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Abstract

Extending the gauge-invariance principle for τ functions of the standard bilinear for-
malism to the supersymmetric case, we defineN = 1 supersymmetric Hirota operators.
Using them, we bilinearize SUSY KdV equation. The solution for multiple collisions
of super-solitons is given.

1 Introduction

Supersymmetric integrable systems constitute a very interesting subject specially due to
their potential applications in matrix models for 2D supergravity. As a consequence a num-
ber of well known integrable equations have been generalized into supersymmetric (SUSY)
context. We mention the SUSY versions of sine-Gordon [1], nonlinear Schrödinger, KP-
hierarchy [2], KdV [2, 3], Boussinesq [4] etc. There are also several algebraic approaches
using the representation theory of affine Lie super-algebras in the papers of Kac and van der
Leur [5], Kac and Medina [6] the super-conformal field theoretic approach of LeClair [7].
Anyway in these articles the bilinear hierarchies are not related to the SUSY hierarchies
of nonlinear equations.

In this paper we consider a direct approach to SUSY KdV equation of Mathieu [3]
namely extending the gauge-invariance principle of τ functions for classical Hirota oper-
ators. Our result generalize the Grammaticos-Ramani-Hietarinta [9] theorem, to SUSY
case and we find N = 1 SUSY Hirota bilinear operators. With these operators one can
obtain SUSY-bilinear forms for SUSY KdV-type equations [10].

2 Standard bilinear formalism

The Hirota bilinear operators were introduced as an antisymmetric extension of the usual
derivative, because of their usefulness for the computation of multisoliton solution of
nonlinear evolution equations. The bilinear operator Dx = ∂x1 − ∂x2 , acts on a pair
of functions (the so-called “dot product”) antisymmetrically:

Dxf •g = (∂x1−∂x2)f(x1)f(x2)|x1=x2=x = f ′g−fg′. (1)

And if we apply to KdV equation

ut +6uux +uxxx = 0, (2)
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we obtain after the substitution u = 2∂2
x logF

(
DxDt + D4

x

)
F •F = 0. (3)

The power of the bilinear formalism lies in the fact that for multisoliton solution F ’s are
polynomials of exponentials.

A very important observation (which motivated the present paper) is the relation of
the physical field u = 2∂2

x logF of KdV equation with the Hirota function F : the gauge-
transformation F → epx+ωtF leaves u invariant. This is a general property of all bilinear
equations. Moreover, one can define the Hirota operators using the requirement of gauge-
invariance. Let’s introduce a general bilinear expression,

AN (f, g) =
N∑

i=0

ci

(
∂N−i

x f
) (

∂i
xg

)
(4)

and ask to be invariant under the gauge-trasformation:

AN

(
eθf, eθg

)
= e2θAN (f, g), θ = kx+ωt+· · · (linears), (5)

where “linears” means that we have only linear terms in x and t. Anyway they can be
absorbed in the definition of k and ω so we can write only θ = kx+ωt. Then we have the
following [9]

Theorem. AN (f, g) is gauge-invariant if and only if AN (f, g) = DN
x f • g i.e.

ci = c0(−1)i
(

N
i

)

and c0 is a constant and the brakets represent binomial coefficient.

3 Supersymmetry

The supersymmetric extension of a nonlinear evolution equation (KdV for instance) refers
to a system of coupled equations for a bosonic u(t, x) and a fermionic field ξ(t, x) which
reduces to the initial equation in the limit where the fermionic field is zero (bosonic limit).
In the classical context, a fermionic field is described by an anticommuting function with
values in an infinitely generated Grassmann algebra. However, supersymmetry is not just a
coupling of a bosonic field to a fermionic field. It implies a transformation (supersymmetry
invariance) relating these two fields which leaves the system invariant. In order to have a
mathematical formulation of these concepts we have to extend the classical space (x, t) to
a larger space (superspace) [3] (t, x, θ) where θ is a Grassmann variable and also to extend
the pair of fiels (u, ξ) to a larger fermionic or bosonic superfield Φ(t, x, θ). The derivative
on the superspace will be defined in the form [3] D = ∂θ + θ∂x. In order to have nontrivial
extension for KdV we choose Φ to be fermionic, having the expansion

Φ(t, x, θ) = ξ(t, x)+θu(t, x). (6)

Using the superspace formalism one can construct different supersymmetric extension of
nonlinear equations. Thus the integrable (in the sense of Lax pair) variant of N = 1 SUSY
KdV is [2, 3]

Φt +D6Φ+3D2(ΦDΦ) = 0, (7)
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which on the components has the form (notice that D2 = ∂x)

ut = uxxx − 6uux + 3ξξxx,

ξt = −ξxxx − 3ξxu − 3ξux.
(8)

If we choose Φ(x, t) to be a bosonic field i.e. to have the expansion

Φ(t, x, θ) = u(t, x)+θξ(t, x). (9)

then we have the following supersymmetric extension of the KdV equation [3]:

Φt +D6Φ+6ΦD2Φ = 0, (10)

or equivalently

ut = −uxxx − 6uux,

ξt = −ξxxx − 6(ξu)x.
(11)

This system is trivial in the sense that is linear in the fermionic field and, as a result, one
of the two equation is simply the KdV equation itself.

4 Super-Hirota operators

We are going to consider the following general N = 1 SUSY bilinear expression

SN (f, g) =
N∑

i=0

ci

(
DN−if

) (
Dig

)
, (12)

where D is the covariant derivative and f , g are Grassmann valued functions (odd or
even). We were able to prove the following

Theorem. The general N = 1 SUSY bilinear expression (12) is super-gauge invariant
i.e. for Θ = kx + ωt + θζ̂ (ζ is a Grassmann parameter)

SN

(
eΘf, eΘg

)
= e2ΘSN (f, g),

if and only if

ci = c0(−1)i|f |+
i(i+1)

2

[
N
i

]
,

where the super-binomial coefficients are defined by:

[
N
i

]
=




(
[N/2]
[i/2]

)
if (N, i) �= (0, 1) mod 2;

0 otherwise,

|f | is the Grassmann parity of the function f defined by:

|f | =
{

1 if f is odd (fermionic);
0 if f is even (bosonic)

and [k] is the integer part of the real number k ([k] ≤ k < [k] + 1).

We mention that the super-bilinear operator proposed by McArthur and Yung [8] is a
particular case of the above super-Hirota operator. We shall note the bilinear operator as

SN (f, g) := SN
x f • g.
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5 Bilinear SUSY KdV equation

In order to use the super-bilinear operators defined above we shall consider the following
nonlinear substitution for the supersymmetric KdV superfield:

Φ(t, x, θ) = 2D3 log τ(t, x, θ), (13)

where τ(t, x, θ) is a bosonic superfield. With this substitution, (7) is transformed into the
following super-bilinear form:

(
SxDt + S7

x

)
τ • τ = 0. (14)

The 1 super-soliton solution has the following structure

τ (1) = 1+ekx−k3t+θζ̂+η(0)
. (15)

In order to find 2 super-soliton solution we are going to consider the form

τ (2) = 1+eη1 +eη2 +eη1+η2+A12 (16)

and we have to find the factor expA12, where ηi = kix − k3
i t + θζ̂i + η

(0)
i . The equation

for expA12 is the following:[(
ζ̂1 − ζ̂2

)
+ θ(k1 − k2)

]
(k1−k2) = expA12

[(
ζ̂1 + ζ̂2

)
+ θ(k1 + k2)

]
(k1+k2).

(17)
We assume that expA12 depends only on ki, ζ̂i, with i = 1, 2 and in the bosonic limit
(ζ̂i = 0) to have the standard form, (k1−k2)2/(k1+k2)2. Accordingly, in order to solve (17)
we consider the ansatz:

expA12 =
(

k1 − k2

k1 + k2

)2

+â(k1, k2)ζ̂1+b̂(k1, k2)ζ̂2+γ(k1, k2)ζ̂1ζ̂2, (18)

where â, b̂ are odd Grassmann functions depending on k1 and k2 and γ is an even Grass-
mann function. Introducing (18) in (17) we shall find that

â(k1, k2)ζ̂1+ b̂(k1, k2)ζ̂2+γ(k1, k2)ζ̂1ζ̂2 = 0

and

k1ζ̂2 = k2ζ̂1.

So, the interaction effect remains the same as in the bosonic case. One can easily verify
that the N super-soliton solution is given by

τ (N) =
∑

µ=0,1

exp


 N∑

i=1

µiηi +
∑
i<j

Aijµiµj


, (19)

where

ηi = kix−k3
i t+θζ̂i+η

(0)
i , expAij =

(
ki − kj

ki + kj

)2

, kiζ̂j = kj ζ̂i.

One can see that for ζ̂i = 0, τ (N) becomes a real function being exactly the N -soliton
solution of the ordinary KdV equation.
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