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Abstract

We introduce a nonlinear and noncanonical gauge transformation which allows the re-
duction of a complex nonlinearity, contained in a Schrödinger equation, into a real one.
This Schrödinger equation describes a canonical system, whose kinetics is governed by
a generalized Exclusion-Inclusion Principle. The transformation can be easily general-
ized and used in order to reduce complex nonlinearities into real ones for a wide class
of nonlinear Schrödinger equations. We show also that, for one dimensional system
and in the case of solitary waves, the above transformation coincides with the one
already adopted to study the Doebner–Goldin equation.

Let us consider the kinetics of N particles in a one-dimensional discrete space, which is
an one-dimensional Markovian chain. The generic site is labeled by the index i (i = 0,±1,
±2, . . .); the position at the ith site is xi = i∆x, where ∆x is a constant.

We call ρi(t) the occupational probability of the ith site. Let us assume that only
transitions to the nearest neighbors are allowed and define the transition probability π±

i (t)
from the site i to the site i ± 1 in the following way:

π±
i (t) =

α±
i (t)
∆x2

ρi(t)[1+κρi±1(t)]. (1)

The factor 1 + κρi±1(t) means that the transition probability depends on the particle
population ρi±1(t) of the arrival site. If κ > 0 the π±

i (t) introduces an inclusion effect. In
fact, the population at the arrival site i ± 1 stimulates the transition and π±

i (t) increases
linearly with ρi±1(t). In the case κ < 0 the π±

i (t) takes into account an exclusion effect.
If the arrival site is empty ρi(t) = 0, the π±

i (t) depends only on the population of the
starting point. If the arrival site is populated 0 < ρi(t) ≤ ρmax the transition is inhibited.

The Pauli master equation can be written as follows:

dρi(t)
dt

= π+
i−1(t)+π−

i+1(t)−π+
i (t)−π−

i (t). (2)
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If we define:

ji(t) =
[
π+

i (t)− π−
i+1(t)

]
∆x, (3)

which represents a discrete current, the master equation can be written as:

dρi(t)
dt

+
∆ji(t)
∆x

= 0, (4)

where

∆ji(t) = ji+1(t)− ji(t). (5)

Equation (4) represents a forward continuity equation in a discrete one-dimensional space.
Analogously we can obtain a backward continuity equation. The half of the sum of these
equations, in the limit ∆x → 0 gives the following continuity equation:

∂ρ(t, x)
∂t

+
∂j(t)
∂x

= 0, (6)

where j(t, x) assumes the form:

j(t, x) = u(t, x)[1+κρ(t, x)]ρ(t, x). (7)

We note that the current velocity u(t, x) depends on the nature of the particle interaction
while the factor 1+κρ(t, x) takes into account the generalized Exclusion-Inclusion Principle
(EIP) [1].

In Ref. [2, 3, 4] was recently considered by us the nonlinear canonical model defined
by the Lagrangian density:

L = i
�

2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− �

2

2m

∣∣∣∇ψ
∣∣∣2−U

EIP
[ψ, ψ∗]−V ψ∗ψ, (8)

with

U
EIP

[ψ, ψ∗] = −κ
�

2

8m
(ψ∗∇ψ − ψ∇ψ∗)2 , (9)

in order to study, in a many-body 3-dimensional system, the effect of collective interactions
due to the generalized EIP.

The evolution equation for the field ψ can be obtained from a variational principle
δA/δψ∗ = 0, where the action is given by A =

∫ Ld3xdt, obtaining the following nonlinear
Schrödinger equation:

i�
∂ψ

∂t
= − �

2

2m
∆ψ+W (ρ, jψ)ψ+iW(ρ, jψ)ψ+V ψ, (10)

where real and imaginary parts of the nonlinearity, introduced by the EIP, are given
respectively by:

W (ρ, jψ) = κ
m

ρ

(
jψ

1 + κρ

)2

, (11)

W(ρ, jψ) = −κ
�

2ρ
∇ ·

(
jψρ

1 + κρ

)
. (12)
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From (10) we can see that the probability density ρ = |ψ|2 is conserved because satisfies
the following continuity equation:

∂ρ

∂t
+∇ · jψ = 0, (13)

where the quantum current jψ is:

jψ = (1+κρ)j0, (14)

being

j0 =
−i�

2m
(ψ∗∇ψ − ψ∇ψ∗) , (15)

the standard quantum current to which jψ reduces when the EIP is switched off.
From Eq. (14) we see that the action of EIP on the system is given by the factor 1+κρ,

which means enhancement (κ > 0) or inhibition (κ < 0) in the expression of the current.
Introducing the hydrodynamical variable:

ψ(x, t) = ρ1/2(x, t) exp
[
− i

�
S(x, t)

]
, (16)

the expression of the current jψ takes the form:

jψ =
∇S

m
ρ(1+κρ). (17)

We note that jψ is nonlinear in ρ as a consequence of the presence of the complex nonlin-
earity W + iW in the evolution equation of the field ψ.

In the present work we introduce a unitary gauge transformation U† = U−1 for the
field ψ:

ψ(x, t) → φ(x, t) = U(ρ, S)ψ(x, t), (18)

and the expression of jψ can be linearized by means of the phase transformation:

∇S → ∇σ = (1+κρ)∇S, (19)

which can be performed only if ∇×(ρ∇S) = 0. It is easy to see that U is:

U(ρ, S) = exp
(

i
κ

�

∫
γ
ρ∇S · dl

)
. (20)

Let us note that the definition of U uses a path integral over the path γi from the initial
fixed point P0 to a point P , joined by the curve Ci: γi ≡ (P0

Ci−→ P ).
We consider two different paths γ1 and γ2, both joining the starting point P0 to the

final point P . If we indicate with γ1 the path opposed to γ1 it is easy to see that:∫
γ2

ρ∇S ·dl =
∫

γ1

ρ∇S ·dl +
∮

γ1∪γ2

ρ∇S ·dl =
∫

γ1

ρ∇S ·dl + const. (21)

The relation (21) means that U , introduced in (20), transforms S in σ and defines the new
phase, modulo an arbitrary additive constant.

S → σ =
∫

γ
ρ∇S ·dl + const. (22)
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The transformation (20) is well defined if the phase appears in the evolution equation only
in derivative form. The current jφ, associated to the new field ψ, takes the standard form
of the linear quantum mechanics:

jφ =
∇σ

m
ρ, (23)

while the continuity equation (14) is written as:

∂ρ

∂t
+∇ · jφ = 0. (24)

The evolution equation for the field φ is again nonlinear:

i�
∂φ

∂t
= − �

2

2m
∆φ+κm

j2
φ

ρ(1 + κρ)
φ−κ

�
2

4m

[
∆ρ − (∇ρ)2

ρ

]
φ+V φ, (25)

but now the nonlinearity is a real quantity.
Note that the fields φ and ψ describe the same physical system because |φ|2 = |ψ|2 = ρ

and the transformation U , introduced in (20), has the property to make real the nonlin-
earity that appears in the evolution equation of the system. The price that we pay is
that the new system, described by φ, is noncanonical because of the nonlinearity of the
transformation.

We analyze the gauge transformation in the case of a solitary wave ρ(x, t) ≡ ρ(ξ) with
ξ = x − ut.

The continuity equation (14) becomes:

u · ∂ρ

∂ξ
=

1
m

∂

∂ξ
·
[
∂S

∂ξ
ρ(1 + κρ)

]
, (26)

and after integration and neglecting the integration constant, we obtain:

∂S

∂ξ
=

mu

1 + κρ
. (27)

Taking into account Eq. (27), we can obtain the following expression for the transforma-
tion U :

U(ρ, S) = exp
{

i

�
[mu · ξ − S(ξ)]

}
. (28)

The transformation U , given by (28) for the solitary wave, is a particular case of the
transformation introduced by Doebner and Goldin in Ref. [5]

ψ(x, t) → φ(x, t) = ρ1/2(x, t) exp
[
i

(
γ(t)
2

log ρ(x, t) +
λ(t)
�

S(x, t) + θ(x, t)
)]

. (29)

Finally, let us generalize the method above introduced (to transform into a real quantity
the nonlinearity introduced by EIP) to other physical systems.

The quantum current of a nonlinear system, canonical or not, can be written in the
form:

jψ =
∇S

m
ρ−F (ρ, S), (30)

where F (ρ, S) is an arbitrary vectorial function.
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The nonlinearity that appears in the evolution equation of the field ψ has an imaginary
part given by:

W(ρ, S) =
1

2�ρ
∇ ·F (ρ, S), (31)

and the number of particle N =
∫

ρd3x is conserved. It is not difficult to see that the
unitary transformation U : ψ → Uφ, defined as:

U(ρ, S) = exp


−i

m

�

∫
γ

F (ρ, S)
ρ

dl


 , (32)

with ∇×(F /ρ) = 0, gives an evolution equation for the new field φ containing a real nonli-
nearity. The transformation (32) can be used to transform different nonlinear Schrödinger
equations [5, 6, 7] to find their solutions.
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