its Casimir operators
play the role of the inhomogeneity parameters and the proper realization of other genera-
tors construct the Lax operator of the model. The R-matrix simply corresponds to that of
the standard homogeneous model. Applying this procedure one first constructs quantum
models with inhomogeneity on discrete lattices, which preserves the exact integrability and
then taking the continuum limit builds the corresponding field models. Thus one obtains
a series of new quantum integrable inhomogeneous models like a variable mass quantum
sine-Gordon model, cylindrical quantum NLS, inhomogeneous Toda and Ablowitz—Ladik
chains. It also provides a different way of introducing integrable impurities in the spin
chain models.
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2 The generating scheme

We start with the quadratic algebra [7]
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where M+ = +/+1 (c{rcg + cl_c;) are the Casimir operators of algebra (1). Taking the
well known trigonometric R(\)-matrix solution [8] along with (2) the quadratic algebra
(1) can be shown to be equivalent to the quantum Yang Baxter relation [8] R(A—pu)L(\)®
L(p) = (I ® L(p) @ (L(N) @ I)R(A — p). Therefore the associated L-operator (2) may
serve as the generating Lax operator for the quantum integrable models belonging to the
relativistic or the anisotropic class of models, the parameter ¢ = e'® playing the role
of the deformation parameter [9]. The integrable inhomogeneities are introduced in fact
through different representations of the Casimir operators ¢ by choosing their eigenvalues
as position and time dependent functions.

For definiteness we consider here a to be real. At the undeformed limit ¢ — 1 or
equivalently at & — 0 all the entries in the above scheme, i.e. algebra (1), L-operator (2)
and the trigonometric R-matrix are reduced to their corresponding rational forms. The
reduced algebra is simplified but still represents a quadratic algebra:
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with m* = ¢y, m™ = clc)+ el as the new central elements. Note that both (1) and (3)

are Hopf algebras with explicit coproduct structure, counit, antipode etc. [9].
Due to @« — 0 and £ — 1 + a\ the L-operator takes the form
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with spectral parameter A and the quantum R-matrix is reduced to its well known ra-
tional form [8]. Remarkably, our scheme with these reduced entries belonging to the
rational class becomes suitable for generating quantum integrable nonrelativistic models
with inhomogeneity.

3 Inhomogeneous quantum integrable models

3.1 Variable mass sine-Gordon model

Since this is a relativistic model we have to use the objects belonging to the trigonometric
class. Through canonical operators u, p a representation of (1) may be given by

53 =u, S+ = e—ipg(u)7 ST = g(u)eipv (5)
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where the operator function

1
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(6)

By choosing the eigenvalues of the Casimirs as M j+ = —(Am;)%, M = 0 and inserting (5)
in (2) one gets a quantum integrable lattice model involving bosonic operators and the
inhomogeneity parameter m;. Comparing with the well known result [10] we may conclude
that the model thus constructed is a generalization of the exact lattice version of the
quantum sine-Gordon model. For going to the continuum limit we may scale p by lattice
constant A and take the limit A — 0. As a result one derives from (2) the Lax operator

of the sine-Gordon field model
L=1m (uta?’ + (k1 cosuot + kg sin ua2)) , (7)

where the mass parameter m = m(x,t) now is not a constant as in the standard case, but
an arbitrary function of x, t. The variable mass also enters the Hamiltonian of this novel
sine-Gordon model as

H = /dw [m(w,t)(ut)2 + (1/m(z, 1)) (uz)? + 8(mg — m(z, ) cos(2au))] ()

which is integrable both at classical and the quantum level for the arbitrary mass function
m(x,t). Note that if the mass is independent of time and depends only on the space
coordinate: m = m(z), one can formally convert the evolution equation into the standard
sine-Gordon through a coordinate change: © — X = [“m(y)dy and can find its exact
soliton solution as

u = 2tan~! [exp (’y / " m(y)dy + ms>] , ()

which exhibit intriguing structure depending on the choice of the mass-function m(z).
Such variable mass sine-Gordon equations may arise in physical situations [1] and therefore
the related exact results become important.

3.2 Inhomogeneous NLS model

Nonlinear Schrédinger equation belongs to the nonrelativistic class. Therefore we should
use the rational R-matrix and the rational L-operator (4) with suitable realizations of
algebra (3). A simple such realization may be given by considering site-dependent values
for central elements in (4) and in the generalized HPT

s?=s—N, st=go(N)y, s==1vlg(N),
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This exactly integrable quantum discrete model is an inhomogeneous generalization of the

known lattice NLS [10]. In the continuum limit one may introduce the inhomogeneity by
choosing the eigenvalues of the central elements as

1 1
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with f and g being space-time dependent arbitrary functions. The Lax operator of the
field model would be given formally by that of the NLS model, where the constant spectral
parameter should be replaced by A= gA + f and the field variables by 1/,/g. Particular
choice of these functions as f = 4%, g= % would yield integrable cylindrical NLS [4] like
equation at the quantum level.

(10)
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3.3 Inhomogeneous Toda chain
Another interesting realization of algebra (3) may be given by

s3 = —ip, st = et (11)
with m®* = 0, which leads to the construction of quantum Toda chain model. A consistent
choice of the Casimir eigenvalues like ¢ = c3 = 0 together with ¢ and c} taken as space-
time dependent coefficients c?(t) and le (t), would now result a novel quantum integrable
inhomogeneous Toda chain given by the Hamiltonian
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For c} = 0 the evolution equation can be written down in an interesting compact form
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where uf(t) = u;(t)£¢;(t), with ¢;(t) being an arbitrary function inducing inhomogeneity

in the system. Note that, when the ¢’s are time dependent coefficients such inhomogeneities
can not be removed through gauge transformation or variable change.

Using similar procedure one may construct impurity spin chains in a different way by
seeking various spin operator realizations of the Lax operators (2) or (4) at the impurity
sides. An inhomogenegious version of the quantum Ablowitz—Ladik model can also be
constructed generalizing the result of [11] obtained through twisting transformation in
trigonometric case.

4 Concluding remarks

Thus we have prescribed a systematic scheme for constructing a novel series of inhomo-
geneous quantum integrable models belonging to the lattice as well as the field models of
both relativistic (¢ # 1) and nonrelativistic (¢ = 1) class along with their corresponding
classical counterparts. The scheme is based on an algebraic approach, where the genera-
tors through different realizations construct nonlinear functions of field operators and the
Casimir operators with space-time dependent eigenvalues introduce inhomogeneity into
the system. In our scheme one also obtains automatically the Lax operators and the
R-matrices of the models constructed.
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