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Abstract

We prove the persistence of finite dimensional invariant tori associated with the de-
focusing nonlinear Schrédinger equation under small Hamiltonian perturbations. The
invariant tori are not necessarily small.

1 Introduction
Consider the defocusing nonlinear Schrodinger equation on a circle of unit length,
i0rp = —Ouop 2’0 (teR,zeS). (1)
It is a completely integrable Hamiltonian system of infinite dimension with phase space

HYN = HN(S',C) (N € R>1) and Hamiltonian Hy = Hy(yp, ). Here

1Y (51.0) = {f@c) ST F e | f < oo} |

kEZ

where

IS 1= D (A IRD2N|f (k)2

kEZ

and

1
oo %)= [ (Igal + lel") do
0
The Poisson structure is given by the regular Poisson bracket

) oF 0G oF 0G
(rGy=i [ <390($) 52(x) ~ (@) ago(x)) o
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where F, G are functionals on L? = L?(S!, C) of class C'. When written as a Hamiltonian
system, (1) takes the form

Op = {Ho, p} = —i——. (2)

Our aim is to prove the existence of quasiperiodic solutions, not necessarily small, of
small Hamiltonian perturbations of (2), i.e. of the equation

oH
Op = —1—, 3
t 0p (3)
where
H(p,9) = Ho(p,0)+eK(p,9), e small. (4)

To obtain solutions which are not necessarily close to zero we use a method developed
in [11] for the KdV equation: First we prove the existence of global Birkhoff variables
(xj,vj)jez (see Section 2). In these new variables, the NLS equation takes the canonical
form

{ Cﬂk = —WkYk, (5)

Yk = WETk,

where () denotes the time derivative and w(I) = (wg(I))kez is the sequence of frequencies
which depend only on the actions I; = (1:3 + y?) /2, j € L.

We then verify non-resonance conditions for the frequencies of the unperturbed sys-
tem (2) reduced by certain symmetries which allow us to apply a refined version [15] of
a KAM-theorem of Kuksin [12].

The results of this work have been anounced in [6] and proved in a series of articles
[7, 8, 9] and [10].

2 Existence of global Birkhoff variables

It is well known that NLS admits a Lax pair representation

L
‘Z—t — [L,M]:= LM —ML, (6)

where

L:L(go)::i<[1) _?>%+<% §> (7)

is the Zakharov—Shabat operator and M is a rather complicated operator given in [4]. As
a consequence, the periodic spectrum of L(ip), spec(p) := {\ € C,3 F € H (R,C?) with
F #0, L(¢)F = A\F and F(z +2) = F(z), x € R}, remains invariant under the NLS
flow. The periodic spectrum consists of two interlacing sequences (A (¢))kez, (A (9))kez
of real numbers satisfying A7 ~ kr (|k| large) and A, < A < Nex1» k € Z (cf [14], [5]).
Furthermore, spec(y) is a complete set of integrals for the NLS equation (cf. [4]). This
fact is used to prove the following Theorem (cf. [1] and [7]),
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Theorem 1. For any N > 1, there exists a bianalytic, bijective symplectomorphism
o : 1% (z,R?) — HY (S',R?)
such that (z,y;j)jez = ® (p) are Birkhoff coordinates for NLS, i.e. I; = % (l‘? +yj2)
are action and 0; = arctg (g—;) are angle variables.
Here
I (Z.R?) = {(a,b))jez [|(aj)jezlIn+(b5)jezlln < +oo},

where

1(az)jezlR =D (1413 |,
JEL

and l12\7 (Z, ]RQ) is endowed with the canonical symplectic structure

Q(az,b))jez, (@5, y5)jez) = 2 Y azy; —bja;.
JEZ

In action angle variables, the Hamiltonian Hy depends only on the actions, Hy(p,p) =

H(I), and NLS is equivalent to the system (5), where wy(I) = gTHk(I).

In particular, given I € I3, (Z,R;) with finite support,

is an invariant set diffeomorphic to a torus whose dimension is §{k € Z, I}, # 0}.
The solution ¢(z,t) = p¢(x) of the initial value problem for NLS, with initial profile

0o = @ (( 2Ijei9j)jez) in HV (S, C), is given by
_ T i(0+tw; (1))
gotq)((\/QIje I >jeZ>'

3 KAM Theorem for NLS
An asymptotic expansion shows that the frequencies have asymptotic resonances,
Wi (1) ~ 42 k> for k large.

In order to control their effect on perturbed equations we impose symmetry conditions
on the perturbation. These conditions (see [8]) allow to consider as phase spaces the
subspaces HY (Sl, (C), a € R, defined by,

HY (S',C) := @ (., (Z,R?)) (9)
where (\/213'6“97')].62 € ZJQV;a iff (w/2Ij eiej)jez € 13, and satisfies

=1, Yj>1, 10
J J J
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and
0_; =6+« (mod 27) Vj>0 with I;#0. (11)

(Notice that for a # 0 (mod 27), (11) implies that Io(¢) = 0 for all ¢ € HY.)

One verifies that the subspaces HY (S o C) are invariant under the NLS-flow by showing
(cf. [9] ) that the symmetries of the NLS Hamiltonian H(I) imply that H(J (1)) = H(I),
where J (1), = I_ Vk € Z. As a consequence, the frequencies w; = a—g are symmetric at
points where J(I) =

Moreover, in [8] we provide the following characterization of HY (S L (C),

H} (S'.C) = {p e HY (81,C) | €9 = o},

where ¢(z) = ¢(—2). In particular, HY N C*® (resp. HY N C*) is the phase-space of
¢ € HN NC™ satisfying generalized Dirichlet (resp. Neumann) conditions, i.e. 92F¢(0) =
02k p(1) = 0 (resp. 92F+1p(0) = 92k+1p(1) = 0) Vk € Z. By a slight abuse of notation,
the restriction of ® to ZJQV@ (Z, RQ) is again denoted by ®.

For a € R/277Z, a finite subset A C Zsq (with 0 ¢ A if o # 0) and T4 € (Rsg)l 4l we
denote by 77, the [A| dimensional torus of the model space 12 (Z; RQ) , defined by

17, = {(\/QJjeief)jez |J; =J_j=1;, Vj €A

Ji= g =0, Vj & A5 0;=0_;+a, Vj€ Al "
and by 7, the |A| dimensional torus in H N invariant under NLS,
175, =@ (Tf;) : (13)
For I C (R>0)|A| compact and of positive Lebesgue measure, introduce
T := Uryer T/} - (14)

The set 7% consists of symmetric 2| A|-gap potentials (if 0 ¢ A) or (2|A|—1)-gap potentials
(if 0 € A), i.e potentials p € H? with )\j(gp) # A; () iff || € A and )\fj(cp) —AZ(p) =
AT (#) = A (9) Vi > 1 (cf. [8]).

We consider Hamiltonian perturbations, H. = Ho+eK on HY (S!, C) with the following
properties:

(P1) K is real analytic on some symmetric neighborhood Ur of {(¢,@),¢ € 7} in
(HN (S',C)) L.

(P2) %—g, %—ﬁ are bounded as functions from Ur into HV (S, C) and verify the normali-

zation condition
0K 0K
sup {155 lly + 155 (el | () € U} <1

(P3) K satisfies the symmetry condition, ((¢, ) € Ur)

K(%w) — K( 1o’ v zaw)

1Ur is said to be symmetric iff (eiagb, eiiazﬁ) € Ur for any (p,v) € Ur.



KAM Theorem for the Nonlinear Schrodinger Equation 137

OH.

Notice that condition (P3) insures that solutions of %—f = 1%, for initial data in
HY (S',C) evolve in the same space HY (S*,C).

Our KAM Theorem states that, for € small enough, many of the NLS-invariant tori 7
persist under perturbation of the NLS Hamiltonian by e K with K satisfying (P1), (P2),
and (P3). Moreover these tori and their linear flows are only slightly perturbed.

Denote by T" the n-dimensional torus (R/Z)™.

Theorem 2. Let N > 1, A, T, o, Ur be given as above. Then, for K satisfying (P1),
(P2) and (P3), there exists ey so that for any € with |e| < e¢ the following statements
hold:

e—0

(i) there exists a Cantor set I'c C I' with meas (I'\T'z) — 0,

(ii) there exists a Lipschitz family of real analytic torus embeddings

(iii) there exists a Lipschitz map f:T. — R

U TS, — Urn{(p,?)|p € HY}

and
|A]

such that for I4 € T'. and 04 € T|A‘,\II(9A +tf(la),14) is a quasiperiodic solution of

-0Ho

Orp = 1% T ie%—g. Moreover, the deformed invariant tori, ¥ (T‘A‘ X {IA}) , are linearly
stable.

Remarks:

1. Theorem 2 generalizes results due to Kuksin-Pd&schel [13] which concern the special

case where I' C ]R‘fl is contained in a sufficiently small neighbourhood of 0 € R4

and the phase space consists of elements satisfying generalized Dirichlet boundary
conditions. In this situation, action-angle variables are not needed as the Fourier co-
efficients (¢(k))rez are a sufficiently good approximation of the Birkhoff coordinates
close to the origin.

. Similarly, the results of [3] and their generalization in [2], while not directly compa-

rable with our Theorem 2, concern only small perturbations of NLS around ¢ = 0
as well.

. Our results and methods continue the investigation in [11] on the Korteweg-de Vries

equation. The purpose of this paper is to document similar features of the NLS
equation.
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