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Abstract

We discuss the bihamiltonian geometry of the Toda lattice (periodic and open). Using
some recent results on the separation of variables for bihamiltonian manifold, we
show that these systems can be explicitly integrated via the classical Hamilton–Jacobi
method in the so-called Darboux–Nijenhuis coordinates.

1 Introduction

In this paper we reexamine the classical An-Toda systems with the aim of showing that
these lattices fall into a notable class of bihamiltonian integrable systems: those for which
a distinguished set of coordinates (the so-called Darboux–Nijenhuis (DN) coordinates)
allows the solution of the Hamilton–Jacobi equations associated with the Hamiltonian
flows by means of an (additive) separation of variables (SoV) [16, 1]. In particular, we
will show that such coordinates arise from the geometry of the Poisson pencil after a
Hamiltonian reduction process on suitable symplectic leaves.

DN coordinates (see, e.g., [11]) can be naturally defined on a Poisson–Nijenhuis (PN)
manifold [9], that is, on a 2n-dimensional manifold M endowed with a symplectic two-
form ω and a (1, 1) torsion free tensor N satisfying certain compatibility conditions. In [2]
we present and discuss an intrinsic condition to characterize those Hamiltonian systems
on M for which DN coordinates separate the corresponding Hamilton–Jacobi equations.
Moreover, some of the connections between Hamiltonian hierarchies which satisfy a cer-
tain recursion property with respect to the tensor N , and Gel’fand–Zakharevich (GZ)
systems [7] are investigated there. This paper is devoted to frame the Toda lattices into
such a scheme.

The plan is as follows: in Section 2 we sketch the main points of the abovementioned
SoV theory for bihamiltonian manifold, referring to [2] for complete proofs and a more
detailed discussion. Section 3 contains a formulation of the Toda lattice within the GZ
scheme, that is, taking as starting point its Poisson pencil and the problem of finding the
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Casimir functions. Section 4 concerns the application of the bihamiltonian SoV theory to
this family of integrable systems. Finally, in Section 5 we treat the three-particle case to
give a feeling of how the method works.

2 Separation of variables on PN manifolds

Let (M, ω) be a 2n-dimensional symplectic manifold endowed with a Nijenhuis tensor
field N compatible with ω (in the sense of the theory of bihamiltonian manifolds). These
manifolds are called Poisson–Nijenhuis manifolds [9]. Examples of such manifolds are
provided by bihamiltonian manifolds endowed with a pair of Poisson bivectors (P0, P1)
one of which, say P0, is invertible, In this case, ω = P−1

0 and N = P1P
−1
0 .

Definition 2.1. By Darboux–Nijenhuis coordinates on M we mean any system of local
coordinates (λj , µj)j=1,...,n which enjoy the following two properties:

i) ω takes the canonical form

ω =
n∑

i=1

dλi ∧ dµi;

ii) the adjoint Nijenhuis operator N∗ takes the diagonal form

N∗dλj = λjdλj , N∗dµj = λjdµj .

It has been shown [11] that DN coordinates exist on any PN manifold, where N has n
functionally independent eigenvalues. In this case the coordinates λj can be computed
algebraically as the roots of the minimal polynomial of N ,

C(λ) = Det(N −λ1)
1
2 . (2.1)

On the contrary, the complementary coordinates must be computed (in general) by a
method involving quadratures.

In [2] we characterize a class of Hamiltonians on M whose associated Hamilton–Jacobi
equations can be solved by separation of variables in DN coordinates. Let (H1, . . . , Hn)
be a set of functionally independent (Hamiltonian) functions that are in involution with
respect to the canonical Poisson bracket defined by

{f, g} = ω(Xf , Xg).

We assume that the Lagrangian foliation defined by the functions Hi is invariant with
respect to N . This is tantamount to saying that, at a generic point m ∈ M, the differen-
tials dHk span an n-dimensional vector subspace of T ∗

mM which is closed under the action
of N∗. Hence there exists an n×n matrix F, whose entries are functions on M, such that

N∗dHi =
n∑

j=1

Fj
idHj . (2.2)

Definition 2.2. The Hamiltonians (H1, . . . , Hn) are said to be Stäckel-separable (or sep-
arable for short) in the DN coordinates if there exists an n×n invertible matrix T and an
n-component vector V such that

TH = V, (2.3)
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where H = (H1, . . . , Hn)T , and the matrix T and the vector V possess the Stäckel proper-
ties:

1. the entries of the jth row of T depend only on the conjugated coordinates (λj , µj).
2. the jth component of the vector V depends only on (λj , µj) as well.

A remarkable “separability test” is given by the following

Theorem 2.3. The Hamiltonians (H1, . . . , Hn) are separable if and only if the matrix F
verifies the equation

N∗dF = FdF. (2.4)

Two remarks are in order to explain this theorem. First of all, equation (2.4) must be
read as follows. In the left hand-side, dF is the matrix whose entries are the differentials
of the entries of F, and N∗ acts separately on each entry. Secondly, one should notice
that (2.4) is a coordinate free test of separability, that can be checked without computing
the DN coordinates. Once the test is passed one can construct the Stäckel matrix T, still in
general coordinates, by a simple algebraic procedure. One has to consider the eigenvectors
of the matrix F and form with them a (suitably normalized) matrix T that diagonalizes F:

F = T−1ΛT, Λ = diag (λ1, . . . , λn).

By condition (2.4), this matrix is a Stäckel matrix; by condition (2.2), the vector V = TH
verifies the Stäckel property. Then, once constructed the DN coordinates, the Hamilton–
Jacobi equations associated with (H1, . . . , Hn) can be easily solved by separation of vari-
ables. Notice that the DN coordinates separate at once the HJ equations associated with
any of the Hamiltonians Hi.

To complete the construction of the DN coordinates, that is, to construct algebraically
the coordinates µj conjugated to the eigenvalues λj of N , the following procedure is often
useful. We consider the Hamiltonian vector field Y associated (by the symplectic form ω)
with the function 1

2Tr(N), and the space of functions F (x;λ), depending smoothly on
x ∈ M and holomorphically on the parameter λ. We denote with F (x;λj) the evaluation
of F (x;λ) at λ = λj . If N∗dF (x;λj) = λjdF (x;λj) for all j = 1, . . . , n, we say that F (x;λ)
is an exact eigenvector of N∗.

Theorem 2.4. If F (x;λ) is an exact eigenvector of N∗, satisfying the “normalization
property” Y (F (x;λ)) = 1, then the evaluation of F (x;λ) at the points λ = λj, i.e.,

µj = F (x;λj),

provides a set of n remaining DN coordinates.

In the application of Section 4, we will use the property that if F (x;λ) is an exact
eigenvector, then Y (F (x;λ)) is an exact eigenvector as well. Since in the separable case a
suitable combination of the Hamiltonians is exact, one can act with Y on such a combi-
nation and generate a space of exact eigenvectors where the equation Y (F (x;λ)) = 1 may
be solved algebraically.
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2.1 DN separable Hamiltonians from GZ systems

Let M a (2n+ k)-dimensional manifold endowed with a pencil Pλ = P1 − λP0 of Poisson
tensors. We suppose that it admits k polynomial Casimir functions

H(a) =
na∑
j=0

H
(a)
j λna−j , a = 1, . . . , k,

with n = n1 + · · · + nk. If the functions H(i)
j are functionally independent, then M is

called a complete GZ manifold, and the pencil Pλ is said to be a pure Kronecker pencil of
type {2n1 + 1, . . . , 2nk + 1}. Since the functions H(a)

0 form a maximal set of independent
Casimirs of P0, the generic symplectic leaf S of P0 is the 2n-dimensional submanifold
given by H

(a)
0 = Ca, for a = 1, . . . , k. The restrictions Ĥ(a)

ja
to S, for ja = 1, . . . , na, and

a = 1, . . . , k, of the n remaining Hamiltonians define a completely integrable system in
the Liouville sense.

In order to solve by SoV this system, we suppose that there exist k vector fields Za

(to be called transversal vector fields) spanning a k-dimensional integrable distribution Z
and satisfying:

a) The normalized transversality condition: LieZa

(
H

(b)
0

)
= δb

a for all a, b = 1, . . . , k;

b) The deformation condition for the Lie derivatives: LieZa(Pλ) =
k∑

b=1

Zb ∧Y b
a for some

vector fields Y a
b ;

c) The “flatness” condition: LieZa

(
LieZb

(
H(c)(λ)

))
= 0, ∀ a, b, c.

Conditions a) and b) imply that the distribution Z is transversal to the symplectic
leaves of P0, and that the functions vanishing along Z are a Poisson subalgebra with respect
to the Poisson pencil Pλ. Then, as a consequence of the Marsden–Ratiu theorem [12], we
have that:

Proposition 2.5. The Poisson pencil on M can be projected on the generic symplectic
leaf S of P0, so that S becomes a PN manifold. The functions Ĥ(a)

ja
, for ja = 1, . . . , na,

and a = 1, . . . , k, satisfy the condition (2.2), that is, there exists an n × n matrix F such
that N∗dĤ = FĤ, where Ĥ is a column vector collecting the above functions.

Under the “flatness” condition c), one can show that equation (2.4) is satisfied, so that
the reduced Hamiltonian system is separable in the DN coordinates. These coordinates
may be computed from the geometry of Pλ, without actually performing the reduction
process. In this case, in fact:

1. The minimal polynomial of the Nijenhuis tensorN induced, according to the previous
proposition, on the leaf S is the determinant of the matrix

G(λ) =
[
LieZa

(
H(b)(λ)

)]
a,b=1,...,k

,

that is, detG(λ) = 0 iff λ = λj ;

2. The vector field Y of Theorem 2.4 is given by Y =
k∑

a=1
Y a

a ;
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3. If (1, ρ2(λ), . . . , ρk(λ)) satisfies

(1, ρ2(λ), . . . , ρk(λ))G(λ) = 0 for λ = λj ,

then H(1)(λ) + ρ2(λ)H(2)(λ) + · · · + ρk(λ)H(k)(λ) is an exact eigenvector of N∗.
Hence it can be used to find a normalized exact eigenvector, and therefore the µj

coordinates.

Remark 2.6. The SoV theory for PN manifolds outlined above provides intrinsic and
algorithmic recipes to check whether a given Liouville integrable system defined on a PN
manifold can be separated in the DN coordinates. On the other hand, the conditions
under which one obtains separable Hamiltonians from a GZ manifold are by no means
algorithmic. In particular, the existence of the distribution Z (that is, of the vector fields
Za and Y b

a fulfilling the above three properties) must be checked (and guessed) case by
case. In [3, 4] some GZ systems, obtained from stationary reductions of the Boussinesq
and KdV hierarchies, are discussed along these lines. In the next sections we will apply
the scheme herewith outlined to the Toda lattices.

3 The Bihamiltonian approach to Toda lattices

The phase space of the (complex, periodic) Toda lattice (see, e.g., [5]) with n sites
(particles) is the manifold M = (C∗)n × C

n parametrized by the Flaschka coordinates
{ai, bi}i=1,...,n. We endow it with the Poisson pencil Pλ defined as follows (see, e.g., [14]
and references cited therein). It associates with the one-form

∑
k

(αkdak+βkdbk) the vector

field
∑
k

(ȧk∂ak
+ ḃk∂bk

) according to the rule

ȧk = ak((bk − λ)βk − (bk+1 − λ)βk+1 + ak−1αk−1 − αk+1ak+1),

ḃk = (bk − λ)(ak−1αk−1 − akαk) + akβk+1 − ak−1βk−1,
(3.1)

where the cyclicity condition (·)k+n = (·)k is implicitly assumed. We write the matrix ex-
pression of Pλ = P1−λP0 in the 3-particle case, the n-particle case being easily generalized
from this example:

Pλ =



0 −a1a2 a1a3 a1(b1 − λ) −a1(b2 − λ) 0

0 −a2a3 0 a2(b2 − λ) −a2(b3 − λ)

0 −a3(b1 − λ) 0 a3(b3 − λ)

0 a1 −a3

∗ 0 a2

0


. (3.2)

According to the GZ scheme, we study the kernel of Pλ. We have to solve the equations

(bk − λ)βk − (bk+1 − λ)βk+1 + ak−1αk−1 − ak+1αk+1 = 0,
(bk − λ)(ak−1αk−1 − akαk) + akβk+1 − ak−1βk−1 = 0.

With algebraic manipulations (see [13]), it can be traded for the system of equations

(bk − λ)βk + ak−1αk−1 + akαk = L1,

(akαk)2 + akβkβk+1 − L1αk = L2,
(3.3)
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where Li are Zn-invariant functions. Setting L1 = 1, L2 = 0, and introducing the variables

hk =
βk+1

αk
,

we obtain the following Riccati type equation:

hkhk+1 = (bk+1−λ)hk+ak. (3.4)

Proposition 3.1. The characteristic equation (3.4) admits a solution hk which is a Lau-

rent series in the parameter λ of the form hk = λ+
∞∑

j=1
hk,jλ

−j. The Laurent coefficients

hk,j can be computed by recurrence as functions of the variables {ai, bi}. The product
C = h1 · · ·hn of the components of any solution of (3.4) is a Casimir function of the
Poisson pencil Pλ.

Notice that, once the characteristic equation is solved, the one-forms in the kernel of
Pλ can be easily computed (by recurrence) solving the system{

hkαk + akβk = 1,
αkhk = βk+1,

k = 1, . . . , n,

which is equivalent to the system (3.3) with L1 = 1, L2 = 0.
This method allows us to find Casimirs of Pλ that are Laurent series in λ. According

to the GZ scheme [7], however, we should better look for polynomial Casimirs of Pλ. They
can be found linearizing the Riccati equation (3.4) as follows.

Setting hk = µψk/ψk−1, we transform equation (3.4) into the linear system

µ2ψk+1−µ(bk−λ)ψk−akψk−1 = 0, (3.5)

where µ is related to the Casimir C via C = µn. In matrix form we have Lψ = 0, where

L =



µ(b1 − λ) −µ2 0 an

a1 µ(b2 − λ) −µ2 . . .

0 a2
. . . . . . 0

. . . . . . µ(bn−1 − λ) −µ2

−µ2 0 an−1 µ(bn − λ)


. (3.6)

This is how the classical Lax matrix of the Toda lattice can be introduced into the game
in the GZ bihamiltonian point of view. We remark that, since the Riccati equation (3.4)
admits solutions, so does the linear system Lψ = 0. So, taking into account the cyclicity
of L, we arrive at

Proposition 3.2. The spectral curve of the problem, det(L) = 0, is a quadratic polyno-
mial in the Casimir C,

det(L) = −C2+H(1)(λ)C+H(2). (3.7)

Thus, both H(1)(λ) and H(2) are polynomial Casimirs of Pλ. In particular,

H(2) = (−1)n+1a1 · · · an
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is a common Casimir of P1 and P0, and H(1)(λ) has the form

H(1)(λ) = (−1)nλn+
n∑

j=1

H
(1)
j λn−j .

It can be easily realized that H(1)
j = (−1)jσn

j (b1, . . . , bn)+lower order terms in the bj ,
where σn

j is the j-th elementary symmetric polynomial in n letters. So, the Hamiltonian

functions
(
H(2),

{
H

(1)
j

}
j=1,...,n

)
are functionally independent and the previous proposi-

tion provides another proof of the fact [8] that the periodic Toda lattice with n particles
is a complete GZ manifold of type {1, 2n− 1}.

We end this section with a remark which frames the open Toda lattice within this
scheme. It is well known that the open Toda lattice can be obtained form the periodic
one by pulling one particle to infinity, that is, in the Flaschka coordinates, by letting
one of the a coordinates, say an, attain the 0 value. The phase space of the (complex)
open Toda lattice with n particles is thus the manifold M̂ = (C∗)n−1 × C

n parametrized
by reduced Flaschka coordinates {a1 . . . , an−1, b1, . . . , bn}. The Poisson pencil P̂λ of the
open case can be obtained from the periodic one by means of the following trick. Let
M̃ ⊃ M be the manifold obtained from the phase space of the periodic lattice adjoining
the “boundary component” defined by an = 0. The Poisson pencil defined by (3.1), being
polynomial in the Flaschka coordinates, extends naturally to a Poisson pencil P̃λ on the
extended manifold M̃. The phase space M̂ of the open case can be identified with the
zero set of the common Casimir H(2) of P̃1 and P̃0, which, obviously enough, is still
given by H(2) = (−1)n+1a1 · · · an. Then P̃λ can be restricted to M̂, and its restriction
is the Poisson pencil of the open Toda lattice. In practice, its matrix representation in
the reduced coordinates is obtained by the matrix representation of the periodic Poisson
pencil (3.2) deleting the n-th row and column, and setting an = 0 in the resulting matrix.
The Lax matrix of the open Toda Lattice (as well as the Hamiltonian functions) is obtained
simply by setting an = 0 in the Lax matrix (3.6) of the periodic problem. In particular,
the single polynomial Casimir of the Poisson pencil of the open lattice is obtained as
Ĥ(1) = H(1)|an=0

. The open Toda lattice is thus a complete GZ manifold of type 2n− 1.

4 Separation of variables

In this Section we will show that the Toda lattice fits the scheme described in Subsec-
tion 2.1. We will follow the path of Section 3, considering at first the periodic lattice, and
then stating the suitable changes to be done in the open case.

The periodic Toda lattice is a GZ manifold of dimension 2n and type {1, 2n−1}. Thus
the rank of the transversal distribution Z must be 2, and the dimension of the reduced
PN manifold 2n− 2. We divide the procedure outlined in Subsection 2.1 in three steps.

Step 1. The transversal vector fields Z1 and Z2.

Proposition 4.1. The vector fields Z1 = ∂bn and Z2 = ∂an/(a1 · · · an−1) satisfy

LieZ1Pλ = Z1∧Y1,1, LieZ2Pλ = Z1∧Y2,1, (4.1)

with Y1,1 = an−1∂an−1 − an∂an and Y2,1 = −∂b1/(a1 · · · an−1).
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This property is proven making use of the standard formulas for the Lie derivative of
a bivector.

Step 2. The action of Zi on the Casimirs and the λj coordinates.
To discuss this issue it is useful to recall the expression of the second Casimir H(2) =

(−1)n+1a1 · · · an and to expand det(L) with respect to the last column to get:

det(L) = µ(bn−λ)L̂n,n+µ2L̂n,n−1+(−1)n+1anL̂n,1, (4.2)

where L̂i,j are the determinants of the suitable minors of L. Taking into account the
specific form of these minors one can easily see that it holds

Proposition 4.2. The second Lie derivatives of H(1) and H(2) with respect to Zi van-
ish. Furthermore, LieZ1

(
H(2)

)
= 0 and LieZ2

(
H(2)

)
= 1, so that the matrix Gb

a =
LieZa

(
H(b)(λ)

)
introduced in Subsection 2.1 has the form

G(λ) =
(

LieZ1

(
H(1)

)
0

LieZ2

(
H(1)

)
1

)
. (4.3)

Thus the λj coordinates are the roots of the monic degree (n−1) polynomial LieZ1

(
H(1)

)
=

∂bn det(L) = L̂n,n.

Step 3. The action of the vector field Y and the µj coordinates.
We have to consider the vector field Y = Y1,1 = an−1∂an−1 − an∂an , and to discuss

its action on the exact eigenvectors of N∗. According to the discussion following Propo-
sition 2.5, to construct such an eigenvector we must find a vector (1, ρ(λ)) such that
(1, ρ(λ))G(λ) = 0 for λ = λj . Since this vector is simply given by (1, 0), we have that H(1)

is an exact eigenvector of N∗, and this is true, for all r, for Y r
(
H(1)

)
as well. In order

to build a normalized exact eigenvector, we have to analyze a bit further the terms in the
expansion (4.2) of the determinant of L. Actually, one has that:

1. L̂n,n is independent of an and an−1;

2. anL̂n,1 = H(2) +CK1, where K1 is linear in an and does not depend on an−1 and µ;

3. µ2L̂n,n−1 = C2+CK2, where K2 is linear in an−1 and does not depend on an and µ.

Thanks to the linearity properties of Kj , we have that Y
(
H(1)

)
= Y (K1+K2) satisfies

the recursion property Y 3
(
H(1)

)
= Y

(
H(1)

)
. This ensures that the function

F = log
(
Y
(
H(1)

)
+ Y 2

(
H(1)

))
satisfies Y (F )=1, and, according to Theorem 2.4, is the desired generator of the µj coor-
dinates. We notice that, due to the cyclic nature of the periodic Toda system, the pair
Z1, Z2 of deformation vector fields is by no means unique; other admissible pairs can be
obtained via a cyclic permutation of the indices (with a corresponding change in the vector
field Y ). It would be interesting to compare the DN coordinates considered here with the
separation variables for Toda systems used in, e.g., [6, 10, 15].

Finally, we state the corresponding results for the open Toda lattice. We have to look
for a single deformation vector field, say Z; it is still given by ∂bn ; the vector field Y

now is given by an−1∂an−1 ; the recursion relation on Y
(
Ĥ(1)

)
closes at the first step,

Y 2
(
Ĥ(1)

)
= Y

(
Ĥ(1)

)
, and the generating function can be taken as F̂ = log

(
Y
(
Ĥ(1)

))
.
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5 Example: the three-particle case

We close the paper with some explicit expressions for the three-particle case. The Poisson
pencil is written in equation (3.2). The Lax matrix is given by

L =


µ (b1 − λ) −µ2 a3

a1 µ (b2 − λ) −µ2

−µ2 a2 µ (b3 − λ)

 . (5.1)

The spectral curve is

−C2−(λ3 +H0λ
2 +H1λ+H2

)
C+K = 0,

with

H0 = −(b1 + b3 + b2), H1 = a2 + b1b3 + a1 + b2b3 + a3 + b1b2,

H2 = −(b1b2b3 + a1b3 + b1a2 + a3b2), K = a1a2a3, C = µ3.

There are two nontrivial flows, given by:

X1 =


ȧ1 = a1b2 − a1b1,

ḃ1 = a3 − a1,
and cyclic permutations;

X2 =


ȧ1 = a1b1b3 + a1a3 − a1b2b3 − a1a2,

ḃ1 = a1b3 − a3b2,
and cyclic permutations.

(5.2)

The transversal vector fields are Z1 = ∂b3 and Z2 = ∂a3/a1a2, and we have Y = a2∂a2 −
a3∂a3 . The DN coordinates can be found as follows. The roots of the polynomial

LieZ1

(
H(1)(λ)

)
= ∂b3

(
H0λ

2 +H1λ+H2

)
= −λ2+(b1+b2)λ−(b1b2+a1)

are λ1 and λ2. Then µ1 and µ2 are given by the function

F = log
(
Y
(
H(1)

)
+ Y 2

(
H(1)

))
= log(2a2λ−2a2b1)

evaluated at λ = λ1, λ2.
For the open case, the Poisson pencil can be computed from (3.2), according to the

procedure outlined at the end of Section 3:

P open
λ =



0 −a1a2 (b1 − λ) a1 (λ− b2) a1 0

a1a2 0 0 (b2 − λ) a2 (λ− b3) a2

(λ− b1) a1 0 0 a1 0

(b2 − λ) a1 (λ− b2) a2 −a1 0 a2

0 (b3 − λ) a2 0 −a2 0


, (5.3)

and the spectral curve is the rational curve

µ3 = C = −λ3 + (b2 + b1 + b3)λ2 − (b1b2 + a1 + b2b3 + b1b3 + a2)λ
+ b1b2b3 + a1b3 + b1a2.

The separation variables can be constructed, mutatis mutandis, as in the periodic case.
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