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Abstract—This paper analyzes the uncertainty of classification 

posterior probability of support vector machine (SVM) using 

urban hyperspectral images. The hyperspectral images in 

Zhangye are selected as the study zone, and the sample 

parameter data were acquired based on the high resolution 

images and the ground survey information, the images were 

classified with parameter-optimized SVM to obtain the posterior 

probability graph for each class, and the posterior probability 

graphs were truncated using the threshold values of 0.2, 0.4, 0.6, 

0.8 and 0.9 for analysis of the accuracy change of ground object 

classification at different probabilities. The results show that with 

the increase of truncation probability, the user accuracy in the 

classification results increases continuously, while the producer 

accuracy shows a declining tendency, and the overall 

classification accuracy also shows a declining tendency. The 

analysis of the posterior probability distribution of various types 

of ground objects shows that it is difficult to distinguish the 

posterior probability of some mixed ground objects. The 

untrained water body targets can be easily distinguished by the 

truncation probability, but the posterior probabilities of 

untrained red materials and white materials are mixed together. 

This shows that there exist some conditions in which the 

posterior probability of optimized SVM can not directly and 

effectively indicate the distinction of ground objects. The 

posterior probability should be used optionally, and at the same 

time, it is necessary to construct a more robust calculation 

method for the posterior probability. 

IndexTerms—SVM, hyperspectral, posterior probability, 

classification, uncertainty. 

I. INTRODUCTION 

Supervised classification algorithm requiresthat training 

sample data can represent the statistical characteristics of the 

data to be classified [3], [4]. In practical applications, as some 

non-interest category is deliberately excluded in the training 

phase or some unknown categoryis ignored unconsciously, the 

training samples can not fully represent all ground objects [2]. 

In such case, the classification results and accuracy can not 

fully represent the classification results and accuracy of the 

whole image [1]. Classification posterior probability can 

indicate the uncertainty of classification results [8]. The 

analysis of classification posterior probability is able to guide 

the acquisition of the information on the unclassified ground 

objects to improve the accuracy of classification results. It has 

practical significance in remote sensing image classification 

applications [5]. 

In recent years, support vector machine (SVM), as a 

supervised classification algorithm, shows very good 

performancesin remote sensing data classification andis 

especially widely used in hyperspectral data classification [6]. 

The statistic analysis based on two-two classification results 

can produce the posterior probability of classification by 

SVMs[7]. Presently, the research interests are mainly focusing 

on high-precision classification of ground objects by SVM 

when there are sufficient samples,while fewer efforts are made 

in analysis of the posterior probability of classification by 

SVMs.In this paper, we analyze the posterior probability 

uncertainty of classification by SVM based on urban 

hyperspectral images to guide the application of classification 

algorithms using SVMs on condition that there are incomplete 

samples. 

 

II. DATA AND EXPERIMENTAL DESIGN 

A. Data 

The airbornehyperspectral data on the areas 

surroundingHexi University, Zhangye City, Gansu province, 

are selected as thestudy zone. It has a size of 1000*1000 pixels, 

a band number of 48, a spectrum range of 380-1055nm anda 

spatial resolution of 1m (as shown in Fig. 1), in which R, G and 

B are displayed with 19 bands, 13 bands and 6 bands 

respectively. 

Eight classes were selected based on the high resolution 

images and ground survey information respectively, i.e., 

artificial grasses, red materials and water bodies, and a certain 

number of samples are selected for each class as the test 

samples. 10% of the five classes of gray materials, white 

materials, blue roofs, bare lands andvegetationswere randomly 

selected as the samples for supervising the training phase in 

classification, and artificial grasses, red materials and water 

bodies are combined into unclass for testing the stability of 

probability graph. Therefore, the training samples for the test 

include 5 classes, and the test samples include 6 classes, 

covering the category of unclass. The spatialdistribution of the 

test and training samplesare identified in Fig. 1. 

B. Test design 

Classify the study area by SVM using the training 

samples and optimize the parameters using the grid search 

method. The minimum and maximum values of the Kernel 

parameter are 0.1 and 1000 respectively, the search multiple 

was 10, the minimum and maximum values of the 
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Regularization parameter are 0.1 and 1000 respectively, the search index multiple is 10, the final search results are that the 
 
 

Table 1 Number of training and testsamples in different classes 

Class Gray materials White materials Blue roofs Bare lands Vegetations Unclass 

Train 384 235 129 152 293 0 

Test 3835 2345 1291 1519 2926 4499 

 

 
Fig.1 Real color image of the study zone 

 

value of the Kernel parameter is 10, and the value of 

Regularization parameter is 100, and the Cross Validation 

method is used to assess the training results. 

To illustrate the guidance role of probability graph in 

classification results, select the six threshold values of 0, 0.2, 

0.4, 0.6, 0.8 and 0.9 to carry out threshold value truncation for 

the probability graph. Calculate the confusion matrix of the 

graph for each class after different threshold values are 

truncated using the same test samples, and then calculate the 

producer and user accuracy of the graph for each class and the 

overall accuracy of the classification results. 

 

III. RESULT ANALYSIS 

The classification results with threshold values of0, 0.4, 0.8 

and 0.9 are showed in Fig. 2-5.The comparison of the graphs of 

the classification results for each threshold value show 

thatthere are more and more unclassified black zones that are 

distributed increasingly wide ranges. When the threshold value 

is 0,it is the graph of the classification result of the five classes; 

when the threshold value is 0.2,it is impossible to distinguish 

the unclass; when the threshold value is 0.4, the water bodies 

are clear distinguished; when the threshold values is 0.6 and 

0.8, the results are basically the same (the water bodies and a 

small amount of red materialsareclearly distinguished and the 

shadow of part of the roofs and the boundary area of 

vegetations and bare lands are distinguished); when the 

threshold value is 0.9, the water bodies, the roads in red 

materials,a small part of bright red roofs and part of artificial 

grassesare distinguished. But the red roofs and artificial grass 

are still can not be distinguished. 

 

 
Fig. 2 The classification result with threshold value of 0 (black indicates 

unclassified zones) 

 

 
Fig. 3 The classification result with threshold value of 0.4 (black indicates 

unclassified zones) 
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Table 2 Statistic results of accuracy 

Threshold 0 0.4 0.6 0.8 0.9 

Class User Prod User Prod User Prod User Prod User Prod 

Gray materials 95.74 97.84 95.89 97.84 97.16 97.29 97.16 97.3 99.19 89.67 

White materials 58.08 97.19 57.98 96.43 58.2 95.78 58.2 95.8 61.75 90.19 

Blue roofs 100 99.54 100 99.54 100 99.46 100 99.5 100 99.38 

Bare lands 75.01 98.42 75.09 98.42 76.31 97.76 76.31 97.8 78.66 88.08 

Vegetations 55.21 99.9 64.34 99.9 65.71 99.86 65.71 99.9 71.91 99.49 

Unclassified 0 0 98.83 16.87 88.35 20.4 88.35 20.4 68 37.65 

 

 
Fig. 4 The classification result with threshold value of0.8 (black indicates 

unclassified zones) 

 

 
Fig. 5 The classification result with threshold value of0.9 (black indicates 

unclassified zones) 

 

The statistics for the accuracy of the classification results 

when different threshold values are truncated is shown Table 2. 

From theproducer perspective, with the increase of the 

truncated threshold values, the accuracy of almost all interest 

classes decreases, but the uncertain zonesobtained 

areincreasingly larger, the number of unclassified zones is 

increasing, and the calculationaccuracy of unclassified zones is 

also increasingly higher. From the user perspective, with the 

increase of the truncated threshold values, the accuracy of 

almost all interest classesis improved. Among them, the 

accuracy of blue roofs and gray materialsalways maintains 

highest, followed by the accuracy of bare lands and vegetations, 

and the accuracy of white materials is lowest. 

As shown by the classification results and the analysis of 

the spectral data of the image samples, somebare soil among 

crops are mixed with a small amount of weeds, making it 

difficult to distinguish spectrally the boundary area of bare 

lands and vegetations, some bare soil among buildings are 

mixed with impurities and stone, causing the confusion 

between it and other materials, and it is difficult to 

distinguishthe posterior probability of the confusing ground 

objects. The untrained water body targets can be easily 

distinguished by the truncation probability. However, although 

there are noticeable spectral difference between white materials 

and red materials, their posterior probabilities are not easily 

distinguished. This shows that, the posterior probability of 

optimizedSVMcan not effectively indicatethe distinguishability 

between red materials and white materials, so it is necessary to 

further study the causes for the abnormalities of the posteriori 

probability of combine with probability of classification by 

SVMsin combination with the spectral analysis of ground 

objects and the posterior probabilitygenerating mechanism so 

as to construct the more robust calculation method for posterior 

probability. 

IV.CONCLUSION 

This paper analyzes the uncertaintyof classification 

posterior probability of support vector machine (SVM)using 

urban hyperspectral images. The results show that the posterior 

probability can be used to detect the untrained classesin the 

classification results of SVM and with the increase of the 

threshold values, more classes are detected, but there are some 

circumstances in which the posterior probability of optimized 

SVM cannot directly and effectively indicate the 

distinguishability of ground objects. Therefore, the posterior 

probability should be used optionally, and at the same time, it 
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is necessary to construct a more robust calculation method for 

the posterior probability. 
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