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Abstract

We analyse timing jitter of ultrashort soliton systems taking into account the major
higher order effects, namely, intrapulse Raman scattering and third order dispersion
and using adiabatic perturbation theory. We obtain an expression for the soliton
arrival time variance that depends on the quintic power of propagation distance. This
timing jitter could be partly overcome by use of bandwidth-limited amplification as
it happens in systems using longer solitons. In this case the quintic dependence with
distance is reduced to a linear one.

1 Introduction

In soliton communication systems, the transmission capacity could be improved using
picosecond-subpicosecond solitons. In such regime the major higher order effects are in-
trapulse Raman scattering (IRS) and third order dispersion (TOD). The former effect
causes a soliton self-frequency shift (SSFS) and increases the timing jitter.

Taking the effects above into account, the equation that describes the propagation of
pulses in nonlinear and dispersive optical fibers with amplification is the following

iqZ +
1
2
qTT +|q|2q = iρ0q+TRq|q|2T +iρ3qTTT , (1)

where q = A
√

γτ2
0 /|β2|, Z = |β2|z/τ2

0 and T = τ/τ0 are normalized quantities for the
complex amplitude A of the pulse envelope, the propagation distance z and the time τ
of a referential that moves with group velocity, respectively. β2 is the group-velocity
dispersion coefficient, γ is a nonlinear parameter and τ0 is the pulse width. ρ0 = G − Γ
is the excess gain where Γ = ατ2

0 /2|β2| and G = gτ2
0 /|β2| are normalized parameters for

the absorption coefficient, α, and the gain coefficient, g, respectively. TR = τR/τ0 and
ρ3 = β3/6|β2|τ0 are as well normalized parameters for Raman gain curve parameter, τR,
and third order dispersion coefficient, β3, respectively.

When the right hand member of equation (1) is zero the equation becomes the non-
linear Schrödinger equation (NLSE). It is sufficient to describe several picosecond pulse
propagation in lossless fibers, as it was shown by Hasegawa and Tappert [1]. That equation
supports soliton solutions and it can be solved using the inverse scattering method.

For non-zero but small right hand member, the solutions can be drawn using NLSE-
solitons and a perturbation method. The singular NLSE-soliton is given by

q(T, Z) = η(Z)sech [η(Z)(T−T0(Z)] exp[−iκ(Z)T +iς(Z)] (2)
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and it is a good zero-order approximated solution [2]. For adiabatic perturbations, only
soliton parameters, namely: amplitude, η, frequency, κ, position, T0 and phase, ς, are
affected and no radiation or solitons tails are created.

In this work we apply perturbation theory to analyse both timing jitter of ultrashort
solitons and its control by use of bandwidth-limited amplification.

2 Timing jitter of ultrashort solitons

Coherent amplification is always accompanied by generation of spontaneous-emission noi-
se. Because of nonlinearity, this noise have not only an additive behaviour but induces a
change of amplitude δη, timing δT0, frequency δκ and phase δς. These perturbations are
uncorrelated with zero averages and variances given by [3, 4]

〈δη2〉 =
G − 1
N0

η, 〈δκ2〉 =
G − 1
3N0

η,

〈δT 2
0 〉 =

π2

12η

G − 1
N0

and 〈δϕ2〉 =
1
3η

(
π2

12
+ 1

)
G − 1
N0

,

(3)

where N0 = Es/2�ω (ω is the central frequency of the pulse) is the number of photons per
bit of information and the gain is G = exp(αza), where za is the amplifier distance.

For longer solitons (several picoseconds), only the random change of frequency (and
thus of group velocity) modifies the arrival timing of the soliton. This phenomenon is
known as the Gordon–Haus effect [3]. Taking into account all the perturbations induced
by each amplifier stage, we obtain an ultimate expression for the timing variance that
grows with the cubic power of Z

〈δT 2
0 (Z)〉 =

(G − 1)η
9N0

Z3

Za
, (4)

where Za is the normalized amplifier distance.
Considering that the gain compensate exactly the loss, i.e., Γ = G in equation 1, and

applying adiabatic perturbation theory to the resultant equation, we get the following
parameter evolution equations

dη

dZ
= 0, (5)

dκ

dZ
= − 8

15
TRη4, (6)

dT0

dZ
= −κ+ρ3

(
η2 + 3κ2

)
. (7)

From (6) we have the evolution of κ given by

κ(Z) = − 8
15

TRη4
0Z +κ0 (8)

and from (7)

T0(Z) =
4
15

TRη4
0Z

2 − κ0Z + ρ3η
2
0Z

+
64
225

ρ3T
2
Rη8

0Z
3 − 8

5
ρ3TRη4

0κ0Z
2 + 3ρ3κ

2
0Z + T0i.

(9)
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Figure 1. Growth of timing jitter with real distance. Different kind of contributions: (ooo)
amplitude fluctuations; (+++) frequency fluctuations; (xxx) position fluctuations and (—) total
timing jitter. For both graphics amplifier spacing is 80 km, N0 = 8.38 × 10−6/τss−1, α = 0.046
km−1, β2 = −0.5 ps2km−1, β3 = 0.05 ps3km−1 and τR = 6 fs. The full width at half maximum is
(a) τs = 20 ps, (b) τs = 1 ps.

The change in timing after one amplifier stage localized at Zn = nZa is obtained by
differentiation of equation (9) and is given by [5]

δT0(Zn) =
(

16
15

TRη3
0Z

2
n + 2ρ3η0Zn +

512
225

ρ3T
2
Rη7

0Z
3
n − 32

5
ρ3TRη3

0κ0Z
2
n

)
δη(Zn)

+
(
−8

5
ρ3TRη4

0Z
2
n + 6ρ3κ0Zn − Zn

)
δκ(Zn) + δT0i(Zn).

(10)

The variance of arrival timing after N = Z/Za amplifiers stages are obtained by sum-
mation of the uncorrelated δT0, and we obtain

〈δT 2
0 (Z)〉 =

(
256
1125

T 2
Rη6

0

Z5

Za
+

4
3
ρ2
3η

2
0

Z3

Za
+

16
15

ρ3TRη4
0

Z4

Za

)
〈δη2〉

+
(

2
5
ρ3TRη4

0

Z4

Za
+

1
3

Z3

Za

)
〈δκ2〉 +

Z

Za
〈δT 2

0i〉,
(11)

where we have replaced the summation by an integration. As we can see, by inspection of
the above expression, for large distances the timing jitter grows with Z5. This dependence
comes from amplitude fluctuations through IRS effect.

Fig. 1 shows timing jitter,
√
〈δT 2

0 〉, as function of distance for two different soliton
durations, τs = 20ps and τs = 1ps. We can see that, for the longer soliton, timing
jitter comes particularly from frequency fluctuations. However, for the shorter soliton, the
contribution of amplitude fluctuations dominates.

Fig. 2 shows timing jitter growing with the amplifier spacing for τs = 1ps. We can see
that the amplitude fluctuations contribution dominates over the others contributions.

3 Jitter control by bandwidth-limited amplification

The spectral filtering technique have been proposed to control the Gordon–Haus jitter of
longer solitons. It has been shown that this technique can reduce the cubic dependence
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Figure 2. Growth of timing jitter with amplifier spacing, where the propagation distance is 300
km. Different kind of contributions: (ooo) amplitude fluctuations; (+++) frequency fluctuations;
(xxx) position fluctuations and (—) total timing jitter. N0 = 8.38 × 10−6/τss−1, α = 0.046 km−1,
β2 = −0.5 ps2km−1, β3 = 0.05 ps3km−1, τR = 6 fs and τs = 1 ps.

with distance, characteristic of Gordon–Haus effect, to a linear dependence [6]. In ultra-
short soliton regime the proper finite optical gain bandwidth of the amplifier can act as a
filter and it can be efficient to control timing jitter and soliton self frequency shift.

The propagation equation for ultrashort solitons that includes bandwidth-limited am-
plification is given by

iqZ +
1
2
qTT +|q|2q = iρ0q+iρ2qTT +TRq|q|2T , (12)

where ρ2 = −1/2|β2|∂2g/∂ω2 is the filtering coefficient. In this case ρ0 must be different
of zero to compensate for the loss that solitons suffer at wings of their spectrum. We have
neglected TOD term as we have shown that the main contribution to the jitter comes from
IRS. Applying adiabatic perturbation theory we obtain the following parameter evolution
equations

dη

dZ
= 2ρ0η−2ρ2η

(
η2

3
+ κ2

)
, (13)

dκ

dZ
= −4

3
ρ2η

2κ− 8
15

TRη4, (14)

dT0

dZ
= −κ. (15)

The first two equations have an equilibrium point (ηe, κe) = (1,−2TR/5ρ2) [7]. The
linearized equations around this point become

dη

dZ
=

16
25

T 2
R

ρ2
+

4ρ2

3
(1−η)+

8
5
TRκ, (16)

dκ

dZ
=

8
15

TR− 16
15

TRη− 4
3
ρ2κ. (17)
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Figure 3. Growth of timing jitter with real distance in presence of bandwidth-limited amplifica-
tion. Different kind of contributions: (ooo) amplitude fluctuations; (+++) frequency fluctuations;
(xxx) position fluctuations and (—) total timing jitter. za is 80 km, N0 = 8.38 × 10−6/τss−1,
α = 0.046 km−1, β2 = −0.5, ρ2 = 0.03 ps3km−1, τR = 6 fs and τs = 1 ps.

These equations can be solved exactly and by equation (15) we have

T0(Z) =
−1

20(25ρ3
2 + 24ρ2T 2

R)
(
375ρ2κ0 + 50ρ2TR(2 + η0) − 8TRZ

(
25ρ2

2 + 24T 2
R

))

+
exp

(
−4ρ2Z

3

)
120

(
25ρ3

2 + 24ρ2T 2
R

)
(

150ρ2

(
15κ0ρ2 + 2TR(2 + η0) cos

(
8
5

√
2
3
TRZ

))

+5
√

6
(
25ρ2

2(η0 − 1) − 180κ0ρ2TR − 72T 2
R

)
sin

(
8
5

√
2
3
TRZ

))
+ T0i.

(18)

Analogously to section 2 we differentiate equation (18) to obtain the change in timing
after one amplifier stage localized at Zn = nZa

δT0(Zn) =
−60TR + exp

(
−4ρ2Zn

3

)(
60TR cos

(
8
5

√
2
3TRZn

)
+ 25

√
6ρ2 sin

(
8
5

√
2
3TRZn

))
24

(
25ρ2

2 + 24T 2
R

) δη0

+
−75ρ2 + exp

(
−4ρ2Zn

3

) (
75ρ2 cos

(
8
5

√
2
3TRZn

)
− 30

√
6TR sin

(
8
5

√
2
3TRZn

))
4

(
25ρ2

2 + 24T 2
R

) δκ0 + δT0i.

(19)

The final timing jitter is obtained by integration of the last expression over the N amplifiers
stages

〈δT 2
0 (Z)〉 =

100T 2
RZ

16Za

(
25ρ2

2 + 24T 2
R

)2 〈δη2
0〉 +

5625ρ2
2Z

16Za

(
25ρ2

2 + 24T 2
R

)2 〈δκ2
0〉

+ Z〈δT 2
0i〉 + damped oscillatory terms.

(20)

This result shows that bandwidth-limited amplification reduces the growth of the timing
jitter, which changes from a quintic power dependence on distance (in the absence of
filtering) to a linear dependence.
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Fig. 3 shows timing jitter for 1ps soliton in presence of bandwidth-limited amplification.
In this situation we see that the frequency fluctuations contribution is more important than
amplitude fluctuations.

4 Conclusions

We have shown, using perturbation methods, that in ultrashort solitons transmission
regime the total timing jitter increases with the quintic power of distance and with am-
plifier spacing. The main contribution to this timing jitter comes from intrapulse Raman
scattering. Nevertheless, as in longer solitons regime, the bandwidth-limited amplification
may reduce the growth of timing jitter which becomes linear dependent on the distance.
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