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Abstract

The real version of a (2 + 1) dimensional integrable generalization of the nonlinear
Schrödinger equation is studied from the point of view of Painlevé analysis. In this
way we find the Lax pair, Darboux transformations and Hirota’s functions as well as
solitonic and dromionic solutions from an iterative procedure.

1 Introduction

Non linear Schrödinger type equations in (2 + 1) dimensions were proposed by Calogero
in [1] and then discussed by Zakharov [15].

The equation under study in this paper is:

ut − uxy − 2myu = 0,
ωt + ωxy + 2myω = 0,
mx + uω = 0.

(1.1)

In physics this sort of equations arises in studying spin systems in (2 + 1) dimensions
[8, 10, 9, 11].

2 Singular manifold method

2.1 Leading term analysis

In order to perform the Painlevé property [12] for equation (1.1) we need to expand the
fields u, ω and m in a generalized Laurent expansion of the fields in terms of an arbitrary
singularity manifold χ(x, y, t) = 0. Such expansion should be of the form [14]:

u =
∞∑

j=0

uj(x, y, t)χj−α, ω =
∞∑

j=0

ωj(x, y, t)χj−β , m =
∞∑

j=0

mj(x, y, t)χj−γ . (2.1)

By substituting (2.1) in (1.1), we have for the leading terms:

α = β = γ = 1, m0 = χx, u0ω0 = χ2
x (2.2)
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from where we see that leading analysis is not able to determine u0 and ω0 independently
and only gives us its product. This suggests us to write the dominant terms u0 and ω0 in
a more general way as:

u0 = A(x, y, t)χx, ω0 =
1

A(x, y, t)
χx. (2.3)

2.2 Truncated expansions. Auto-Bäcklund transformations

Following the singular manifold method developed by Weiss [13], we truncate expansions
(2.1) at the constant level. This implies that the singular manifold is not yet an arbitrary
function because it is determined by the truncation condition. Due to this fact, we denote
it as φ. We can therefore write the solutions (2.1) to equation (1.1) in the following way:

m′ = m+
φx

φ
, u′ = u+

A(x, y, t)φx

φ
, ω′ = ω+

φx

Aφ
. (2.4)

The set of equations (2.4) are the auto-Bäcklund transformations between two solutions
of (1.1).

2.3 Expression of the solutions in terms of the Singular manifold

Substituting equations (2.4) in (1.1) we obtain a polynomial in φ. If we require all the
coefficients of this polinomial to be zero we obtain the following expressions after some
algebraic manipulations (we used MAPLEV to handle the calculation):

u = −A

2

(
v +

(
Ax

A
+ h

))
, ω = − 1

2A

(
v −

(
Ax

A
+ h

))
,

mx =
1
4

((
Ax

A
+ h

)2

− v2

)
, my =

1
2

(
At

A
− Ax

A

Ay

A
− vy

)
,

(2.5)

where v, w and q are defined as:

v =
φxx

φx
, w =

φt

φx
, q =

φy

φx
(2.6)

and h = h(y, t) is a function which arises after performing an integration in x.

2.4 Singular manifold equations

• From the compatibility of the definitions (2.6) we obtain the generic equations:

φxxt = φtxx =⇒ vt = (wx + vw)x,

φxxy = φyxx =⇒ vy = (qx + vq)x,

φyt = φty =⇒ qt = wy + wqx − qwx.

(2.7)

• On the other hand, if substitute (2.4) in (1.1) we obtain the equations:

0 = ht + hhy, 0 = w + hq − Ay

A
,

0 =
(

AxAy

A2
− At

A

)
x

+

(
vx − v2

2
+

1
2

(
Ax

A
+ h

)2
)

y

.

(2.8)

The set (2.7)–(2.8) constitutes the singular manifold equations.
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3 Lax pair

3.1 Singular manifold equations as nonlinear PDE’s

The singular manifold equations (2.7)–(2.8) can be considered as a system of nonlinear
coupled PDE’s in v, w, q and A. Using the procedure of the previous section we can
perform the leading term analysis over the SME in order to obtain:

v =
ψ+

x

ψ+
+

ψ−
x

ψ− ,
Ax

A
=

ψ+
x

ψ+
− ψ−

x

ψ− − h,

Ay

A
=

ψ+
y

ψ+
− ψ−

y

ψ− − hyx,
At

A
=

ψ+
t

ψ+
− ψ−

t

ψ− − htx,

(3.1)

where we use two singular manifolds ψ+ and ψ− because the Painlevé expansion has two
branches [2, 4].

3.2 Eigenfunctions and the singular manifold

Integrating (3.1) we obtain the expresions of φ and A in terms of the eigenfunctions:

φx = ψ+ψ−, φt+hφy = ψ−ψ+
y −ψ+ψ−

y −hyxψ+ψ−, A =
ψ+

ψ− e−hx. (3.2)

3.3 Lax pair

Using expresions (3.1) in (2.5) and in the singular manifold equations (2.7)–(2.8) we can
obtain, after some calculation, the Lax pair for equation (1.1):

0 = ψ+
x + uψ−ehx,

0 = ψ−
x + ωψ+e−hx,

0 = ψ+
t − myψ

+ + hψ+
y + uyψ

−ehx +
1
2
hyψ

+,

0 = ψ−
t + myψ

− + hψ−
y − ωyψ

+e−hx +
1
2
hyψ

−.

(3.3)

From the compatibility condition between these equations we obtain again that the
spectral parameter h must satisfy:

ht +hhy = 0 (3.4)

and hence the spectral problem for equation (1.1) is non-isospectral.

4 Darboux transformations

Substituting (3.2) in (2.4) we obtain iterated solutions u′, ω′ and m′:

u′ = u+
ψ+2

1 e−h1x

φ1
, ω′ = ω+

ψ−2

1 eh1x

φ1
, m′ = m+

φ1x

φ1
(4.1)
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which will satisfy the Lax pair (3.3) with eigenfunctions ψ
′+ and ψ

′− and spectral param-
eter h2 and we can construct a singular manifold φ′ through ψ

′+ and ψ
′− as:

φ′
x = ψ

′+ψ
′−. (4.2)

We can consider the Lax pair (3.3) as a system of coupled non linear PDE’s ([3, 6]) in
ψ

′+, ψ
′−, m′, u′ and ω′ so that the singular manifold method can be applied to the Lax

pair itself and truncated expansions for ψ
′+ and ψ

′− should be added to the expansions
(4.1). Such expansions could be written as:

ψ
′+ = ψ+

2 −ψ+
1 Ω

+

φ1
, ψ

′− = ψ−
2 −ψ−

1 Ω
−

φ1
, (4.3)

where it’s easy to check that Ω+ and Ω− are given by:

Ω+ =
ψ+

1 ψ−
2 e−(h1−h2)x − ψ+

2 ψ−
1

h2 − h1
, Ω− =

ψ+
1 ψ−

2 − ψ+
2 ψ−

1 e(h1−h2)x

h2 − h1
(4.4)

and ψ+
1 , ψ−

1 satisfy the Lax pair (3.3) with spectral parameter h1 and ψ+
2 and ψ−

2 satisfy
the same Lax pair with spectral parameter h2.

The set of equations (4.1) and (4.3) where Ω+ and Ω− are given by (4.4), constitute a
transformation of potentials and eigenfunctions that leaves invariant the Lax pairs. Hence,
(4.1) and (4.3) should be considered as a Darboux transformation [7].

5 Hirota’s function

Considering (4.2) as a non linear equation in φ′, ψ
′+ and ψ

′− it’s trivial to proof that we
can define a truncated expansion:

φ′ = φ2 − Ω+Ω−

φ1
, (5.1)

where φ2 satisfies:

φ2x = ψ+
2 ψ−

2 . (5.2)

Since (5.1) defines a singular manifold for m′, we can use it to build an iterated solution:

m′′ = m+
τx

τ
, (5.3)

where

τ = φ′φ1 = φ1φ2−Ω+Ω− (5.4)

is the Hirota’s τ -function [5].
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6 Solutions

6.1 Line solitons m = −abx, u = a, ω = b

If we restrict ourselves to the case when h1 and h2 are constants, solutions of the Lax
pair (3.3) are:

ψ+
i = exp

[
αix + βiy +

(
ab

αi
− αi

)
βit

]
,

ψ−
i = −αi

a
exp

[
ab

αi
x + βiy +

(
ab

αi
− αi

)
βit

]
,

(6.1)

where i = 1, 2 and αi and βi are constants.
Using (3.2), (6.1) and (4.1) we obtain for the first iteration the one-soliton solution:

m′
x = −ab+∂xx[lnφ1] (6.2)

and for the second we have the two-soliton solution:

m′′
x = −ab+∂xx[ln τ ], (6.3)

where

φi = −αi

a

ci

αi + ab
αi

(1 + Fi) , (6.4)

τ = φ1φ2−Ω+Ω− =
α1α2

a2

1(
α1 + ab

α1

) (
α2 + ab

α2

) [1 + F1 + F2 − A12F1F2] , (6.5)

Fi = exp
[(

αi +
ab

αi

)
x + 2βiy − 2

(
αi − ab

αi

)
βit + ϕi

]
, (6.6)

A12 =
ab(α1 − α2)2

(α1α2 + ab)2
(6.7)

and we have redefined ci = e−ϕi .

6.2 Dromions m = 0, u = 0, ω = b

For this seminal solutions and assuming that h1 and h2 are constants, non trivial solutions
of the Lax pair are:

ψ+
i = Ki(y, t), ψ−

i =
b

hi
e−hixKi(y, t), (6.8)

where Ki are x-independent functions that satisfy:

Kit +hiKiy = 0. (6.9)

Following the same procedure as for the solitons, we have for the first and second
iteration respectively:

m′
y = ∂xy ln[φ1], (6.10)
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m′′
y = ∂xy ln[τ ], (6.11)

where

φi = − b

h2
i

(
Ri(y, t) + K2

i (y, t)e−hix
)

, (6.12)

τ = φ1φ2−Ω+Ω− =
b2

h2
1h

2
2

{
R1R2 + R2K

2
1e−h1x + R1K

2
2e−h2x

}
(6.13)

and Ri must satisfy:

Rit +hiRiy = 0. (6.14)

Some particular elections for Ri and Ki that yield different dromionic configurations
are for instance:

a) Ri = 1 + eci(y−hit), K2
i = 1 + aie

ci(y−hit), (6.15)

b) R1 = 1 + ec1(y−h1t) + ec2(y−h1t),

K2
1 = 1 + a1e

c1(y−h1t) + a2e
c2(y−h1t), R2 = K2 = 0.

(6.16)
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[4] Estévez P G, Gordoa P R, Martinez-Alonso L and Medina-Reus E, J. Phys. A, 1993, V.26,
1915–1925.

[5] Hirota R, Phys. Rev. Lett., 1971, V.27, 1192–1194.

[6] Konopelchenko B G and Strampp W, J. Math. Physics, 1991, V.24, 40–49.

[7] Matveev V B and Salle M A, Darboux Transformations and Solitons, Springer Series in
Nonlinear Dynamics, Springer-Verlag, 1991.

[8] Myrzakulov R, On Some Integrable and Nonintegrable Soliton Equations of Magnets I-IV,
HEPI, Alma-Ata, 1987.

[9] Myrzakulov R and Danlybaeva A K, The L-Equivalent Counterpart of the M-III Equation,
Preprint CNLP, Alma-Ata, 1994.

[10] Myrzakulov R and Lakshmanan M, HEPI Preprint, Alma-Ata, 1996.

[11] Myrzakulov R and Syzdykova R N, On the L-Equivalence between the Ishimori Equation and
the Davey–Stewartson Equation, Preprint CNLP, Alma-Ata, 1994.
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