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Abstract

Explicit formulas are given for the multi-peakon-antipeakon solutions of the Camassa–
Holm equation, and a detailed analysis is made of both short-term and long-term
aspects of the interaction between a single peakon and single anti-peakon.
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introduced by Camassa and Holm [5] as a possible model for dispersive waves in shallow
water, admits solutions that are nonlinear superpositions of travelling waves (peakons)
and troughs (antipeakons), having the form

u(x, t) =
n∑

j=1

pj(t) exp(−2|x−xj(t)|), (2)

where pj(t) and −ẋj are positive for peakons and negative for antipeakons.
Equation (1) can formally be integrated by the inverse scattering method, using the

spectral problem
(
D2 − z m− 1)ψ = 0, where m = 2

(
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)
u [5]. It was shown in [1]

that the spectral problem may be transformed to the string problem

v′′(y)− z g(y)v(y) = 0, −1 < y < 1; v(±1, z) = 0, (3)

where m(x) = g(y) sech4(x), and y = tanh x. The multi-peakons arise when g(y) =
n∑

j=1
gjδ(y − yj), −1 < y1 < · · · < yn < 1. The peakons correspond to gj > 0 and the

anti-peakons to gj < 0.
In a previous note [2] we used a classical result of Stieltjes on continued fractions to

obtain explicit formulas for the pj , xj in the pure multi-peakon or anti-peakon case; the
functions are smooth functions of the scattering data for the related spectral problem.
The particles do not collide, but remain separated for all time.
Moser [8] has used Stieltjes’ theorem in an analysis of the interaction of particles in the

Toda flows. The connection of the classical formulas of Frobenius and Stieltjes with the
theta function of the associated singular curve has been discussed by McKean [7].
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In [9] the authors discussed a connection between the peakon sector of the Camassa-
Holm equation and the finite Toda lattice thus making the appearance of continued frac-
tions in the peakon sector of the Camassa–Holm equation less surprising. Further details
regarding this connection can be found in [4].
The formulas [2] are valid also when both peakons and antipeakons are present, but

in this case the particles collide and the associated amplitudes pj become infinite at the
instant of collision. Moreover, a general argument using differential inequalities shows that
the slope becomes infinite at the point of collision [6]. On the other hand, the Hamiltonian∫ ∞
−∞ u2+ 1

4u
2
x dx is conserved throughout the interaction [6]; and this shows not only that

the solution itself, but also the L2 norm of the derivative, remains uniformly bounded
throughout the interaction.
In this note we use the explicit form of the peakon-antipeakon solution to derive detailed

properties of the interaction. A treatment of the general multi-peakon/multi-antipeakon
case will be given in a later paper.
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Figure 1. Peakon and anti-peakon interaction: λ− = −1, λ+ = 3; a±(0) = .4.

For the single peakon-antipeakon case, n = 2 and g(y) = g1 δ(y − y1) + g2 δ(y − y2),
where −1 < y1 < y2 < 1, and g1 g2 < 0. We begin with the forward problem, using the
interpretation of (3) given in [2]. As in [2] we let lj = yj+1 − yj , j = 0, 1, where y0 = −1
and y3 = 1.
Let ϕ and ψ be the solutions of (3) that satisfy the boundary conditions ϕ(−1, z) = 0,

ϕ′(−1, z) = 1, ψ(1, z) = 0, and ψ′(1, z) = −1. Then ϕ(1, z) is a polynomial of degree two
whose roots λ+ > 0, λ− < 0 are the eigenvalues of (3). The scattering data consist of λ±
and the associated coupling constants c±, defined by ϕ(z, λ±) = c±ψ(z, λ±).
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As in [2],
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where w is the Weyl function ϕ′(1, z)/ϕ(1, z), and a± = c±λ∓/2(λ∓ − λ±). In addition,
w(z)/z has a continued fraction expansion with the lj and gj as coefficients, and a Laurent
expansion
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(−λ−)ka− + (−λ+)ka+, k ≥ 1.

A theorem of Stieltjes [10] shows that lj and gj can be recovered from the scattering data
by

lj =

(
∆1

n−j

)2

∆0
n−j∆

0
n−j+1

, gj =

(
∆0

n−j+1

)2

∆1
n−j+1∆

1
n−j

. (4)

Here ∆0
0 = 1 = ∆

1
0 and ∆

0
k, ∆

1
k, k ≥ 1, are the k × k minors of the Hankel matrix

H =




A0 A1 A2 A3
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whose upper left hand entries are, respectively, A0 and A1. It follows recursively from (4)
and the positivity of l2, l1, l0 that ∆0

k > 0. Moreover,
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and it follows that a− and a+ are positive.
Given the scattering data λ± and c±, or equivalently λ± and a±, we use (4) to recover lj

and gj . If a± are positive, then calculation shows that the ∆0
j are positive, 0 ≤ j ≤ 3, and

∆1
2 is negative. Thus the inverse problem has a solution provided ∆1

1 = A1 = −(λ−a− +
λ+a+) 	= 0. Moreover, g1 g2 < 0, and, from (4), g2 has the same sign as ∆1

1. The zero of
∆1

1 is simple, since ∆̇
1
1 = −2{a−(0) + a+(0)} < 0.

Under the evolution (1) the scattering data evolve according to λ̇± = 0, ȧ± = a±/2λ±.
Combining this with the previous discussion we see that for any choice of a±(0) > 0 and
±λ± > 0, the inverse problem has a (unique) solution except at the unique time t0 at
which ∆1

1 changes sign.
The solution u of (1) has the same form as the two-peakon solution in [2], so that the

asymptotic positions of the peak are
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while the asymptotic positions of the trough are

t
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t
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Asymptotically, the peak has height −1/λ− and the trough has depth −1/λ+.
We may rescale so that ∆1

1 vanishes at time t0 = 0. The previous formulas imply
that the lj are smooth, l0 and l2 are positive, and y2 − y1 = l1 = O

(
t2

)
. Therefore

x2 − x1 = O
(
t2

)
and so exp(−2|x − x2|) − exp(−2|x − x1|) = O

(
t2

)
, uniformly in x. It

follows from the formulas in [2] that P = p1 + p2 ≡ −(1/λ− + 1/λ+) (conservation of
momentum). We write

u(x, t) = p1 exp(−2|x− x1|)+p2 exp(−2|x− x2|) = P exp(−2|x− x1|)+p2O
(
t2

)
,

and deduce that as t→ 0,

sup
x

|u(x, t)−P exp(−2|x−x0|)| = O(|t|).

The behavior of the slope during the collision is given by

ux =




−2P exp(−2|x− x1|) +O(t), x < x1;
4p2 exp(−2|x− x1|) +O(1) x1 < x < x2;
−2P exp(−2|x− x2|) +O(t) x > x2.

From (15), [2], we find that

p2(t) = −1
2
d

dt
logA1 = − 1

2t
+O(1), t→ 0.

In the m-peakon/n-antipeakon case, it can be shown that triple collisions are ex-
cluded, so that the peakon/anti-peakon interactions occur in single peakon-antipeakon
pairs, whose behavior is similar to what we have shown here. Details will be given else-
where [3].
We close with the formulas for the n-peakon solution, valid independently of the signs

of the λj . From [2], [10],

xj =
1
2
log

2∆̃0
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where ∆2
j is the j × j minor of H beginning with A2 in the (1, 3) slot, and ∆̃0

j is the j × j

minor of the matrix H in which the (1, 1) term has been replaced by
n∑

j=1
aj .
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