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Abstract

The two-photon algebra h6 is used to define an infinite class of N -particle Hamiltonian
systems having (N −2) additional constants of the motion in involution. By construc-
tion, all these systems are h6-coalgebra invariant. As a straightforward application, a
new family of (quasi)integrable N -dimensional potentials is derived.

1 Introduction

In a recent paper [1], a systematic construction of integrable Hamiltonians with coalgebra
symmetry has been proposed. Such procedure can be applied to any Poisson coalgeb-
ra (A,∆) with generators Xi, i = 1, . . . , l and Casimir element C(X1, . . . , Xl) as fol-
lows. Let us consider the N -th coproduct ∆(N)(Xi) of the generators and the m-th order
(2 ≤ m ≤ N) coproducts ∆(m)(C) of the Casimir operator of the coalgebra (recall that the
m-th coproduct is an algebra homomorphism that maps ∆(m) : A → A ⊗ A ⊗ · · ·m) ⊗ A).
By making use of the structural properties of the coproduct it can be proven that{

∆(m)(C),∆(N)(Xi)
}
= 0, i = 1, . . . , l. (1.1)

Therefore, the (2 ≤ m ≤ N) coproducts of the Casimir operator commute with the N -th
order coproduct of any generator of the coalgebra. This implies that, if H is an arbitrary
(smooth/formal power series) function of the generators of the algebra A, any N -particle
Hamiltonian defined as

H(N) := ∆(N)(H(X1, . . . , Xl)) = H
(
∆(N)(X1), . . . ,∆(N)(Xl)

)
, (1.2)

Poisson-commutes with all the (N − 1) functions C(m) = ∆(m)(C):{
C(m), H(N)

}
= 0, 2 ≤ m ≤ N. (1.3)

Furthermore, all the C(m) constants of the motion are in involution{
C(m), C(n)

}
=

{
∆(m)(C),∆(n)(C)

}
= 0, ∀ m, n = 2, . . . , N. (1.4)

So far, this formalism has been considered for sl(2), (1+1) Poincaré and oscillator h4

Poisson coalgebras [1]–[3] under certain phase space realizations. In all these cases, the sys-
tems obtained through the coalgebra formalism turned out to be completely integrable due
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to the non triviality of the constants of the motion C(m) defined by the Casimir. Moreover,
some special choices of the dynamical Hamiltonian H showed the coalgebra symmetry of
integrable systems like the isotropic N -dimensional oscillator and the Gaudin–Calogero
Hamiltonian [4]–[6].
Both the sl(2) and h4 algebras are distinguished subalgebras of the so-called two-

photon algebra h6 [7], which is isomorphic to the (1 + 1) Schrödinger Lie algebra [8].
Explicitly, the two-photon Lie–Poisson coalgebra (h6,∆) is spanned by the six generators
{N, A+, A−, B+, B−, M} together with the Poisson brackets

{N, A+} = A+, {N, A−} = −A−, {A−, A+} = M,

{N, B+} = 2B+, {N, B−} = −2B−, {B−, B+} = 4N + 2M,

{A+, B−} = −2A−, {A+, B+} = 0, {M, · } = 0,
{A−, B+} = 2A+, {A−, B−} = 0

(1.5)

and the (non-deformed) two-body coproduct

∆(2)(X) = X⊗1+1⊗X, X ∈ {N, A+, A−, B+, B−, M}. (1.6)

The coproduct ∆ ≡ ∆(2) is a Poisson algebra homomorphism between h6 and h6 ⊗ h6. It
is important to recall that h6 has two Casimir functions: the mass M and a fourth-order
Casimir given by

Ch6 =
(
MB+ − A2

+

) (
MB− − A2

−
)−(

MN − A−A+ +M2/2
)2

, (1.7)

which will play a relevant role in what follows. The one-particle phase space realization D
for h6 that we shall use is given by

f
(1)
N = D(N) = q1p1 − 1

2µ1, f
(1)
A+
= D(A+) = p1,

f
(1)
A− = D(A−) = µ1q1, f

(1)
M = D(M) = µ1,

f
(1)
B+
= D(B+) = 1

µ1
p2
1, f

(1)
B− = D(B−) = µ1q

2
1.

(1.8)

This phase space representation is labelled by the values of the Casimirs:

f
(1)
M = D(M) = µ1, C

(1)
h6
= D(Ch6) = 0. (1.9)

The aim of this contribution is to present a summary of the integrability properties of
the h6 systems with coalgebra symmetry obtained from [1] through the realization (1.8)
and the Casimir (1.7).

2 Hamiltonians with h6-coalgebra symmetry

Let us start with the construction of two-particle systems. In this case, the coproduct
map ∆(2) (1.6) gives us, under a D⊗D realization, six two-particle phase space functions:

f
(2)
N = (D ⊗ D)(∆(N)) =

(
q1p1 − 1

2µ1

)
+

(
q2p2 − 1

2µ2

)
,

f
(2)
A+
= (D ⊗ D)(∆(A+)) = p1 + p2,

f
(2)
A− = (D ⊗ D)(∆(A−)) = µ1q1 + µ2q2,

f
(2)
B+
= (D ⊗ D)(∆(B+)) = 1

µ1
p2
1 +

1
µ2

p2
2,

f
(2)
B− = (D ⊗ D)(∆(B−)) = µ1q

2
1 + µ2q

2
2,

f
(2)
M = (D ⊗ D)(∆(M)) = µ1 + µ2.

(2.1)
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It is straightforward to check that these functions define a two-particle phase space reali-
zation of h6, provided the canonical Poisson bracket {qi, pj} = δi j is considered.
By following the construction [1], any smooth function of the f

(2)
X functions will Poisson-

commute with the ∆(2) map of the Casimirs of the h6 algebra. However, in this particular
case this statement does not provide any dynamical information, since the two-particle
integrals of motion provided by the two Casimirs M and C are trivial:

f
(2)
M = (D⊗D)(∆(M)) = µ1+µ2, (2.2)

C
(2)
h6
= (D ⊗ D)(∆(Ch6)) =

(
f

(2)
M f

(2)
B+

−
(
f

(2)
A+

)2
) (

f
(2)
M f

(2)
B− −

(
f

(2)
A−

)2
)

−
(

f
(2)
M f

(2)
N − f

(2)
A−f

(2)
A+
+ 1

2

(
f

(2)
M

)2
)2

= 0.

(2.3)

However, this degeneracy is removed in the three particle case. The third-order co-
product ∆(3) of any generator X reads

∆(3)(X) = X⊗1⊗1+1⊗X⊗1+1⊗1⊗X, (2.4)

so that the 3-dimensional phase space realization of (h6,∆) is

f
(3)
N = (q1p1 + q2p2 + q3p3)− 1

2(µ1 + µ2 + µ3), f
(3)
M = µ1 + µ2 + µ3,

f
(3)
A+
= p1 + p2 + p3, f

(3)
A− = µ1q1 + µ2q2 + µ3q3,

f
(3)
B+
= 1

µ1
p2
1 +

1
µ2

p2
2 +

1
µ3

p2
3, f

(3)
B− = µ1q

2
1 + µ2q

2
2 + µ3q

2
3.

(2.5)

As in the previous case, the integrals of motion coming from M are trivial:

f
(1)
M = µ1, f

(2)
M = µ1+µ2, f

(3)
M = µ1+µ2+µ3, (2.6)

but we find now a first non-trivial integral of motion provided by the Casimir Ch6 :

C
(3)
h6
=

µ1 + µ2 + µ3

µ1µ2µ3
(p1(q2 − q3)µ2µ3 + p2(q3 − q1)µ1µ3 + p3(q1 − q2)µ1µ2)

2 .

(2.7)
We stress that C

(3)
h6
is, by construction, in involution with any function H(3) of the three-

particle representation of the generators (2.5). Therefore, if H(3) is considered as the
Hamiltonian of a three-particle system, we would need another integral of motion in invo-
lution (and functionally independent) from C

(3)
h6
in order to ensure complete integrability.

The generalization to an arbitrary number of particles is straightforward. The m-th
coproduct ∆(m) is

∆(m)(X) = X ⊗ 1⊗ 1⊗ . . .m−1) ⊗ 1
+ 1⊗ X ⊗ 1⊗ . . .m−2) ⊗ 1 + · · ·+ 1⊗ 1⊗ . . .m−1) ⊗ 1⊗ X.

(2.8)

Hence the m-dimensional particle phase space realization of (h6,∆) turns out to be:

f
(m)
N =

m∑
i=1
(qipi − 1

2µi), f
(m)
M =

m∑
i=1

µi, f
(m)
A+

=
m∑

i=1
pi,

f
(m)
A− =

m∑
i=1

µiqi, f
(m)
B+

=
m∑

i=1

1
µi

p2
i , f

(m)
B− =

m∑
i=1

µiq
2
i .

(2.9)
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An N -dimensional Hamiltonian H(N) with h6-coalgebra symmetry will be defined through
an arbitrary smooth function H of the two-photon generators (2.9) for m = N :

H(N) = H
(
f

(N)
N , f

(N)
M , f

(N)
A+

, f
(N)
A− , f

(N)
B+

, f
(N)
B−

)
. (2.10)

The central generator M gives rise to N trivial integrals of motion

f
(m)
M =

m∑
i=1

µi, m = 1, . . . , N, (2.11)

while the other Casimir provides (N − 2) non-trivial integrals of motion C
(m)
h6

(m =
3, . . . , N), which are in involution and given by

C
(m)
h6

=
(

f
(m)
M f

(m)
B+

−
(
f

(m)
A+

)2
) (

f
(m)
M f

(m)
B− −

(
f

(m)
A−

)2
)

−
(

f
(m)
M f

(m)
N − f

(m)
A− f

(m)
A+

+ 1
2

(
f

(m)
M

)2
)2

.

(2.12)

Cumbersome computations lead to the following explicit expressions for C
(m)
h6

in terms of
m-pairs of dynamical variables

C
(m)
h6

=

(
m∑

s=1

µs

) 
 m∑

l=1

p2
l

µl

m∑
r<s

r,s�=l

µrµs(qr − qs)2 + 2
m∑

i<j

pipj

m∑
k �=i,j

µk(qk − qi)(qj − qk)




=

(
m∑

s=1

µs

)
m∑

i,j,k=1
i<j<k

[pi(qj − qk)µjµk + pj(qk − qi)µiµk + pk(qi − qj)µiµj ]
2

µiµjµk
.

(2.13)

3 Integrability properties of h6 systems

We have just shown that, given any dynamical HamiltonianH defined on h6, the associated
N -particle system given by H(N) = ∆(N)(H) fulfills

{
C

(m)
h6

, H(N)
}
= 0,

{
C

(m)
h6

, C
(n)
h6

}
= 0, m, n = 3, . . . , N. (3.1)

Therefore, for an arbitrary h6 system there is only one integral of the motion left in order
to ensure complete integrability. However, we should distinguish between two classes of h6

Hamiltonians:
a) If H is defined on a subalgebra of h6, H will be also in involution with the Casimir of

the subalgebra. Therefore, provided the coproducts of this new Casimir are neither trivial
under the realization (2.9) nor functionally dependent of the C

(m)
h6

integrals, we obtain
an additional set of constants of the motion. Under these conditions, these h6 systems
defined on subalgebras will be not only completely integrable, but superintegrable. In
particular, it can be proven that this procedure gives a new algebraic construction of the
superintegrability of the isotropic N -dimensional harmonic oscillator [9].
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b) On the contrary, if H is not defined on a subalgebra of h6, the formalism will provide
only the (N −2) integrals C

(m)
h6

(we could say that in this case H(N) is a “quasi-integrable”
Hamiltonian). An interesting example is provided by the dynamical Hamiltonian given by

H =
1
2

B++F(A−)+G(B−), (3.2)

where F and G are arbitrary smooth functions. This choice for H defines a new (and very
large) family of natural Hamiltonian systems of the type

H(N) =
1
2

(
N∑

i=1

1
µi

p2
i

)
+F

(
N∑

i=1

µiqi

)
+G

(
N∑

i=1

µiq
2
i

)
, (3.3)

that will always Poisson-commute with the functions C
(m)
h6
. Obviously, this construction

does not exclude that, for a certain choice of the functions F and G, more independent
integrals could exist. A more extensive description of this kind of Hamiltonians will be
presented elsewhere [9].
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