A Note on Finite Groups all of Whose Subgroups are C-Normal

Z. Mostaghim

School of Mathematics, Iran University of Science and Technology, Tehran, Iran

Abstract - A subgroup H of a group G is said to be C-normal in G if there exists a normal subgroup N of G such that HN=G and $H\cap N \leq Core(H)$ where Core(H) is the largest normal subgroup of G contained in H. In this paper we consider finite p-groups of order at most p^4 where p is a prime and show that all of their subgroups are C-normal. Also we study some classes of finite groups whose all of subgroups are C-normal.

Index Terms - c-normal subgroups, p-groups, maximal class, supersolvable groups.

I. Introduction

The notion of c-normal subgroup was introduced for the first time by $Wang^I$. He used the c-normality of maximal subgroups to give some conditions for the solvability and supersolvability of a finite group. For example, he showed that G is solvable if and only if M is c-normal in G for every maximal subgroup M of G. In this paper we consider finite p-groups of order at most p^A where p is a prime and show that all of their subgroups are c-normal. Also we study some classes of finite groups whose all of subgroups are c-normal.

Throughout, all groups are assumed to be finite groups. Our terminology and notation is standard, see².

II. Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel.

Definition 2.1.¹

Let G be a group. We call a subgroup H c-normal in G if there exists a normal subgroup N of G such that HN=G and $H\cap N \leq Core(H)$

It is clear that a normal subgroup of G is a c-normal subgroup of G but the converse is not true.

Definition 2.2.1

We call a group G is c-simple if G has no c-normal subgroup except the identity group 1 and G.

We can easily show that G is c-simple if and only if G is simple.

Lemma 2.3.1

Let **G** be a group. Then

- (1) If *H* is normal in *G*, then *H* is *c*-normal in *G*; *G* is *c*-simple if and only if *G* is simple;
- (2) If H is c-normal in G, $H \le K \le G$, then H is c-normal in K;
- (3) Let K be normal in G and $K \le H$. Then H is C-normal in G if and only if H/K is C-normal in G/K.

Let p be a prime. Now we will give some properties of

non-abelian groups of order p⁴.

Lemma 2.4.³

Let G be a finite non-abelian p-group of order p^4 . Then

- (1) $|Z(G)| = p \text{ or } p^2$;
- $(2) |G'| \leq p^2.$

Lemma 2.5.³

Let G be a finite non-abelian p-group of order p^4 . If Z(G) is cyclic of order p, then G' has order p^2 . Moreover Z(G) < G' and G/Z(G) is not abelian.

Definition 2.6.⁴

A **p**-group **G** is said to be a special **p**-group if either **G** is an elementary abelian **p**-group or we have $\Phi(G) = Z(G) = G'$ and **G'** is elementary abelian. If the center of a non-abelian special **p**-group **G** is cyclic, then **G** is called extraspecial.

Definition 2.7.⁴

A group of order p^n is said to be a group of maximal class if the class of G is n-1.

Theorem 2.8.4

The groups $G = D_{2m}$, Q_{2m} , SD_{2m} have the following properties.

- (1) The center Z(G) has order 2 and $G/Z(G) \cong D_m$.
- (2) The derived group coincides with $\Phi(G)$ and the class of G is n-1 where $|G|=2^n$.
- (3) The group Q_{2m} contains exactly one element of order 2.

III. Main Results

Lemma 3.1.

Let G be an extraspecial p-group. Then every subgroup of order p is C-normal.

Proof. It is easy to see that |G'| = p. Let H be a subgroup of order. If $H \cap G' = G'$, then $H \triangleleft G$. By lemma 2.3 H is C-normal in G. If $H \cap G' = 1$, then there exists a maximal subgroup M such that $H \nsubseteq M$. So G = HM and $H \cap M \leq Core(H)$. Therefore H is C-normal in G.

Theorem 3.2.

Let G be a p-group of order at most p^4 . Then all of subgroups of G are -normal.

Proof.

If G be an abelian group, then all of subgroups of G are normal and by lemma 2.3, they are G-normal. If G be a non-abelian group of order G, then by lemma 3.1 all of subgroups of order G are normal. It is easy to see that other subgroups of G are normal. If G be a non-abelian group of order G, then

by lemmas 2.4 and 2.5 we have two cases:

Case1.

Let |G'| = p, therefore $|Z(G)| = p^2$.

Let H be a subgroup of order p. If $H \cap G' \neq 1$, then H = G' and H is a normal subgroup.

Let $H \cap G' = 1$. If there exists a maximal subgroup M such that $H \nsubseteq M$, then G = HM and $H \cap M \leq Core(H)$. Therefore H is a c-normal subgroup.

Let $H \le \Phi(G)$, so $\Phi(G) = HG'$ and $|\Phi(G)| = p^2$. Since G/Z(G) is an elementary abelian group, so $\Phi(G) \le Z(G)$ and therefore H is a normal subgroup.

Let H be a subgroup of order p^2 . We have $|H \cap Z(G)| = 1$, p or p^2 . If $|H \cap Z(G)| = p^2$, then H = Z(G) and H is a normal subgroup. If $|H \cap Z(G)| = 1$, then G = HZ(G) and $H \cap Z(G) \leq Core(H)$. Hence H is c-normal in G.

Let $|H \cap Z(G)| = p$. It is easy to see that $Z(G) = \Phi(G)$. If $H = \Phi(G)$, then H is a normal subgroup. Otherwise there exists a maximal subgroup M such that HM = G and $|H \cap M| = p$. It is easy to see that $H \cap M \leq Core(H)$ and therefore H is a c-normal subgroup.

Case2.

Let $|G'| = p^2$, therefore |Z(G)| = p.

Let H be a subgroup of order p. If $H \cap Z(G) = H$, then H is a normal subgroup. Let $H \cap Z(G) = 1$. If there exists a maximal subgroup M such that $H \cap M = 1$, then H is a c-normal subgroup. Otherwise $H \leq \Phi(G) = G' = HZ(G)$. It is easy to see that HchG' and then H is a normal subgroup.

Let *H* be a subgroup of order p^2 . Hence $|H \cap G'| = p$ or p^2 . If $|H \cap G'| = p^2$, then *H* is a normal subgroup.

Let $|H \cap G'| = p$. If $H = \Phi(G)$, then H is a normal subgroup. Otherwise, there exists a maximal subgroup M such that G = HM and $|H \cap M| = p$. Since $H \cap G' \cap G'$, therefore $Core(H) = H \cap G' = H \cap M$. Hence H is a C-normal subgroup.

Theorem 3.3.

Let $G = D_{2n} = \langle a, b | a^n = 1, b^2 = 1, bab = a^{-1} \rangle$. Then all of subgroups of G are C-normal.

Proof.

When considered geometrically, D_{2n} consist of n rotations and n reflections of the regular n-gon. The subgroups of D_{2n} are two types:

- (1) Those containing rotations only.
- (2) Those containing rotations and reflections.

Let H be a subgroup of G. We consider two cases.

Case1.

Let H has no reflection. Then $H = \langle a^j \rangle$ for $0 \le j \le n-1$. Thus by lemma 2.3 H is c-normal in G.

Case2.

Let \mathbf{H} be of type 2.

(1) Let $a^j \notin H$ for $0 < j \le n-1$, so we have |H| = 2. Now let N = < a >. Then N is a normal subgroup, $G = HN, H \cap N = 1$. Hence H is a c-normal subgroup.

(2) Let there exists i > 0 such that $a^i \in H$. Now let $m = \min\{i \mid i > 0, a^i \in H\}$ and $N = \langle a \rangle$, then |H| = 2l, $(1 < l \le n)$ and HN = G. Also we have $H \cap N = \langle a^m \rangle$, then $H \cap N \le Core(H)$. Hence H is c-normal in G.

Theorem 3.4.

Let G be a 2-group of maximal class. Then all of subgroups of G are C-normal.

Proof

Since G is a 2-group of maximal class, then G is $D_{2^m} (m \ge 3)$, Q_{2^m} , SD_{2^m} . We consider three cases.

Case1

Let $G = D_{2^m} (m \ge 3)$. Then by theorem 3.3 all of subgroups of G are c-normal.

Case2.

Let $G = Q_m$, then by theorem $2.8 \ G/Z(G) \cong D_2^{m-1}$. Let H be a subgroup of G such that $Z(G) \subseteq H$, then by lemma $2.3 \ H/Z(G)$ is a C-normal subgroup of G/Z(G). By using lemma 2.3 we have H is a C-normal subgroup of G. If G be a subgroup of G and G

Corollary 3.5.

Let **G** be one of the following groups.

- (1) A non-nilpotent finite group that all of proper subgroups are Nilpotent.
- (2) A non-abelian finite group that all of proper subgroups are abelian. Then every **p**-Sylow subgroup of **G** is **c**-normal.

Proof.

For case (i) we can see $|G| = p^{\alpha}q^{\beta}$, where p and q are distinct primes. Also one of Sylow subgroups of G is cyclic and another is normal. Then every p-Sylow subgroup of G is c-normal. Case (ii) is similar.

Corollary 3.6.

Let G be a finite supersolvable group and p||G| where p is the smallest prime divisor of |G|. Then p-Sylow subgroup of G is C-normal.

Proof.

Let $|G| = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$, where p_i are primes such that $p_1 > p_2 > \cdots > p_n$. $(p = p_n)$ Let P_i be a p_i -Sylow subgroup of G for $1 \le i \le n$, then $P_1 P_2 \cdots P_k$ is a normal subgroup for all $1 \le k \le n$. It is easy to see that P_n is c-normal in G.

IV. GAP Program

In this section we use GAP⁵ and give a program for finding c-normal subgroups. By using this program we can find all c-normal subgroups of a finite group with two generations. With a few changes in this program we can find a program for finding c-normal subgroups in a finite group with any number of generations and relations.

F:=FreeGroup("a","b");

```
a:=GeneratorsOfGroup(F)[1];
b:=GeneratorsOfGroup(F)[2];
Read("r");
G:=F/r;
n:=Order(G);
z:=LowIndexSubgroupsFpGroup(G,TrivialSubgroup(G),n);
s:=[];
          for i in [1..Size(z)] do
          t:=ConjugacyClassSubgroups(G,z[i]);
                 for j in [1..Size(t)] do
                 Add(s,t[j]);
                 od;
            od;
cnorm:=[];
N:=[];
H:=[];
             for i in [1..Size(s)] do
             vi:=IsNormal(G,s[i]);
             if vi=true then Add(N,s[i]);fi;
             if vi=false then Add(H,s[i]);fi;
              od;
for y in [1..Size(H)] do
1:=0;
m:=0;
```

```
h:=false;
while (m=0 or h=false) and l<=Size(N) do
l:=l+1;
eH:=Elements(H[y]);
eN:=Elements(N[l]);
HN:=[];
for i in [1..Order(H[y])] do
    for j in [1..Order(N[l])] do
    u:=eH[i]*eN[j];
    AddSet(HN,u);
    od;
od;
h:=IsSubgroup(Core(G,H[y]),Intersection(H[y],N[l]));
if HN=G then m:=1;fi;
od;
if HN=G and h=true then Add(cnorm,H[y]);fi;
od;

References And Notes
```

- [1] Y. Wang, J.Algebra 180, (1996).
- [2] D. Gorenstein, Finite groups, Chelsea Publishing Company (1980).
- [3] H.Behravesh and H.Mousavi ,Proc.Indian Acad.Sci(Math. Sci) 119, (2009).
- [4] M. Suzuki, Group Theory II, Springer-Verlag, New York, (1986).
- [5] The GAPGroup, GAP-Groups, Algorithms and Programming, (2005).