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Abstract - Genetic algorithm is used to calibrate four driving 

behavior parameters and a set of calibration procedure is put forward 

based on VISSIM. Using the approach maximum queue length and 

travel time as the evaluation indexes and applying the calibration 

method to a single signalized intersection of Yizhuang Zone in 

Beijing, which validates the effectiveness and practicability of the 

genetic algorithm in VISSIM parameter calibration. 

 Index Terms - Parameter calibration,genetic algorithm, micro- 

scopic traffic simulation, single signalized intersection. 

I.   Introduction 

With the development of Intelligent Transportation 

System in our country, the traffic simulation technology has 

been widely used in traffic management, traffic control and 

other fields. In traffic simulation model, a large number of 

parameters are used to describe the traffic environment, 

vehicle performance and driving behavior characteristics, and 

the values of those parameters have great influences on the 

result of the simulation. However, the default values of those 

parameters are often confirmed according to the traffic 

situation of the software development countries, and are not 

suitable for the traffic flow characteristics of our country. For a 

specific simulation software, we must calibrate the model 

parameters to ensure the accuracy of the simulation result.  

Domestic and foreign scholars have studied the 

calibration of microscopic simulation models one after 

another. Benekohal
[ 1 ]

 was the first one to establish the 

framework of the calibration and verification of microscopic 

simulation model; Hellinga
[2]

 put forward the guiding principle 

of parameter calibration for VISSIM, but he didn’t indicate the 

specific calibration method; Cheu
[3]

 was the first one to apply 

the genetic algorithm to the parameter calibration of 

microscopic simulation model and built the FRESIM model of 

an expressway, and then calibrated 12 parameters of traffic 

flow model; Park and Schneeberge
[ 4 ]

 came up with a 

parameter calibration process including 9 steps and calibrated 

a model building at a single intersection based on VISSIM; 

Park and Qi
[5] 

applied the genetic algorithm to the parameter 

calibration of VISSIM and chose average travel time as the 

evaluation index to calibrate eight parameters; Zhiming Li
[6]

 

chose vehicle average delay as the evaluation index and used 

the genetic algorithm to calibrate seven parameters of one 

intersection model for Shijiazhuang city; Yang Wang
[7]

 chose 

speed and flow as the evaluation indexes, and used the 

orthogonal experiment to calibrate the model building at the 

access of urban expressway; Quan Yu
[8]

 and others used the 

orthogonal experiment to calibrate six parameters of a model 

building at a single intersection of Beijing South-Middle 

Corridor based on VISSIM. In this article, we put forward a 

calibration process based on the genetic algorithm and select 

four sensitive parameters to achieve the automatic correction. 

We select VISSIM as the simulation platform and apply the 

calibration method to a single intersection of Yizhuang Zone 

in Beijing, and verify the validity of this model by analyzing 

the errors of two evaluation indexes. We choose the maximum 

queue length and travel time as the evaluation indexes, and lay 

the foundation for analyzing the intersection quantificationally 

and comprehensively. We also introduce the weight coefficient 

to determine the relationship between maximum queue length 

index and travel time index, which has a certain practical 

significance. Let’s begin with the genetic algorithm. 

II.   Genetic Algorithm 

The genetic algorithm is a kind of heuristic optimization 

algorithm, which combine natural genetics with computer 

science organically with strong problem-solving ability and 

wide adaptability, and acquire a good effect in the field of 

traffic engineering. The basic idea of the genetic algorithm is 

that comparing the individual fitness in every generation of 

genetic algorithm to find out the fine individual and product a 

new-generation with individuals by using genetic manipulation 

such as genetic crossover and genetic variation. After many 

iterations we get the optimal individual
[9]

. 

Basic steps for algorithm in GA are as follows 
[10]

: 

1) Initialize a population of chromosomes. 

    2) Evaluate chromosomes in the population  

3) Create offspring or new chromosomes by mutation and 

crossover from the pool. 

4) Evaluate the new chromosomes by a fitness test and 

insert them in the population. 

5) Check for stopping criteria, if satisfies return the best 

chromosome else continue from step 3. 

6)  End 

After we choose the algorithm, we should confirm the 

calibrated parameters which have significant influences. 

III.   Confirm the Calibrated Parameters 

Before calibrating the traffic model, we need to confirm 

the model parameters which have significant effects on the 

indexes of the model performance measurement, which is 

called parameter sensitivity analysis. The core principle of 
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sensitivity analysis is that changing the value of one 

undetermined parameter in the case of other parameters remain 

unchanged. Through multiple simulation tests, we get multiple 

simulation output values under different levels of this 

undetermined parameter. Then using the single-factor analysis 

of variance to confirm whether the undetermined parameter 

has a significant influence on the evaluation indexes, and 

which has a significant impact would be listed as the calibrated 

parameter
[7]

. Establish a typical urban road intersection to 

finish the sensitivity analysis, and the geometric condition of 

this intersection is as follows: the east approach has a 

exclusive right-turn lane, a exclusive straight lane, a lane 

shared by left turning and straight ahead traffic and a non-

motor vehicle lane. The geometric characteristics of the west 

approach, the north approach and the south approach is 

consistent with the east approach. 

In this article, eight model parameters of VISSIM 

including maximum look-ahead distance, average standstill 

distance, additive part of safety distance, multiple part of 

safety distance, waiting time before diffusion, minimum 

headway, maximum deceleration, accepted deceleration are 

selected for the sensitivity analysis. Taking maximum look-

ahead distance as an example to describe. The unit of 

maximum look-ahead distance is meter, and the values of this 

parameter are: 175, 200, 225, 250, 275, 300. The simulation 

output values of maximum queue length and travel time under 

maximum look-ahead distance’s different levels in different 

periods (10 minutes) are as TABLE I: 

TABLE I  Maximum Queue Length and Travel Time under Maximum 

Look-Ahead Distance’s Different Levels 

 Periods 

Levels 
1 2 3 4 5 6 

175 
maximum queue 

length 
37 38 80 78 39 32 

travel time 74.

7 

60.

2 

64.

1 

145.

2 

59.

5 

53.

1 
200 

maximum queue 

length 
38 39 79 79 41 34 

travel time 64 53.

8 

56.

2 

199.

3 
112 54.

4 
225 

maximum queue 

length 
37 37 51 46 41 33 

travel time 39.

3 

64.

6 

70.

9 
81.3 74.

4 

77.

2 
250 

maximum queue 

length 
45 38 51 54 46 44 

travel time 39.

6 

55.

2 
65 78.2 74.

4 

89.

4 
275 

maximum queue 

length 
32 39 58 53 47 42 

travel time 54.

1 

59.

1 

84.

3 

105.

5 

82.

4 

85.

4 
300 

maximum queue 

length 
36 39 57 52 31 37 

travel time 46.

9 

62.

5 

63.

3 
79.5 57.

3 

67.

8 

TABLE II   Variation Analysis of Maximum Queue Length by Maximum 

Look-Ahead Distance 

Variation 

Sources 
SS df MS F P-value F-crit 

Intergroup 584 5 116.7778 0.578904 0.715738 2.533555 

Withingroup 6052 30 201.7222 
   

Total 6636 35 
    

TABLE III  Variation Analysis of Travel Time by Maximum Look-Ahead 

Distance 

Variation 

Sources 
SS df MS F P-value F-crit 

Intergroup 2929 5 585.7218 0.629552 0.678569 2.533555 

Withingroup 27911 30 930.3786 
   

Total 30840 35 
    

Using the maximum queue length and travel time in 

TABLE I to perform a variance analysis, see TABLE II and 

TABLE III. In the two tables, SS is the sum of squares, df is 

the degree of freedom, MS is the mean square deviation, F is 

the test statistics, P-value is the probability value under the 

appropriate F, F-crit is the critical value of F(5,30) 

distribution under 5% significance level. Through the variance 

analysis, the test statistics value for maximum queue length is 

less than F-crit, and the test statistics value for travel time is 

also less than F-crit, which means maximum look-ahead 

distance have no significant impact on these two evaluation 

indexes. 

For the four model parameters including maximum look-

ahead distance, waiting time before diffusion, minimum 

headway, accepted deceleration, the test statistic values for 

maximum queue length and travel time are less than F-crit, 

which means the four model parameters have not significant 

impacts on maximum queue length index and travel time 

index. We select average standstill distance, additive part of 

safety distance, multiple part of safety distance and maximum 

deceleration as the calibrated parameters. Then we think about 

the calibration process based on the genetic algorithm. 

IV. The calibration process for model parameters of 

VISSIM based on genetic algorithm 

According to the principle of genetic algorithm, we build 

a calibration process for calibrated parameters as Fig. 1 below: 

Start

Binary coding 

Binary decoding 

Read Simulation files And data

Confirm fitness function and 

weight

Write the  driving behavior 

parameters

Run VISSIM automatically

Evaluate  the individual fitness

Output of the driver parameters 

and fitness values

Whether reach the 

maximum iterations?

stop

VISSIM inp files

Queue length data

Travel time data

Mutation operation

Crossover operation

Selecting operation

Y

N

 

Fig. 1  Calibration process for calibrated parameters of VISSIM 
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V. The design of calibration method for VISSIM calibrated 

parameters based on genetic algorithm 

Combining the principle of genetic algorithm with the 

characteristics of VISSIM, we gain the calibration method for 

VISSIM calibrated parameters based on genetic algorithm, 

including the selection of the evaluation indexes, the encoding 

and decoding method of chromosomes, the determination of 

fitness function, the selection of operators and so on. 

A.  Select the Evaluation Indexes 

The purpose of parameter calibration in VISSIM is to 

make the simulation output as close as possible to the 

measured value. We select maximum queue length and travel 

time of each approach as the evaluation indexes to prove the 

validity of this model. Maximum queue length and travel time 

can more fully reflect the characteristics of the intersection. 

B. The Encoding and Decoding Method of Chromosome 

This article use binary strings which consist of the digits 

0 and 1 to encode the calibrated parameters, and the length of 

binary string is related to the required accuracy. The accuracy 

of coding  can be obtained using (1)
[11]

. In this equation, 

maxU represents the maximum value of the calibrated 

parameter, minU  represents the minimum value of the calibrated 

parameter and l  represents the length of the string. 

max min

2 1l

U U
 


,                                          (1) 

The corresponding decoding equation is shown in (2)
[11]

. 

In this equation, ix  represents the ith calibrated parameter 

(i=1,2,3,4); i  represents the minimum value of the ith 

calibrated parameter; i  represents the coding accuracy of the 

ith calibrated parameter; 
1 2 3 ila a a a       ,  is gene 

expression with the vector method, and equals 0 or 

1.
1

(2 ,...,4,2,1)il T 
 .                   

i i ix         ,                                     (2) 

The length of the binary string and the accuracy of coding 

involved in this article can be received by TABLE IV, and the 

length of the parameter set is 15. In this article, the number of 

initial populations is 10 and initial populations are generated 

by random numbers. In this table,   represents the average 

standstill distance;   represents the additive part of safety 

distance;   represents the multiple part of safety distance;   

represents the maximum deceleration. 

TABLE IV    The Length of Binary String and the Coding Accuracy for 

Calibrated Parameters 

Parameters Defult Maximum Minimum Length Accuracy 

 (m) 2 4 1 4 0.2 

  2 5 0.5 4 0.3 
  3 6 1 4 0.33 

 (m/s2) 4 8 3 3 0.71 

C. The Determination of Fitness Function 

This article use the minimum tatal fitness as the solving 

condition. Set F as the total fitness, and 1x , 2x , 3x , 4x  

respectively represent the following parameters: average 

standstill distance, additive part of safety distance, multiple 

part of safety distance and maximum deceleration. The total 

fitness function is expressed by (3): 

1 2 3 4( , , , )totalF f x x x x ,                        (3) 

Using the sum of squared error to build the fitness 

function, and the sum of squared error is expressed by (4). In 

this equation, while i  equals 1, it represents the calibration 

accuracy index for queue length, while i  equals 2, it 

represents the calibration accuracy index for travel time; j  

represents the number of time bucket in data collection; s

ija  

represents the model detector data of queue length or travel 

time in jth time bucket; o

ija  represents the collected field 

investigation data of queue length or travel time in jth time 

bucket. 

2( )s o

ij ij

j

i o

ij

a a

F
a






,                                    (4) 

Using weight coefficient transformation method to 

determine the total fitness function in the condition of 

calibrating the queue length and travel time at the same time. 

  represents weight coefficient in (5). While   equals 0.5, it 

means the calibration accuracy index of queue length and the 

calibration accuracy index of travel time are equally important; 

while   is greater than 0.5, it means the calibration accuracy 

index of queue length is more important. 

1 2(1 )totalF aF a F   ,                              (5) 

D. Genetic Operators 

1) Selection operator: According to the fitness of each 

individual, and the probability that each individual is selected 

is proportional to the individual fitness value. Assume that the 

population size is I , the individual fitness value for i  is iF , 

the probability that the individual is selected into the next 

generation is iP , and iP  can be expressed by (6)
[11]

. 

1

i

i I

i

i

F
P

F






,                                                (6) 

2) Crossover operator: Select the single-point crossover 

method to confirm the crossover operation, and the individuals 

are made pairs. Set a crossing randomly to the two paired 

individuals, then exchange the part chromosome of the two 

paired individuals in that crossing. After that, we gain two new 

individuals. In this article, the number of individual genes is 

15, so we have 14 possible crossings. The crossover 

probability
[12]

 in this article is defined as 0.75. 
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3) Mutation operator: Select the basic bit mutation 

operator to confirm the mutation operation. Use the mutation 

probability to determine the change-point for each individual. 

Invert the gene’s value of the change point, then we gain a new 

generation. The mutation probability
[12]

 in this article is 

defined as 0.05. The number of this population genes is 150, 

so we have about 8 genes to finish the mutation operation. 

VI.   Example Analysis 

Select the intersection of Ronghua South Road and 

Rongjing East Street in Yizhuang Economic and 

Technological Development Zone of Beijing as the 

experimental region. The geometric condition of this 

intersection is as follows: the northeast approach has a 

exclusive right-turn lane, a exclusive straight lane, a lane 

shared by left turning and straight ahead traffic and a non-

motor vehicle lane; the geometric condition of the southwest 

approach is consistent with the northeast approach; the 

southeast approach has a exclusive left-turn lane, three 

exclusive straight lane, a lane shared by right turning and 

straight ahead traffic and a non-motor vehicle lane; the 

geometric condition of the northwest approach is consistent 

with the southeast approach. The traffic flow data came from 

the video collection from 5:00 pm to 6:00 pm on July 13th, 

2012. The simulation model of the experimental region is 

shown below in Fig. 2: 

Fig. 2 The intersection of Ronghua South Road and Rongjing East Street 

A. Equal Weight Coefficient 

When the weight coefficient equals 0.5, which means the 

queue length and travel time are equally weighted. The values 

of driving behavior parameters after calibration are shown in 

TABLE V, and the letters in this table has been defined above: 

TABLE V  The Values of Default and Optimal Values by Equal Weight 

Coefficient 

Parameters Defult Values Values after Calibration 

 (m) 2 2.4 

  2 1.1 
  3 3 

 (m/s2) -4 -6.57 

Using the fitness function defined in Chapter 5 to analyze 

the convergence performance of the fitness average and 

optimal values in generations under equal weight coefficient as 

Fig. 3: 

 
Fig. 3 Convergence performance of the fitness average and optimal values in 

generations by equal weight coefficient 

Making a comparison among the average value of the real 

measured maximum queue length (travel time), the average 

value of the maximum queue length (travel time) when the 

calibrated parameters get the default values and the average 

value of the maximum queue length (travel time) after the 

parameters are calibrated in a simulation hour. The results are 

shown in Fig. 4: 

 
Fig. 4 Comparison of the maximum queue length and travel time by equal 

weight coefficient 
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Using the mean absolute relative error as the total error, 

and the mean absolute relative error of maximum queue length 

and travel time can be expressed by (7): 

4

1

1

4

s o

ij ij

ij o
j ij

MARE
 




  ,                             (7) 

In this equation, while i  equals 1, 
s

ij  and 
o

ij  correspond 

to the simulation output maximum queue length and the real 

measured maximum queue length for each approach, and the 

unit is meter; While i  equals 2, 
s

ij  and 
o

ij  correspond to the 

simulation output travel time and the real measured travel time 

for each approach, and the unit is second. 

For the maximum queue length index, 
1 jMARE is 0.313 

before calibration, and 
1 jMARE is 0.098 after calibration. The 

mean absolute relative error of maximum queue length for 

each approach decreases by 0.215 and the improvement rate is 

68.7%, which means the improvement of maximum queue 

length is obvious. 

For the travel time index, 
2 jMARE is 0.152 before 

calibration, and 
2 jMARE is 0.073 after calibration. The mean 

absolute relative error of travel time for each approach 

decreases by 0.079. The mean absolute relative error of travel 

time has been less than 0.15 before calibration, and the 

improvement of travel time is not obvious. 

B. Unequal Weight Coefficients 

It can be obtained from the above article that the mean 

absolute relative error of travel time has been less than 0.15 

before calibration and the mean absolute relative error of the 

maximum queue length has been more than 0.30 before 

calibration. We need to focus on the calibration of maximum 

queue length when we calibrate the maximum queue length 

and the travel time at the same time. Change the weight 

coefficient of maximum queue length from 0.5 to 0.8 to 

continue the calibration of this case and get the results of 

driving behavior parameters after calibration. Shown as 

TABLE VI, and the letters in this table has been defined 

above: 

TABLE VI  The Values of Default and Optimal Values by Equal and Unequal 

Weight Coefficients 

Parameters 
Defult 

Values 

Values after Calibration 

（weight is 0.5） 

Values after Calibration 

（weight is 0.8） 

 (m) 2 2.4 2 

  2 1.1 2.6 

  3 3 1.67 

 (m/s2) -4 -6.57 -6.57 

Using the fitness function defined in Chapter 5 to analyze 

the convergence performance of the fitness average and 

optimal values in generations under equal and unequal weight 

coefficients as Fig. 5: 

 
Fig. 5  Convergence performance of the fitness average and optimal values in 

generations by equal and unequal weight coefficients 

Making a comparison among the average value of the real 

measured maximum queue length (travel time), the average 

value of the maximum queue length (travel time) when the 

calibrated parameters get the default values and the average 

value of the maximum queue length (travel time) after the 

parameters are calibrated in a simulation hour. The results are 

shown in Fig. 6: 

 
Fig. 6   Comparison of the maximum queue length and travel time by equal 

and unequal weight coefficients 
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Using the mean absolute relative error as the total error to 

analyze the impact of weight coefficient on the maximum 

queue length and travel time: when the weight coefficient 

equals 0.5, the mean absolute relative error value of maximum 

queue length(
1 jMARE ) is 0.098, and the mean absolute 

relative error value of travel time (
2 jMARE ) is 0.073. When 

the weight coefficient is adjusted to 0.8, the mean absolute 

relative error value of maximum queue length(
1 jMARE ) is 

0.093, and the mean absolute relative error value of travel time 

(
2 jMARE ) is 0.080. In this case, after increasing the weight 

coefficient of maximum queue length, the error of maximum 

queue length under the optimal parameters shows some 

improvement. 

For getting a more comprehensive analysis on the impact 

of weight coefficient, we analyze the output results when the 

weight is changed to a minimum value of 0 and a maximum 

value of 1. Using the above method to calibrate this case and 

using the mean absolute relative error to analyze the impact of 

weight coefficient on the maximum queue length and travel 

time respectively. The results are shown in Fig. 7: 

 
Fig.7 Comparison of evaluation indexes by four different weight coefficients 

From the above figure, while the weight coefficient 

equals 0, the mean absolute relative error of maximum queue 

length is greater than the errors of maximum queue lengths 

under other weight coefficients, and the mean absolute relative 

error of travel time is relatively low. While the weight 

coefficient equals 1, the mean absolute relative error of 

maximum queue length is the lowest one and the mean 

absolute relative error of maximum queue length is the highest 

one. When the weight coefficients are 0.5 and 0.8, the 

variation trends of these two curves basically conform to the 

definition of fitness function, see (5). According to the 

described calibration method in this article, the weight 

coefficient should be confirmed by the practical situation of 

the researched intersection. After we balance the impact of 

maximum queue length index against the impact of travel time 

index, we can confirm a fine weight coefficient to complete the 

parameter calibration of this model. 

 

VII.  Conclusion 

This article studied the parameter calibration method of 

VISSIM simulation model, and put forward a calibration 

process for VISSIM based on genetic algorithm, and proved 

the practicality and effectiveness of this calibration method 

with an example. The errors of simulation results were within 

the acceptable limits, and this method truly reproduced the 

running condition and provided a appropriate platform for the 

formulation of later optimization scheme. 
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