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Abstract—Risk decomposition is very significant for 
portfolio risk allocation as well as risk monitoring. However, 
the validity of risk decomposition has long been questioned 
because it does not have a solid financial interpretation. This 
paper summarizes and modifies the financial interpretation 
of risk decomposition in terms of standard deviation, value 
at risk (VaR) and expected shortfall (ES) from references 
and performs empirical analysis of each risk measure. The 
conclusion is that all the risk decomposition in terms of 
standard deviation, VaR and ES can be interpreted by the 
corresponding loss contribution. 
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I.INTRODUCTION 

In modern risk-based investment theory, risk 
decomposition technique is widely used because this 
approach puts risk diversification at the core. Under this 
technique, portfolio risk measure can be mathematically 
decomposed as marginal risk contribution or percentage 
risk contribution of each asset. Using it, market 
researchers can tell what percentage the risk of considered 
asset contributes to the portfolio risk.  

However, this approach is widely disputed because 
mathematical decomposition does not necessarily have 
practical significance. To put it in another way, 
researchers wonder whether each decomposed component 
has a sound financial interpretation.  

Qian (2006) has arrived at the financial interpretation 
of risk decomposition by building a relationship between 
loss contribution and percentage risk contribution in terms 
of volatility and VaR. He further performed an empirical 
analysis of a balanced portfolio and concluded that risk 
contribution in terms of volatility and VaR can be 
interpreted as expected contribution to potential downside 
return of the portfolio. As for another important risk 
measure ES, Boudt, Peterson and Croux (2009) found that 
the contribution to ES can be interpreted as the expected 
contribution to portfolio return when the portfolio return 
is more than or equal to the value of VaR. 

However, Qian (2006)'s work on interpreting volatility 
decomposition is not very convincing: he pointed out 
three special cases in which the risk contribution can be 
perfectly interpreted by loss contribution, but the three 
cases cannot represent all the scenarios; the empirical 
result was also inconsistent with his theoretical conclusion 
due to small sample and imperfect assumption. As for the 
interpretation of ES, Boudt, Peterson and Croux (2009) 

did not perform empirical analysis to verify their 
viewpoints.  

In this paper, the author provides a new case to 
supplement the original three cases provided by Qian to 
make the interpretation of volatility decomposition more 
widely applied in reality.  The author further uses the 
latest data to perform numerical analysis for volatility, 
VaR and ES under this case. The structure of the paper is 
as follows. Interpretation of risk contribution for volatility, 
VaR and ES is presented in Section 2, 3, 4 separately. In 
each of these sections, numerical analysis is performed 
following the theoretical part. Finally this paper is 
concluded in Section 5. 

II.PERCENTAGE CONTRIBUTION TO PORTFOLIO 

VOLATILITY 

Volatility measures the deviation of downside return 
from the mean. For simplicity, consider only two assets in 
the portfolio with weights ω1 and ω2 respectively. The 
return of each asset is denoted by r1, r2 with mean μ1, μ2 

and volatility σ1, σ2. The correlation is denoted as ρ. 
Under the assumption of normal distribution, the portfolio 
mean μ and standard deviation σ is easily obtained by 

                               μ ൌ ωଵrଵ ൅ ωଶrଶ                              (1)               

              σ ൌ ඥωଵଶσଵଶ ൅ ωଶଶσଶଶ ൅ 2ρωଵωଶσଵσଶ                (2) 

To involve financial interpretation, we need to know 
loss contribution, which is defined as ܿ௜ ൌ ଵݎ௜|߱ଵݎ௜߱)ܧ ൅ ߱ଶݎଶ ൌ (ݎ ,ݎ ݅ ൌ 1,2⁄ , namely, the 
expected contribution from each asset divided by the 
downside portfolio return. 

A. Risk Contribution and Loss Contribution 
According to Euler Decomposition, the portfolio 

volatility can be decomposed by	ߪ ൌ ߱ଵ డఙడఠభ ൅ ߱ଶ డఙడఠమ, or 

in percentage form σ σ⁄ ൌ ωଵ ப஢பனభ σ⁄ ൅ ωଶ ப஢பனమ σ⁄ . 

Therefore, the percentage contribution of each asset to σ 
can be mathematically defined as  									pଵ ൌ ቀωଵ ப஢பனభቁ σ⁄ ൌ னభమ஢భమା஡னభனమ஢భ஢మ஢మ                 (3) 

       	pଵ ൌ ቀωଶ ப஢பனమቁ σ⁄ ൌ னమమ஢మమା஡னభனమ஢భ஢మ஢మ                 (4) 
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Qian (2006) has proved the following relationship 
between risk contribution pi and loss contribution ci, i=1,2: cଵ ൌ ωଵμଵr ൅ pଵ ቀ1 െ ωଵμଵr െ ωଶμଶr ቁ 

                      ൌ pଵ ൅ ୮మனభஜభି୮భனమஜమ୰                                (5) 

cଶ ൌ ωଶμଶr ൅ pଵ ቀ1 െ ωଵμଵr െ ωଶμଶr ቁ 

                     ൌ pଶ ൅ ୮భனమஜమି୮మனభஜభ୰                                (6) 

According to this relationship, there are three special 
cases where the risk contribution equals the loss 
contribution. Firstly, whenμଵand μଶare both zero,ωଵμଵpଶ 
equals ωଶμଶpଵ , implying 	cଵ ൌ pଵ  and cଶ ൌ pଶ . This 
condition applies to short term return of securities where 
the expected returns are almost zero. In practice, much 
risk management analyses are literally done over one-day 
or one-week scale. Another case is when	ωଵor	ωଶ equals 
zero, the percentage risk contribution pଵor pଶ	equals zero, 
so that	cଵ ൌ pଵ, cଶ ൌ pଶ. In practice, this case is barely 
seen. However, if one of the assets weights very small 
relatively to the downside portfolio return r, the risk 
contribution can still be considered almost perfectly 
interpreted by the loss contribution. Finally, if the 
equation 	pଶωଵμଵ ൌ pଵωଶμଶ  holds or 	னభஜభ୮మ ൌ னమஜమ୮భ  holds, 

the risk contribution is equal to the loss contribution. 
Actually, this condition is the first order condition of 
marginal utility for an optimal mean-variance portfolio. In 
another word, risk contribution perfectly depicts the loss 
contribution for optimized mean-variance portfolio. 

Based on the above fact, Qian (2006) concluded that 
the volatility decomposition can be financially interpreted 
by loss contribution. However, as far as the author 
considered, this conclusion is not very convincing: 
foremost, except the case when  μଵ ൌ μଶ ൌ 0, chances are 
limited for other two cases in practice, which is also 
admitted by Qian (2006); In addition, although the case μଵ ൌ μଶ ൌ 0	is common, it does not apply to mid-term 
and long-term horizon. So the author provides another 
more generalized case: pଶωଵμଵ െ pଵωଶμଶ is relatively 
small to downside portfolio return r. This is almost true 
because p୧,w୧, μ୧	are usually small than one if short sell is 
not allowed, so their product can be small. More 
importantly, risk managers pay more attention to large 
risk, such as the VaR with over 80% confidence level so 
that 	pଶωଵμଵ െ pଵωଶμଶ	 looks even smaller compared to 
the large downside return. Therefore, we conclude that for 
most practical cases, volatility decomposition can be 
interpreted by loss contribution. 

B. Numeric Analysis 
In this part, the author compares the theoretical 

predictions with actual results by a portfolio of 40% S&P 
500 stock and 60% General Electric Company stock. The 
author considers monthly return from 1964-01-01 to 

2012-01-01 because monthly return has larger sample 
space than annual one. Table 1 gives the moments and 
percentage contribution of both stocks. 

Table 2 shows the loss contributions predicted by risk 
contribution together with the realized loss contribution 
for downside return above -1% and in several bins. 
Actually, the VaR of portfolio downside return at 80% 
confidence interval is -3%, However, the author selects -1% 
instead of -3% as the upper bound because -1% is already 
big enough to pଶωଵμଵ െ pଵωଶμଶ ൌ 0.0001643 and it has  
more sample space for each bin to calculate realized loss 
contribution than -3%. Later one can tell that the sample 
space problem in Qian (2006)'s work has been greatly 
improved by this way. In table 2, only GE stocks’ 
predicted and realized loss contribution is reported 
because the percentage contribution of the two stocks 
adds up to 1. As the loss contribution can only be 
predicted by point downside return, the midpoint of each 
bin is selected as the point return. 

TABLE I. MONTHLY RETURN MOMENTS AND RISK 
CONTRIBUTION 

 S&P 500 GE Portfolio 

mean 0.4857% 0.7774% 0.6607% 

volatility 0.04411 0.07070 0.05677 
skewness -0.6628 -0.3059 -0.4173
kurtosis 2.4974 1.7045 1.9549

p_contrib 0.2692 0.7308 1.0000 

TABLE II. PREDICTED AND REALIZED LOSS CONTRIBUTION  

Return N r_c2 r_std p_c2 p_std
(-0.02, -0.01) 37 0.8616 0.6319 0.7418 0.7319
(-0.03, -0.02) 37 0.7279 0.3080 0.7374 0.3527
(-0.04, -0.03) 30 0.7784 0.2940 0.7355 0.2519
(-0.05, -0.04) 25 0.7269 0.1575 0.7345 0.1960
(-0.06, -0.05) 15 0.7582 0.2196 0.7338 0.1603

(-0.07, -0.06) 13 0.6230 0.1683 0.7334 0.1357 

As the downside return decreases, the predicted loss 
contribution of GE stock (p_c2) decreases from 74.18% to 
73.34%, approaching its percentage contribution 
(p_contrib) 73.08%. Table 2 shows the predicted loss 
contribution agrees with the realized loss contribution 
(r_c2) in general and perfectly captures the descending 
trend of the realized values. There seems a large gap 
between predicted and realized values at the last bin. The 
reason is that the sample space N is too small, though it 
has been enlarged compared to Qian (2006)'s work. 
Another reason might be the fat tail of the return of the 
stock, which is inconsistent with the normal distributed 
assumption. The predicted and realized standard 
deviations (p_std, r_std) of the percentage contribution are 

also presented in table 1 that is s௜ ൌ ቚఠభఠమఙభఙమඥଵିఘమቚఙ௥ , ݅ ൌ1,2 proved by Qian (2006). On average, they are quite 
close. In summary, for large downside return above VaR 
at 80% confidence level, the risk contribution 73.08% can 
be mostly explained by the loss contribution. 
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III.PERCENTAGE CONTRIBUTION TO PORTFOLIO VAR 

In this section, the same financial interpretation is 
extended for VaR contribution. VaR is the most popular 
risk measure in financial institution. It describes the left 
tail of the return distribution, or more formally, describes 
a quantile of the projected distribution of downside return 
over a target horizon. Generally, given a confidence level 
α, VaR஑ is defined by the following equation VaR஑ ൌ infሼVaR஑ ∈ R|P(r ൑ VaR஑) ൒ 1 െ αሽ         (7) 

where r is the downside return. If the return 
distribution is continuous, VaRα can be written as	P(ݎ ൑VaR஑) ൌ 1 െα. 

For non-normal distributed return, VaR can be 
approximated based on moments of the distribution by 
Cornish-Fisher expansion as follows 

                       VaR஑ ൌ μ ൅ z஑෦σ																																					(8)	
where	μ	is the mean and	ߪ is the standard deviation, 

and 

	z஑෦ ൎ z஑ ൅ 16 (z஑ଶ െ 1)s ൅ 124 (z஑ଷ െ 3z஑)k 

        െ	 ଵଷ଺ (2z஑ଷ െ 5z஑)sଶ                                            (9) 

where za  is denoted as α% quantile of standard 

normal distribution and s, k is denoted as skewness and 
excess kurtosis respectively. 

A. Risk contribution and loss contribution 
Since VaR is linear homogeneous function of weights, 

according to Euler Decomposition, VaR can be 
mathematically decomposed as  

                      VaR ൌ ∑ ω୧ ப୚ୟୖபன౟୒୧ୀଵ                             (10) 

Thus one can define the percentage contribution of 

asset i to portfolio VaR as	ω୧ ப୚ୟୖபன౟ VaR⁄ . Hallerbach (2002) 

realized that the marginal VaR contribution can be 
decomposed as sum of conditional expectations of 
component returns 

            VaR ൌ ∑ ω୧E(r୧|ωሬሬԦ୘rԦ ൌ VaR)୒୧ୀଵ                   (11) 

Comparing the three equations above, Hallerbach 
(2003) concluded  

           c୧ ൌ ୉൫ன౟୰౟|னሬሬሬԦ౐୰ሬԦୀ୚ୟୖ൯୚ୟୖ ൌ ቀω୧ ப୚ୟୖபன౟ ቁ VaR⁄          (12) 

meaning that the percentage VaR contribution can be 
interpreted as expected contribution of the considered 

asset to the downside portfolio return, namely, the loss 
contribution,  when the portfolio return equals to VaR. 

Although contribution to VaR has the similar financial 
interpretation as volatility both in terms of loss 
contribution, there are several subtle differences. Firstly, 
while the interpretation of VaR contribution applies to all 
cases as long as the downside return is set to be VaR, only 
in several cases can volatility contribution be perfectly 
explained by loss contribution. Secondly, when 
interpreting VaR contribution, the downside return has to 
be equal to VaR while the contribution to volatility does 
not depend on the portfolio return. So in this sense, 
contribution to VaR is more restrictive. Thirdly, from 
equation (12), VaR contribution is always equal to loss 
contribution as long as the downside return is set to be 
VaR, which means it is always perfectly explained by loss 
contribution. For volatility contribution, on the other hand, 
risk contribution cannot be perfectly interpreted by loss 
contribution in most time. 

B. Numerical analysis 
Jaschke (2002) has shown that the Cornish-Fisher 

approximation is efficient and accurate enough to obtain 
VaR. Thus the author uses this method to approximate 
portfolio VaR and VaR decomposition.  Given the same 
portfolio in section 2.B, percentage contribution from GE 
stock to different values of portfolio VaR is presented in 
Table 3. These values are selected to coincide with the 
midpoints of downside return bins in Table 2 so that we 
can compare the predicted c2 with the obtained realized c2 

of each downside return. 

TABLE III. PREDICTED AND REALIZED LOSS CONTRIBUTION  

Return CL p_c2 r_c2

-0.015 0.7050 0.8102 0.8616
-0.025 0.7655 0.7752 0.7279
-0.035 0.8145 0.7579 0.7784
-0.045 0.8535 0.7469 0.7269
-0.055 0.8845 0.7388 0.7582
-0.065 0.9087 0.7388 0.6230

CL is short for confidence level, obtained by setting 
VaR equal to each downside return and used for 
calculating predicted loss contribution. From table 3, 
predicted c2 agrees with the realized c2 on average and has 
a same descending trend. Compared to volatility 
contribution, risk contribution in terms of VaR can be 
more accurately interpreted by realized loss contribution. 
For instance, when the downside return is -0.015 or within 
-0.01 and -0.02, the VaR contribution (0.8102) is better 
explained than the volatility contribution 0.7308 by 
realized loss contribution 0.8616. This is because for each 
loss contribution, the downside return is equal to VaR so 
it bears more close relationship with VaR contribution 
while volatility contribution is independent of the 
downside return. Another possible reason is that 
according to equation (5), as long as pଶωଵμଵ െ pଵωଶμଶ ്0, cଶ ൎ pଶ, then pଶ	 is only "almost" perfectly explained 
by ܿଶ . VaR contribution, however, is always perfectly 
interpreted by loss contribution ܿଶ due to equation (12). 
On the other hand, it should be noted that while the VaR 
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decomposition is better estimated, it does not provide a 
measure for standard error, which is a disadvantage 
compared to risk contribution in terms of volatility. 

IV.PERCENTAGE CONTRIBUTION TO PORTFOLIO ES 

ES is defined as the expected downside return given 
that the return falls in the worst α part of the return 
distribution 

                       	ES஑ ൌ (r|r ൑ VaR஑)                         (13) 

In other words, ES is the expected return in the left tail 
of the return distribution. It gives information about 
frequency and size of large downside return. 

A. Risk contribution and loss contribution 
Scaillet (2002) proved that the first order derivative of 

the expected shortfall with respect to portfolio allocation 
is: 

                            
ப୉ୗபன౟ ൌ E(r୧|ωሬሬԦ୘rԦ ൌ VaR)                     (14) 

Denote ሬ߱ሬԦ்ݎԦ ൌ ݎ , Boudt, Peterson and Croux (2009) 
realized that the above equation is equivalent to  

  ቀω୧ ப୉ୗபன౟ቁ ES ൌ E(ω୧r୧|r ൏ ܸܴܽ) E(r|r ൑ VaR)⁄ൗ         (15) 

So they concluded that percentage contribution to ES 
can be interpreted as the expected contribution to portfolio 
return when the downside portfolio return is at most the 
value of VaR 

B. Numerical analysis 
The author uses the Cornish-Fisher approximation to 

approximate portfolio ES and ES decomposition. Given 
the same portfolio in Section 2.B, percentage contribution 
from GE stock to different values of portfolio ES is shown 
in Table 3. The VaR used for obtaining each ES are 
selected in the same way as in table 3.  

TABLE IV. PREDICTED AND REALIZED LOSS CONTRIBUTION ܀܉܄હ CL N r_c2 p_c2

-0.015 0.7050 184 0.7242 0.7319
-0.025 0.7655 141 0.7231 0.7290
-0.035 0.8145 112 0.7186 0.7272 
-0.045 0.8535 87 0.7133 0.7258
-0.055 0.8845 59 0.7084 0.7235
-0.065 0.9087 50 0.7125 0.7189 

N is the sample space of the range where the downside 
return is smaller than each VaR. A few observations can 
be made from table 4. Predicted loss contribution 
generally agrees with the realized c2 and has the same 
descending trend as the realized one. Similar to the VaR 
contribution, ES contribution is perfectly interpreted by 
the corresponding loss contribution while no standard 
error is given in the prediction. 

V.CONCLUSION 

Both theoretical deduction and empirical evidences 
illustrate that risk decomposition has a valid financial 
interpretation in terms of loss contribution. When the 
considered return is assumed to be normal, contribution to 
portfolio volatility is easy to obtain and often 
approximately depicts the loss contribution in practice. 
Risk contribution in terms of VaR and ES, on the other 
hand, is more precisely interpreted by the loss 
contribution and the interpretation is universally 
applicable. 
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