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Abstract

The reaction-diffusion system realizing a particular gauge fixing condition of the
Jackiw–Teitelboim gravity is represented as a coupled pair of Burgers equations with
positive and negative viscosity. For acoustic metric in the Madelung fluid representa-
tion the space-time points where dispersion change the sign correspond to the event
horizon, while shock soliton solutions to the black holes, creating under collision the
resonance states.

1 Introduction

A connection between black holes physics and hydrodynamics established by Unruh [1]
has been applied recently to simulate the Hawking radiation and other quantum effects
related to event horizon and ergoregions in supersonic fluid flows and in a superfluid [2].
Recently an implication appeared that the black-hole-like phenomena might take place in
the nonlinear Schrödinger type equation, where black holes of a constant curvature space-
time have been related to the soliton-like solutions for dissipative version of the NLS in
the form of the Reaction-Diffusion system (RD) [3]. These solutions called dissipatons,
characterize completely the black hole horizon, the Hawking temperature and the causal
structure [4]. Here we present a simple two fluid interpretation of black holes in terms of
Madelung fluid and describe a collision of black holes showing a novel character creating
resonance states with a specific lifetime.

2 Envelope solitons and quantum potential

We begin with a problem of the NLS soliton subject to the influence of the so called
“quantum potential” and described by the equation

i∂tψ+∂2
xψ+

Λ
4
|ψ|2ψ = s

∂2
x|ψ|
|ψ| ψ, (1)
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where the r.h.s. represents contribution from the quantum potential. The potential was
introduced by L de Broglie and has been explored by D Bohm to make a hidden-variable
theory in quantum mechanics. In a more recent context it was considered in the stochas-
tic mechanics as producing non-classical diffusion connected with several problems. The
linear Schrödinger equation with quantum potential was considered by Auberson and
Sabatier [5]. Below we consider the self-consistent potential U = −Λ

4 |ψ|2. Properties of
Eq. (1) drastically depend on the value s. Decomposing the wave function ψ = eR−iS

we have a system describing the so called Madelung fluid: the continuity equation for
density ρ = |ψ|2 = e2R and the Hamilton–Jacobi equation for the velocity potential
V (x, t) = −2∂xS, which after taking gradient is hydrodynamic equation

∂tρ+∂x(ρV ) = 0,
∂V

∂t
+V

∂V

∂x
+
∂

∂x
2[U+(s−1)UQ] = 0. (2)

The second equation along with nonlinear potential U , includes an extra contribution
corresponding to the presence of quantum potential UQ. Then, a particular particle ac-
celeration given by the total derivative of V would obey the Newton’s equation of motion
explaining why UQ is called quantum potential.

3 Madelung fluid and Reaction-Diffusion system

First we consider the case s < 1. Rescaling the time and the phase t = (1 − s)− 1
2 t̃,

S(x, t) = (1 − s) 1
2 S̃(x, t̃), in terms of new complex function ψ̃ = eR−iS̃ we get the usual

NLS equation with renormalized coupling constant Λ/(1 − s). But situation changes
drastically if s > 1 and the system can not be simplified in terms of one complex function.
Thus rescaling the time and the phase t = (s − 1)−

1
2 t̃, S(x, t) = (s − 1)

1
2 S̃(x, t̃), we

introduce two new real functions (in what follows we skip the tilde sign), e(+) = exp(R+S),
e(−) = − exp(R− S), and obtain the Reaction-Diffusion (RD) system

±∂te
(±) = ∂2

xe
(±)+

Λ
4
e(+)e(−)e(±). (3)

It is worth to note that unusual negative value for diffusion coefficient in the second
equation is crucial for existence of the Hamiltonian structure and integrability of the
model. For Λ < 0 it admits dissipaton solution

e(±) = ±
(

8
−Λ

) 1
2

ke±[(
1
4
v2+k2)t− 1

2
vx] cosh−1[k(x−vt−x0)], (4)

with exponentially growing and decaying components, but with perfect solitonic shape for
O(1, 1) scalar product e(+)e(−).

4 Gravitational interpretation

Defining two dimensional metric tensor in terms of the Einstein–Cartan orthonormal set
of basis vector fields gµν = eaµe

b
νηab = 1

2

(
e
(+)
µ e

(−)
ν + e(+)

ν e
(−)
µ

)
, where e(±)

µ = e0µ ± e1µ =(
e
(±)
0 , e

(±)
1

)
, ηab = diag (−1, 1), one can formulates the (1+1)-dimensiomal gravity model
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as the so called BF gauge field theory with SO(2, 1) Poincaré gauge group [3, 4]. Fixing
gauge freedom by conditions e(±)

0 = ±∂xe
(±), e(±)

1 ≡ e(±) such that

g00 = −∂e
(+)

∂x

∂e(−)

∂x
, g11 = e(+)e(−), g01 =

1
2

(
∂e(+)

∂x
e(−) − e(+)∂e

(−)

∂x

)
, (5)

we find that e(±) satisfy (3) when the metric describes two dimensional pseudo-Riemannian
space-time with a constant curvature Λ: R = gµνRµν = Λ (the Jackiw–Teitelboim gravity).
It allow us to establish a correspondence between geometrical and physical characteris-
tics of the model so that g00 component is the dispersive part of energy density, while
g11 and g01 the mass and momentum densities correspondingly. Calculating the mass,
momentum and the energy

E = 2
∫ ∞

−∞

[
∂xe

(+)∂xe
(−) − Λ

8
(e(+)e(−))2

]
dx (6)

for the one-dissipaton (4), (Λ < 0),

M =
16
−Λ |k|, P =Mv, E =

Mv2

2
+

Λ2

384
M3. (7)

we have non-relativistic quasi-particle of non-negative mass M and momentum P , with
the positive rest energy E0 = E(v = 0) = Λ2

384M
3.

5 Resonance dispersion and event horizon

Creation and annihilation processes for these quasi-particles lead to the resonance states.
The decay of a dissipaton in the rest on the pair of dissipatons is allowed only if the rest
energy is positive. Since the rest energy satisfies inequality

E0 =
Λ2

384
M3 =

Λ2

384
(M1 +M2)

3 >
Λ2

384
(
M3

1 +M3
2

)
= E0(1)+E0(2),

such that ∆E0 = E0 − (E0(1) + E0(2)) > 0, it allows two dissipatons creation. Actually
the resonance states existence relates to the form of dispersive part of energy density (6)
which is nonpositive definite and has geometrical meaning of the metric tensor component
ε0 = −2g00. Then at the space-time points (xH , tH), where dispersion and g00 changes the
sign we have the event horizon.

6 Hydrodynamical representation

For vanishing curvature Λ = 0, the RD system (3) reduces to the pair of diffusion and
anti-diffusion equations. By the Cole–Hopf transformation it can be represented as the
decoupled pair of Burgers equations. This suggests to introduce for Λ �= 0 the pair of
velocity fields u+ = −2

(
e
(+)
x /e(+)

)
, u− = +2

(
e
(−)
x /e(−)

)
, such that instead of RD (3)

we have the coupled system of Burgers equations with positive and negative viscosity and
potential function U = −Λ

4 ρ

u±t +u
±u±x = ±u±xx−2Ux,

Ux

U
= −1

2
(u+−u−). (8)
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Figure 1. a) 3D plot of dissipatons resonance collision; b) Contour plot of exchange-type collision.

These relative velocities u± = V ∓VQ characterize two motions, the center of mass motion
with V ≡ −2∂xS and internal oscillations in the envelope with velocity VQ ≡ ∂xρ

ρ . The
last one is the “quantum velocity” describing stochastic diffusion generated by quantum
potential. In this hydrodynamical representation the metric tensor (5) acquires form

g00 =
1
4
ρ

(
V 2

Q − V 2
)
= −1

4
ρu+u−, g11 = −ρ, g01 =

1
2
ρV =

1
4
ρ(u++u−),

which is similar to the Arnowitt–Deser–Misner split of a (1 + 1)-dimensional Lorentzian
space-time corresponding to the so-called acoustic metric [2], derived by Unruh for the
sound waves in a fluid [1]. So the event horizon defined by g00 = 0 appears at points with
vanishing velocity u+ = 0 or u− = 0 (or V = ±VQ). To one-dissipaton (4) corresponds
the pair of shock solitons of (8)

u± = v±2k tanh k(x−vt) (9)

and the event horizon, appearing only for |v| ≤ 2|k|, is defined by tanh k(x−vt) = ±v/2k.
If function 2V/(V 2

Q − V 2) is integrable we sinchronize the space-time by introducing
new time dτ = dt− 2V/(V 2

Q − V 2)dξ and obtain Schwarzschild type black hole metric

ds2 = ρ

[
1
4

(
V 2

Q − V 2
)
(dτ)2 − V 2

Q

V 2
Q − V 2

(dξ)2
]
. (10)

7 Soliton resonances

The bilinear representation for RD system (3) is

(±Dt −D2
x

)
(G±◦F ) = 0, D2

x(F ◦F ) = −2G+G−, (11)

where e(±) = (−8/Λ) 1
2G±/F , and the product e(+)e(−) = − 8

−Λ∂
2
x(logF ).



234 O K Pashaev and J-H Lee

The one-dissipaton is given by G± = ±eη±
1 , F = 1+ eη

+
1 +η−

1 +φ1,1 , eφ1,1 =
(
k+

1 + k−1
)−2,

and in terms k ≡ (
k+

1 + k−1
)
/2, v ≡ − (

k+
1 − k−1

)
it acquires the form (4). For two-

dissipaton solution we have

F = 1+
2∑

i,j=1

eη
+
i +η−

j(
k+−

ij

)2 +

(
k̆++

12 k̆
−−
12

k+−
12 k

+−
21 k

+−
11 k

+−
22

)2

eη
+
1 +η−

1 +η+
2 +η−

2 ,

where kab
ij ≡ ka

i + k
b
j , k̆

ab
ij ≡ ka

i − kb
j , η

±
i ≡ k±i x±

(
k±i

)2
t+ η±(0).

In general case it describes collision of two different dissipatons with amplitudes k+−
12 /2

and k+−
21 /2 and velocities v12 = −k̆+−

12 and v21 = −k̆+−
21 correspondingly. Depending of ka

i

and positions shift the interaction might be the resonance-type (Fig. 1a.) and exchange-
type (Fig. 1b.).
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