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Abstract

An approach to the Painlevé analysis of fourth-order ordinary differential equations is
presented. Some fourth-order ordinary differential equations which pass the Painlevé
test are found.

As is well known, at the turn of the century Painlevé and his school discovered six
ordinary differential equations (ODEs) that define new functions. This was achieved by
classifying second order ODEs of a certain form having what is today referred to as the
Painlevé property (the general solution should be free of movable critical points).
The aim of this paper is to find some fourth-order differential equations having the

Painlevé property. To do this we consider fourth order differential equations of two forms

yzzzz+b y5+c y3yz+d yy2
z+f y2yzz+g yzyzz+h yyzzz+F1 (y, z) = 0, (1)

yzzzz+b y3+c y2
z+d yyzz+F2 (y, z) = 0, (2)

where b, c, d, f , g and h are constant coefficients, F1 (y, z) and F2 (y, z) are exspressions
that take the form

F1 (y, z) =
4∑

k=0

qk (z) yk, (3)

F2 (y, z) =
2∑

k=0

qk (z) yk. (4)

Here qk (z) are smooth functions of z.
We are looking for such values of constants b, c, d, f , g, h and the expressions F1 (y, z)

and F2 (y, z) so that eqs. (1) and (2) pass the Painlevé test.
Let us consider the approach to the following problem: to find values of constant

coefficients in eqs. (1) and (2) so that these equations pass the Painlevé test. These
equations contain all leading terms if we do not take into account F1 (y, z) and F2 (y, z).
Substituting [1, 2]

y ∼= a0x
p, x = z−z0 (5)

into eq. (1) shows that all terms without F1 in the equation may balance for value p = −1.
Requiring that the leading terms do balance we obtain the following equation that deter-
mines a0:

ba4
0−ca3

0+(d+ 2f) a
2
0−(2g + 6h) a0+24 = 0. (6)
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We do not have any possibility to find solutions of this equation because we do not
know the constants b, c, d, f , g and h. Let us note, that using variables

y = Ay′, z = Bz′, (7)

one can see that one of the roots of (6) may be taken equal 1.
In this case we have the equation

b−c+d+2f −2g+6h+24 = 0 (8)

from eq. (6). Substituting

y ∼= x−1+βxj−1 (9)

into the leading terms of eq. (1) we obtain the equation for the Fuchs indices in the form

j4 + (h − 10) j3 + (35 + f − g − 6h) j2 + (c+ 5g + 11h − 50− 2d − 3f) j
+3d − 4c − 4g + 6f + 5b − 12h+ 24 = 0.

(10)

At this step of the investigation we want to determine the value of the coefficient h.
We are interested in integer Fuchs indices that are determined by eq. (10) because we can
hope that eqs. (1) have the Painlevé property in this case. One can see that

4∑
k=1

jk = 10−h (11)

from eq. (10), where jk are roots of the above. We have to choose h as integer. Later in
this work we take h equal 0; 1; 2; 3; 4 and 5. We know that one of the roots of eq. (11)
is −1. Let j1 = −1, then we have

j2+ j3+ j4 = 11−h. (12)

We assume that only this family of solution has the positive Fuchs indices. Without loss
of generality we consider the solution of eq. (12) j2 = 2, j3 = 3 and j4 = 6 in the case
h = 0, since we studied other cases in the same way. From eq. (10) follows:

24f −10g+2c−9d+5b+120 = 0, (13)

4f +2g−2c−d+5b = 0, (14)

6f +2g− c−3d+5b = 0. (15)

The solution of the set of equations (8), (13)–(15) takes the form

f = g− 10, (16)

d = b+2g− 16, (17)

c = 2b+2g− 12, (18)

Taking into account relations (16)–(18) one can check arbitrary coefficients in the Lau-
rent series for solutions of eq. (1). Assuming that [3]

y =
1
x
+a1+a2x+a3x

2+a4x
3+a5x

4+a6x
6+· · · (19)
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and substituting (19) into eq. (1) we find that a2 and a3 are arbitrary coefficients but a6

is arbitrary only in the case

g = 6− b. (20)

Using (16)–(18) and (20) we obtain

ba4
0−(2b+ 12) a2

0−2 (6− b) a0+24 = 0 (21)

from eq. (6). The solution of eq. (21) takes the form

a
(1)
0 = 1, a

(2)
0 = −2, a

(3,4)
0 =

b ±√
b2 + 48b
2b

. (22)

We can now investigate the second solution family of eq. (1) in this case.
Assuming

y ∼= −2
x
+β2x

j−1 (23)

and substituting (23) into eq. (1) at conditions (16)–(18), (20) we get the equation for the
Fuchs indices that has solution

j1 = −1, j2 = 6, j3,4 =
5
2
± 1
2

√
24b − 23. (24)

Let 24b − 23 = m2 then

b =
23 +m2

24
. (25)

Assuming m = 2n + 1 (n = 0, 1, 2, . . . , 25) we find the integer Fuchs indices from
eq. (24) and values of coefficient b from eq. (25). We therefore have roots a0 from eq. (21).
We consider the cases when roots of a0 are rational numbers and found all cases which
lead to integer Fuchs indices for all values a0.
In a similar manner we check eqs. (1) at h = 1, 2, 3, 4 and 5 for all cases. We find

values of coefficients b and consequently values c, d, f and g when the necessary conditions
in the Painlevé test for eqs. (1) are satisfied.
Taking into account these values we look for those of eqs. (1) that pass the Painlevé

test at F1 �= 0, when F1 (y, z) is determined by eq. (3).
We obtained a list of equations that pass the Painlevé test

yzzzz+6y5−10yy2
z −10y2yzz = ε1zy+ε0; (26)

yzzzz+y5−5yy2
z −5y2yzz+5yzyzz = ε1zy+ε0, (27)

where ε0 and ε1 are arbitrary constants;

yzzzz+(g − 6) (2y3yz + 2yy2
z + y2yzz

)
+gyzyzz+2yyzzz = F (z) , (28)

where

F (z) =

{
q0 (z) , g = 6;
ε0, g �= 6;
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yzzzz+6yy2
z+3y

2yzz+9yzyzz+3yyzzz = q0 (z) , (29)

where q0 (z) is the smooth function of z;

yzzzz+4y3yz+12yy2
z+6y

2yzz+10yzyzz+4yyzzz = q0 (z) ; (30)

yzzzz+y5+10y3yz+15yy2
z+10y

2yzz+10yzyzz+5yyzzz = q0 (z)+q1 (z) y. (31)

It turnes out that all these equations possess the Painlevé property. Eqs. (26) and (28)
are reductions of the modified Korteweg-de Vries and Caudrey–Dodd–Gibbon equations
of fifth order. Eq. (28) at g = 6 reduces to the Riccati equation. At g �= 6 eq. (28) can be
presented in the form

ωzz+
1
2
(g − 6)ω2 = ε0z+c1, (32)

where

ω = yz + y2. (33)

Eq. (32) is the first Painlevé equation and its solutions are the Painlevé transcendents.
Solution of eq. (28) at g = 6 can be found from equation (33) that can be linearized by
transformation

y =
ϕz

ϕ
. (34)

One can see that eqs. (29) and (30) can be presented in the form

yzz+y3+3yyz = Q2 (z) , (35)

yzzz+y4+6y2yz+3y2
z+4yyzz = Q1 (z) (36)

after integration over z. These equations are not conceptually fourth order differential
equations. These ones and eq. (31) can be linearized by transformation (34) as well. They
take the form

ϕzzz = Q2 (z)ϕ, ϕzzzz = Q1 (z)ϕ, ϕzzzzz = q0 (z)·ϕ+q1 (z)·ϕ. (37)

Analogously, all eqs. (26)–(31) possess the Painlevé property.
Let us study eqs. (2) to find the values of coefficients b, c, d and F2 (y, z) when these

equations possess the Painlevé property. With this in mind we substitute

y ∼= a0x
−2, x = z−z0 (38)

into eqs. (2) at F2 = 0 and equate terms to zero at x−6. The equation then takes the form

ba2
0+(6c+ 4d) a0+120 = 0. (39)

Assuming a
(1)
0 = −1 in this equation we have

b+120−6c−4d = 0. (40)

After that, assuming

y ∼= −x−2+β1x
j−2, x = z−z0 (41)
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and substituting into eqs. (2) we obtain the equation for the Fuchs indices in the form

j4−14j3+(71− c) j3+(5c+ 4d − 154) j+120−8d−12c+3b = 0. (42)

One can see that

4∑
k=1

jk = 14 (43)

from eq. (42). Here jk are roots of eq. (42).
We assume that one of the solution family of eqs. (2) has the positive indices except

−1. Let j1 = −1. In this case we have

j2+ j3+ j4 = 15 (44)

from eq. (43). We are interested in integers and the different Fuchs indices of eq. (44)
and one can find 12 solutions of this equations at jk > 0 (k = 2, 3, 4). Substituting these
solutions into eq. (42) give set of equations for b, c and d. Taking into account these
equations and eq. (40) we obtain different variants of values b, c and d. We can find then
another root a

(2)
0 for every variant of values b, c and d.

Using these values and substituting

y ∼= a
(2)
0 x−2+β2x

j−2 (45)

one can get the equation for the Fuchs indices of the second solution family.
We found 5 variants of values b, c and d when eqs. (2) pass the Painlevé test.
These values correspond to the equations of form (2) at F2 = 0. Assume that F2 (y, z)

is determined by eq. (4) for these equations we obtain the list of the equations (2) that
pass the Painlevé test:

yzzzz+60y3+30yyzz+ε0+ε1y = 0, (46)

yzzzz+40y3+20yyzz+10y2
z+n1z+n0 = 0, (47)

yzzzz+24y3+18yyzz+9y2
z+n0+n1z = 0, (48)

yzzzz+15y3+15yyzz+
45
4

y2
z+ε0+ε1y = 0, (49)

yzzzz+12yyzz+12y2
z = 0, (50)

where ε0, ε1, n0 and n1 are arbitrary constants.
Eq. (50) can be presented in the form of the first Painlevé equation

yzz+6y2+ c1z+ c2 (51)

after integration over z. Eqs. (47) and (48) are reductions of the Schwarzian KdV and
Schwarzian Caudrey Dodd–Gibbons equations. Eqs. (46) and (49) correspond to the
ordinary differential equations that can be found from the Kaup–Kuperschmidt and the
Caudrey–Dodd–Gibbon equations [4] if we look for solutions in the form of travelling wave.
All these equations possess the Painlevé property.
In conclusion we have to note that we did not obtain new equations in the mentioned

list of fourth order differential equations. We found that these equations are reductions of
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known ordinary differential equations and similarly reductions of known partial differential
equations. The main result of this paper is a list of equations all of which pass the Painlevé
test and we have no new equations of the Painlevé type of such forms. There are four
equations in the above mentioned list that have solutions in the form of transcendental
functions with respect to constants of integration. It was shown [5, 6] that eqs. (26), (27),
(47) and (48) have such type of solutions. We applied our approach to find other forms of
equations different from (1) and (2). In particular we found an equation of the form

yyzzzz+
7
2
y6− 15

2
y2y2

z−5y3yzz− 52y
2
zz+ay4+βy2 = 0, (52)

where a and β are arbitrary constants.
This is a new equation and we found this equation to passed the Painlevé test. Eq. (52)

has four solutions families:
(
a

(1,2)
0 , 1

)
= (±1, 1) and

(
a

(3,4)
0 , 1

)
= (±2, 1). These families

have the following Fuchs indices: j
(1,2)
k = (−1, 1, 3, 7) and j

(3,4)
k = (−1, 6,−2, 7). Unfor-

tunately we do not know much about this equation and we need to investigate it in the
future.
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