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Abstract

We prove the persistence of finite dimensional invariant tori associated with the de-
focusing nonlinear Schrödinger equation under small Hamiltonian perturbations. The
invariant tori are not necessarily small.

1 Introduction

Consider the defocusing nonlinear Schrödinger equation on a circle of unit length,

i∂tϕ = −∂xxϕ+2|ϕ|2ϕ (t ∈ R, x ∈ S1). (1)

It is a completely integrable Hamiltonian system of infinite dimension with phase space
HN ≡ HN (S1,C) (N ∈ R≥1) and Hamiltonian H0 ≡ H0(ϕ,ϕ). Here

HN
(
S1,C

)
=

{
f(x) =

∑
k∈Z

f̂(k)e2iπkx | ‖ f ‖N< ∞
}
,

where

‖ f ‖2
N :=

∑
k∈Z

(1+ |k|)2N |f̂(k)|2

and

H0(ϕ,ϕ) :=
∫ 1

0

(
|ϕx|2 + |ϕ|4

)
dx.

The Poisson structure is given by the regular Poisson bracket

{F,G} := i

∫
S1

(
∂F

∂ϕ(x)
∂G

∂ϕ(x)
− ∂F

∂ϕ(x)
∂G

∂ϕ(x)

)
dx,
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where F , G are functionals on L2 ≡ L2(S1,C) of class C1. When written as a Hamiltonian
system, (1) takes the form

∂tϕ = {H0, ϕ} = −i∂H0

∂ϕ
. (2)

Our aim is to prove the existence of quasiperiodic solutions, not necessarily small, of
small Hamiltonian perturbations of (2), i.e. of the equation

∂tϕ = −i∂H
∂ϕ

, (3)

where

H(ϕ,ϕ) = H0(ϕ,ϕ)+εK(ϕ,ϕ), ε small. (4)

To obtain solutions which are not necessarily close to zero we use a method developed
in [11] for the KdV equation: First we prove the existence of global Birkhoff variables
(xj , yj)j∈Z (see Section 2). In these new variables, the NLS equation takes the canonical
form {

ẋk = −wkyk,

ẏk = wkxk,
(5)

where (˙) denotes the time derivative and w(I) = (wk(I))k∈Z is the sequence of frequencies
which depend only on the actions Ij =

(
x2

j + y2
j

)
/2, j ∈ Z.

We then verify non-resonance conditions for the frequencies of the unperturbed sys-
tem (2) reduced by certain symmetries which allow us to apply a refined version [15] of
a KAM-theorem of Kuksin [12].

The results of this work have been anounced in [6] and proved in a series of articles
[7, 8, 9] and [10].

2 Existence of global Birkhoff variables

It is well known that NLS admits a Lax pair representation

∂L

∂t
= [L,M ] := LM −ML, (6)

where

L = L(ϕ) := i

(
1 0
0 −1

)
d

dx
+

(
0 ϕ
ϕ 0

)
(7)

is the Zakharov–Shabat operator and M is a rather complicated operator given in [4]. As
a consequence, the periodic spectrum of L(ϕ), spec(ϕ) := {λ ∈ C,∃ F ∈ H1

loc(R,C
2) with

F �= 0, L(ϕ)F = λF and F (x + 2) = F (x), x ∈ R}, remains invariant under the NLS
flow. The periodic spectrum consists of two interlacing sequences (λ+

k (ϕ))k∈Z, (λ−k (ϕ))k∈Z

of real numbers satisfying λ±k ∼ kπ (|k| large) and λ−k ≤ λ+
k < λ−k+1, k ∈ Z (cf [14], [5]).

Furthermore, spec(ϕ) is a complete set of integrals for the NLS equation (cf. [4]). This
fact is used to prove the following Theorem (cf. [1] and [7]),
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Theorem 1. For any N ≥ 1 , there exists a bianalytic, bijective symplectomorphism

Φ : l2N
(
Z,R2

)
→ HN

(
S1,R2

)
such that (xj , yj)j∈Z = Φ−1(ϕ) are Birkhoff coordinates for NLS, i.e. Ij = 1

2

(
x2

j + y2
j

)
are action and θj = arctg

(
yj

xj

)
are angle variables.

Here

l2N
(
Z,R2

)
:= {(aj , bj)j∈Z, ||(aj)j∈Z||N +||(bj)j∈Z||N < +∞},

where

||(aj)j∈Z||2N =
∑
j∈Z

(1+ |j|)2N |aj |2,

and l2N
(
Z,R2

)
is endowed with the canonical symplectic structure

Ω((aj , bj)j∈Z, (xj , yj)j∈Z) = 2
∑
j∈Z

ajyj−bjxj .

In action angle variables, the Hamiltonian H0 depends only on the actions, H0(ϕ,ϕ) =
H(I), and NLS is equivalent to the system (5), where wk(I) = ∂H

∂Ik
(I).

In particular, given I ∈ l12N (Z,R+) with finite support,

TI = Φ
({

(xj , yj)j∈Z, x
2
j + y2

j = 2Ij , j ∈ Z
})

(8)

is an invariant set diffeomorphic to a torus whose dimension is "{k ∈ Z, Ik �= 0}.
The solution φ(x, t) ≡ ϕt(x) of the initial value problem for NLS, with initial profile

ϕ0 = Φ
((√

2Ije
iθj

)
j∈Z

)
in HN

(
S1,C

)
, is given by

ϕt = Φ
((√

2Ij ei(θj+twj(I))
)

j∈Z

)
.

3 KAM Theorem for NLS

An asymptotic expansion shows that the frequencies have asymptotic resonances,

w±k(I) ∼ 4π2k2 for k large.

In order to control their effect on perturbed equations we impose symmetry conditions
on the perturbation. These conditions (see [8]) allow to consider as phase spaces the
subspaces HN

α

(
S1,C

)
, α ∈ R, defined by,

HN
α

(
S1,C

)
:= Φ

(
l2N ;α

(
Z,R2

))
, (9)

where
(√

2Ije
iθj

)
j∈Z

∈ l2N ;α iff
(√

2Ij eiθj
)
j∈Z

∈ l2N and satisfies

I−j = Ij ∀ j ≥ 1, (10)
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and

θ−j ≡ θj +α (mod 2π) ∀ j ≥ 0 with Ij �= 0. (11)

(Notice that for α �≡ 0 (mod 2π), (11) implies that I0(ϕ) = 0 for all ϕ ∈ HN
α .)

One verifies that the subspaces HN
α

(
S1,C

)
are invariant under the NLS-flow by showing

(cf. [9] ) that the symmetries of the NLS Hamiltonian H(I) imply that H(J (I)) = H(I),
where J (I)k = I−k ∀ k ∈ Z. As a consequence, the frequencies wj = ∂H

∂Ij
are symmetric at

points where J (I) = I.
Moreover, in [8] we provide the following characterization of HN

α

(
S1,C

)
,

HN
α

(
S1,C

)
=

{
ϕ ∈ HN

(
S1,C

)
| eiαϕ̌ ≡ ϕ

}
,

where ϕ̌(x) = ϕ(−x). In particular, HN
π ∩ C∞ (resp. HN

0 ∩ C∞) is the phase-space of
ϕ ∈ HN ∩C∞ satisfying generalized Dirichlet (resp. Neumann) conditions, i.e. ∂2k

x ϕ(0) =
∂2k

x ϕ(1) = 0 (resp. ∂2k+1
x ϕ(0) = ∂2k+1

x ϕ(1) = 0) ∀k ∈ Z. By a slight abuse of notation,
the restriction of Φ to l2N,α

(
Z,R2

)
is again denoted by Φ.

For α ∈ R/2πZ, a finite subset A ⊆ Z≥0 (with 0 �∈ A if α �≡ 0) and IA ∈ (R>0)|A| we
denote by Tα

IA
the |A| dimensional torus of the model space l2

(
Z; R

2
)
, defined by

Tα
IA

:=
{(√

2Jje
iθj

)
j∈Z

|Jj = J−j = Ij , ∀j ∈ A;

Jj = J−j = 0, ∀j �∈ A; θj = θ−j + α, ∀j ∈ A
} (12)

and by T α
IA

the |A| dimensional torus in HN
α , invariant under NLS,

T α
IA

:= Φ
(
Tα

IA

)
. (13)

For Γ ⊆ (R>0)|A| compact and of positive Lebesgue measure, introduce

T α
Γ := ∪IA∈ΓT α

IA
. (14)

The set T α
Γ consists of symmetric 2|A|-gap potentials (if 0 �∈ A) or (2|A|−1)-gap potentials

(if 0 ∈ A), i.e potentials ϕ ∈ H0
α with λ+

j (ϕ) �= λ−j (ϕ) iff |j| ∈ A and λ+
−j(ϕ) − λ−−j(ϕ) =

λ+
j (ϕ) − λ−j (ϕ) ∀j ≥ 1 (cf. [8]).

We consider Hamiltonian perturbations, Hε = H0+εK on HN
α (S1,C) with the following

properties:

(P1) K is real analytic on some symmetric neighborhood UΓ of {(ϕ,ϕ), ϕ ∈ T α
Γ } in(

HN
(
S1,C

))2 1.

(P2) ∂K
∂ϕ ,

∂K
∂ψ are bounded as functions from UΓ into HN

(
S1,C

)
and verify the normali-

zation condition

sup
{
||∂K
∂ϕ

(ϕ,ψ)||N + ||∂K
∂ψ

(ϕ,ψ)||N | (ϕ,ψ) ∈ UΓ

}
≤ 1.

(P3) K satisfies the symmetry condition, ((ϕ,ψ) ∈ UΓ)

K(ϕ,ψ) = K
(
eiαϕ̌, e−iαψ̌

)
.

1UΓ is said to be symmetric iff
(
eiαϕ̌, e−iαψ̌

) ∈ UΓ for any (ϕ, ψ) ∈ UΓ.
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Notice that condition (P3) insures that solutions of ∂ϕ
∂t = i∂Hε

∂ϕ for initial data in
HN

α

(
S1,C

)
evolve in the same space HN

α

(
S1,C

)
.

Our KAM Theorem states that, for ε small enough, many of the NLS-invariant tori T α
IA

persist under perturbation of the NLS Hamiltonian by εK with K satisfying (P1), (P2),
and (P3). Moreover these tori and their linear flows are only slightly perturbed.

Denote by Tn the n-dimensional torus (R/Z)n.

Theorem 2. Let N ≥ 1, A, Γ, α, UΓ be given as above. Then, for K satisfying (P1),
(P2) and (P3), there exists ε0 so that for any ε with |ε| ≤ ε0 the following statements
hold:

(i) there exists a Cantor set Γε ⊂ Γ with meas (Γ \ Γε)
ε→0→ 0,

(ii) there exists a Lipschitz family of real analytic torus embeddings

Ψ : T |A|×Γε → UΓ∩
{

(ϕ,ϕ)|ϕ ∈ HN
α

}
and

(iii) there exists a Lipschitz map f : Γε → R
|A|

such that for IA ∈ Γε and θA ∈ T |A|,Ψ(θA + tf(IA), IA) is a quasiperiodic solution of
∂tϕ = i∂H0

∂ϕ̄ + iε∂K
∂ϕ . Moreover, the deformed invariant tori, Ψ

(
T |A| × {IA}

)
, are linearly

stable.

Remarks:

1. Theorem 2 generalizes results due to Kuksin–Pöschel [13] which concern the special
case where Γ ⊆ R

|A|
+ is contained in a sufficiently small neighbourhood of 0 ∈ R

|A|

and the phase space consists of elements satisfying generalized Dirichlet boundary
conditions. In this situation, action-angle variables are not needed as the Fourier co-
efficients (ϕ̂(k))k∈Z are a sufficiently good approximation of the Birkhoff coordinates
close to the origin.

2. Similarly, the results of [3] and their generalization in [2], while not directly compa-
rable with our Theorem 2, concern only small perturbations of NLS around ϕ = 0
as well.

3. Our results and methods continue the investigation in [11] on the Korteweg-de Vries
equation. The purpose of this paper is to document similar features of the NLS
equation.
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[5] Grébert B and Guillot J C, Gaps of one Dimensional Periodic AKNS Systems, Forum Math.,
1993, V.5, 459–504.



138 B Grébert and T Kappeler
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