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Abstract

We investigate influence of mobility of neighbouring chains on dynamics of soliton-like
excitations in a chain of the simplest polymer crystal (polyethylene in the “united
atoms” approximation) using molecular dynamics simulation. We present results for
point-like structural defects: static and moving at low, medium and high velocities;
and examine how the structure of a crystal will affect them.

1 Introduction

The present work is concerned with the behaviour of a system presumed to be close to
an integrable one, namely Sine-Gordon system. Sine-Gordon equation is well known to
be the simplest continual one-dimensional model of a dislocation in a crystal (the well
known Frenkel-Kontorova model). It can be equally used to describe nonlinear dynamics
of a directed macromolecular chain subjected to a periodic potential [1, 2]. Because it
is a periodic potential which is generated by immobile neighbouring chains in a polymer
crystal, it was supposed that one can identify topological solitons of Sine-Gordon type
with point defects in a polymer chain (vacancies and inclusions) which are caused by local
deformations of the chain without breaking of intrachain bonds.

The notion of soliton-type mobility of vacancies in polymer crystal opposed to diffusion-
type one in crystal of low-molecular substances first arose in attempting to explain anoma-
lously rapid dielectric relaxation of oxidized polyethylene. They speculated that it is topo-
logical solitons propagating along the chains and changing the state of the chains after
their passing which provide such a rapid relaxation. There appeared many physical works
employing the idea of soliton-type mobility of point defects in polymer crystals (see reviews
(3, 4, 5]).

But one can easily see a very weak point in the theory: mobility of neighbouring chains
in a real crystal which has hence much more degrees of freedom than one chain subjected
to a potential. Mobility of neighbouring chains must influence dynamics of defects in the
chain.
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To find out the character of the influence, Noid et. al. [6] have carried out a molecular-
dynamics simulation of motion of a defect in a chain of the simplest polymer crystal
(polyethylene in the united atoms approximation). They have claimed its nonsoliton
nature: defects stopped after passing of several tens of periods of the chain. So it looked
like the end of soliton ideas in polymer physics; and facts of anomalously rapid relaxation
in polymers became the more puzzling one.

To approach the real physical situation one have to find out which alterations in an
integrable system can change so drastically dynamics of soliton-like excitations and which
can not. Two types of changes have been already investigated: discreteness of the chain
by Peyrard and Kruskal [7] and variation of the form of the potential out of sine function
by Peyrard and Remoisset [8]. The situation in PE crystal at not extremely high soliton
velocities is unrelated to these types of changes. Two other possibilities have been left
absolutely unstudied (except above-mentioned work [6]): mobility of neighbouring chains
and structure of a crystal. They are objects of the present work.

2 Numerical model of a polymer crystal

We have taken the following model for a polymer crystal [9] (polyethylene with collective
atoms; see Fig. 1): the chains consist of plane trans-zigzags; the bonds between the atoms
(point particles of mass m) are absolutely rigid of length lp; the deformation energies of
the valence (6,,) and conformational (¢,) angles are given by

1
U3(9n) = §K9(9n - 90)27

Us(¢pn) = a+ B cos(¢p) +7 cos(3¢n),

and, atoms separated by more than two neighbours or belonging to different chains interact
through the potential
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where Up;(r) = 4€ ((o/r)'? — (¢/7)°) is the Lennard-Jones potential with a minimum at
ro = 2/65. The numerical values of the constants employed here are listed in Table 1.

Table 1. Parameters of the model crystal

parameter value ref. | parameter value ref.
m 14 a.m.u. - Ié] 1.675 kJ/mole | 10
lo 1.53 A 10 v 6.695 k.J/mole | 10
0o 113° 10 € 0.4937 kJ/mole | 11
Ky 331.37 kJ/mole | 10 o 3.8 A 11
o 8.370 kJ/mole | 10 R 2r —

We have taken periodic boundary conditions for the crystal in all three directions. The
cells of the computational grid were chosen to have the shape of a rectangular paral-
lelepiped. The corresponding classical first order Lagrange equations were solved numeri-
cally using a Berle leap-frog algorithm [12] taking note of the limitations imposed by the
rigid bonds [13].
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Periodic boundary conditions make it possible to follow the soliton dynamics in the
direction along the axis of the molecules for an unlimited time and to avoid introducing
unphysical boundary conditions such as a rigidly attached second coordination sphere
in the plane of the transverse cross section. In order to keep a soliton from interacting
with itself, the number of molecules in the grid cell was chosen so that the image of each
molecule lies no closer than its fourth coordination sphere, while the length of the molecule
for a soliton extending on the order of 35 chain periods (¢) was assumed to be 200c¢ (two
CH; groups fall within a single period).
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Figure 1. A chain of the sim- Figure 2. Packing of plane zigzags into a crystal: possi-
plest polymer crystal (polyethy- ble equilibrium configurations (1) stable and (2) unstable
lene in “united atoms” approx- (shown here is the plane of the transverse cross section of
imation): chain parameters and the molecules; the arrows denote the direction from the
local atomic coordinates. nearest atom of the molecule under the plane to the near-

est above the plane).

3 Equilibrium crystal configuration of a polyethylene
crystal in the united atom model

Since the projected length of a molecule on its perpendicular cross sectional plane is I| =
0.843 A, the van der Waals radius 79 = 4.265 A ~ 51, the packing of the molecules in the
crystal will be close to cylindrical. Two different (mechanically) equilibrium configurations
are conceivable (Fig. 2). Both have a monoclinic cell and similar energies. The second,
however, is unstable and stratifies into two domains, both of which correspond to the
first configuration. The parameters a and b of the stable structure depend on the cutoff
radius R. When R = 2r¢, equilibrium parameteres of crystal a = 3.980 A, b = 7.966 A.
The period along the molecular axis is equal to ¢ = 2.554 A. The density of the sample is
p=1.155 g/cm3.

Molecular-dynamics modelling of a polyethylene crystal in the united atom approxima-
tion has shown that there is no local minimum in the potential energy for an orthorhombic
structure for any such cell parameters. The numerical simulation yields a minimum of this
sort only for a model of polyethylene in which the C'Hy group is modelled by three spa-
tially separated force centers. Thus, an orthorhombic structure in polyethylene can exist
only because of the presence of lateral groups, and not of the shape of the chain skeleton.
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4 Theoretically expected character of the vacancy dynamics
in a polymer crystal chain

We shall show that the simplest description of the dynamics of a vacancy in a chain
of a polymer crystal in the approximation of immobile neighbours can be reduced to a
sine-Gordon equation for the transverse displacement u of the atoms in the chain (see
Fig. 1).

In fact, the effective substrate potential is obtained by calculating the crystal energy
with all the molecules fixed but one, which moves along the axis. In the stable equilibrium
configuration of the crystal it can be approximated to within two percent by two harmonics:

Viu) = A [1 _ cos <2§u>} . (1)

with A = 0.274 kJ/mole. The condition of rigid bonds determines the relationship among
the longitudinal and transverse displacement, u and v, of the atoms (see Fig. 1). Going to
the continuum approximation in the system lagrangian (justified by the relative weakness
of the intermolecular interaction) and neglecting the dispersion and nonlinearity owing
to the intramolecular interactions (a more accurate continuum description can be found
elsewhere [14], we obtain a sine-Gordon equation for the longitudinal displacement u(z,t):

21\ 2 2w
mug — Ku,, +A <—> sin <—u> =0.
c c

Here K = K (2tan(6y/2))? is the rigidity parameter of the chain, so that the sound speed
vs = /K /m, while A characterizes the height of the barrier between two neighbouring
positions of the atoms in the substrate potential (1).

The sine-Gordon equation has well known soliton solutions corresponding to vacancies:

u(z,t) =  Jarctan exp (Z — vt) , (2)
2 L

where v is the soliton velocity (v < vs), L = Loy/1 — (v/vs)?, and Lo = (¢/2m)\/K/A

is the half width of a static defect, which is larger the more rigid the chain is relative to

the substrate. For our values of the constants (Table 1), we have vs ~ 14.76 km/s and

Lo ~ 35 (c/2).

Therefore, a vacancy (without breaking of covalent bonds, Fig. 3a) can move along
the chain with a subsonic velocity, maintaining its localization and without disrupting
the crystal structure outside the region of the defect. This means that at velocities not
too close to that of sound, the vacancy dynamics should be those of a soliton. (When
v — vy it is no longer possible to neglect either the discreteness or the intramolecular
nonlinearity; solitons are narrow.) This conclusion, however, is based on a quasi-one
dimensional approximation for the immobile neighbouring chains. Now our goal is to
study the vacancy dynamics in a crystal where all the chains are mobile.

5 Results of a molecular-dynamic simulation
of the behaviour of vacancies in a polymer crystal
This system is characterized by the following time scales: the transit time for sound over

one chain period ~ 1.7 - 1072 ps, the soliton width ~ 0.58 ps, and the period of the
oscillations of the atoms in a chain in the potential of neighbouring chains ~ 1.82 ps.
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Figure 3. A vacancy in a polymer crystal chain: Figure 4. Sensity of static vacancies to
(a) the shape (grotesque) of the defect (the dotted roughness of neighbouring chains: the
box represents the defect region) (b) the logitudi- crystal has been heated to the temper-
nal displacement of atoms from their equilibrium ature 0.01K; initial velocity of the de-
positions (in A) in molecules with a defect (upper fect is zero. Locations of the vacancy
curve) and in molecules of the first coordination are plotted in equal time intervals (a)
sphere (lower curve). neighbouring chains in the crystal be-

ing immobile (b) neighbouring chains in
the crystal are mobile.

In the molecular-dynamic simulation, for one of the molecules in a crystal that had
relaxed and cooled to a temperature of 0.01 K we specified atomic displacement and
velocities in accordance with the approximate analytic formula 2 and followed the evolution
of the defect for a long time(on the order of hundreds of picoseconds). Almost instantly the
soliton acquired a shape exactly consistent with the crystalline environment. In a sample
with mobile neighbours, the presence of a vacancy in one chain causes nonuniformities to
appear in all the chains within the first coordination sphere, i.e., “shadow” (see Fig. 3b)
which accompany the defect even when it moves. In the numerical simulation we tracked
the velocity vy, of the center of mass of a chain with a defect, which rescales to the
vacancy velocity vyqe = —(N/2)vem, (where N is the number of atoms in the chain).

5.1 Difference between immobile and mobile neighbours

Let us first heat slightly (to 0.01 K) the equilibrium crystal and fix all the molecules except
one (atoms having new positions deviated from the ideal ones in the crystal). Then we
see that vacancies are very sensitive even to such a small “roughness” of the substrate
potential: an initially static vacancy drifts very easily (of course to the location of lower
energy) — see Fig. 4a. But if the neibouring chains remain mobile after heating such
an extreme sensitivity disappears — Fig. 4b. We have to note, however, that at nonzero
velocities dynamics of defects does not depend on either the immobile environment is ideal
or it is not (for the small deviations, and large velocities).

5.2 Type of vacancy mobility

We now describe the results [15] of simulating the evolution of vacancies with initial
velocities of 0.9, 0.45, and 0.1 times that of sound (13.2, 6.6, and 1.5 km/s) in a stably
equilibrium crystal (Fig. 2, frame 1). If the neighbouring molecules are fixed, defects with
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Figure 5. Vacancy dynamics in an equilibrium crystal: curves 1 and 2 illustrate the conservation
of low and medium (0.1 and 0.45 times the sound speed) velocities of defects in a chain surrounded
by mobile neighbours; curve 3, the slowing down of fast (0.9 times the sound speed) defect with a
transition to stationary soliton motion at a lower velocity (= 0.6 times the sound speed).

all three of these velocities move smoothly along the chain with their velocities essentially
unchanged for at least 100ps. Over this time, they can cover 5186, 2593, and 576 chain
periods, respectively. When all the molecules are mobile, the dynamics of the two slowest
defects is the same (Fig. 5). Only for the fastest defect does the velocity fall off slowly,
decreasing to =~ 0.6 times the sound speed (9 km/s) over 400 ps. Therefore, the mobility
of the surrounding chains does not affect the behaviour of vacancies moving at low and
medium velocities, but slows down the faster defects to medium velocities without changing
their soliton-type dynamics.

This slowing down is not caused by the radiation of energy by the defect into chain
along which it moves owing to effects of the discreteness which show up at higher defect
velocities [7]: for v = 0.9v, the half width L of the solitons is still quite large L ~ 15(¢/2)
(Eq. (2)). Evidently, the reason for the slowing down of fast defects in a crystal is their
more intense interaction with the mobile molecules of neighbouring chains. This effects
has not been observed before and requires separate theoretical and numerical study.

5.3 Influence of crystalline structure on type of vacancy mobility

Note that the configuration of the crystalline environment has no effect on the character
of the dynamics of a defect in a chain if the neighbouring chains are immobile, but changes
it fundamentally when the neighbouring chains are mobile. Specifically, in nonequilibrium
or unstable structures (e.g., a nonequilibrium orthorhombic structure in the united atom
model of polyethylene [6] or an unstable monoclinic structure of Fig. 2, frame 2) which
require rotation of chains for relaxation, a vacancy will be slowed down rapidly.

For example, in the latter case a vacancy with an initial speed of 4.6 km/s is stopped
over a time on the order of 10 ps, having covered about 100 chain periods. The onset of
this kind of slowing down was apparently observed in Ref. [6] and served as the basis for
the unjustified claim that the twisting defect dynamics did not exhibit soliton behaviour.

In a molecule at the boundary between two domains in a relaxed stratifying sample
(Fig. 2, frame 2), point defects are also slowed down and change the structure of the
boundary between the domains.
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Summary

In an equilubrium polymer crystal, vacancies caused by localized tensile deformation
of the chain have a soliton-type mobility. Soliton-like excitations conserve their
low and medium velocities. Initially fast defects slow down with a transition to a
stationary motion at a lower velocity, energy going into the neighbouring chains.

In an nonequilibrium polymer crystal, mobility of vacancies is non-solitonic.

Mobility of neighbouring chains has a stabilizing effect on static soliton-like exci-
tations: their extreme sensitivity to small deviations of atoms in neibouring chains
from their ideal positions disappears.

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant 98-03-
33366a). Omne of the authors (EZ) is very grateful to the Organizing Committee of the
Conference and Russian Foundation for Basic Research for their financial support of her

participating in the Conference.

References
[1] Ginsburg V V, Manevitch L T and Ryvkina N G, Mekhanika Kompozitnykh Materialov, 1991,
N 2, 249 (in Russian).
[2] Ginsburg V V and Manevitch L I, Fiz. Tverd. Tela, 1990, V.32, 2414 (Sov. Phys. Solid State,
1990, V.32, 1401).
[3] Boyd R H, Polymer, 1985, V.26, 323.
[4] Boyd R H, Polymer, 1985, V.26, 1123.
[6] Kimming M, Strobl G and Stuhn B, Macromolecules, 1994, V.27, 2481.
[6] Noid D W, Sumpter B G and Wunderlich B, Macromolecules, 1991, V.24, 4148.
[7] Peyrard M and Kruskal M D, Physica D, 1984, V.14, 88.
[8] Peyrard M and Remoissenet M, Phys. Rev. B, 1982, V.26, 2886.
[9] Balabaev N K, Gendelman O V, Mazo M A and Manevitch L I, Zh. Fiz. Khim., 1995, V.69,
24 (in Russian).
[10] Noid D W, Sumpter B G and Wunderlich B, Macromolecules, 1990, V.23, 664.
[11] Rigby D and Roe R J, Macromolecules, 1989, V.22, 2259.
[12] Allen M P and Tildesley P J, Computer Simulation of Liquids, Clarendon Press, Oxford,
1987.
[13] Khalatur P G, Balabaev N K and Pavlov A S, Molec. Phys., 1986, V.59, 753.
[14] Manevitch L T and Savin A V, Phys. Rev. E, 1997, V.55, 4713.
[15] Zubova E A, Balabaev N K and Manevitch L I, Zh. Exp. Teor. Fiz., 1999, V.115, 1063

(J. Exper. and Theor. Phys., 1999, V.88, 586).



