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Abstract - In order to continuous communication with lunar 

orbiter and even far side station at the back of Moon, Lagrange points 

L1, L2, L4and L5 is considered to be candidates for relay satellites or 

orbiters in the Earth-Moon restricted three body system. Positions of 

Lagrange points in solar system including Earth-Moon system were 

calculated and missions before and future around these points, 

especially Sun-Earth L1 and L2 were listed. Lagrange points satellites, 

orbiters and local networks on the ground of a celestial body will 

constitute a planetary networks connected by a interplanetary 

backbone in the whole architecture of Inter Pla Netary Internet. 

Index Terms - Deep Space Communication, Three Body System, 

Lagrange Points, Relay Satellites. 

1.  Introduction 

Some of the new deep space missions do not have direct 

link between Earth and final destination, therefore data must 

be relayed between a series of spacecraft each providing a 

store & forward capability until the final destination is 

reached. For distance increasing in deep space exploration and 

Earth rotation and other planets’ motions, the communication 

link between the spacecraft and the ground mission control 

center may not be permanent, even via several data relay 

satellites and several ground antenna. 

In 1772, French mathematician Joseph L. Lagrange 

analyzed restricted three-body problem in space during the 

gravity research: how a third, small body would orbit around 

two orbiting large ones. His solution was astronomically 

confirmed in 1906 with the discovery of the Trojan asteroids 

orbiting at the Sun-Jupiter L4 and L5 points. The Voyager 

probes found tiny moonlets at the Saturn-Dione L4 point and at 

the Saturn-Tethys L4 and L5 points
[1,2]

. 

In his conclusions, there are 5 balancing points in Earth-

Moon system and also in Sun-Earth system, named Lagrange 

points as define in table 1 and shown in figure 1. At these 

points, an entity is in a balancing state due to gravitation and 

tracking movement. Of the five Lagrange points, three are 

unstable and two are stable. The unstable Lagrange points 

labeled L1, L2 and L3 lie along the line connecting the two large 

masses: Sun and Earth or Earth and Moon. The stable 

Lagrange points, labeled L4 and L5, form  the  apex  of  two  

equilateral  triangles  that  have the large masses at their 

vertices. They are analogous to geosynchronous orbits in that 

they allow an object to be in a "fixed" position in space rather 

than an orbit in which its relative position changes 

continuously. 

In Sun-Earth system, from 1978, when the first Lagrange 

point-1 satellite ISEE-3 was launched successful, these ideal 

balancing points are high concerned in deep space missions. 

Now the ESA/NASA’s SOHO solar watchdog is positioned 

there. And Sun-Earth L2 is supposed to be home for ESA 

missions such as Herschel, Planck and Darwin, etc
 [2]

. 

 

Fig.1. Lagrange points in Earth-Moon three body system 

2.  Lagrange Points in Earth-Moon Three Body System 

In Earth-Moon system, data and images can be 

transmitted from lunar orbit to Earth timely, without store and 

forward on board save a little longer delay. The lander and 

rover are able to explore back side of Moon with adequate 

energy. Due to the direct link existing between the near side 

lunar station and Earth, Lagrange point L1 is not considered in 

my study and also the point L3 on the back of Earth. The 

distance from L1 to the centroid of Moon is about 5.776×10
4
 

km, and 6.5348×10
4
 km for L2 and centroid of Moon. An 

object at L1, L2, or L3 is meta-stable, like a ball sitting on top of 

a hill.  

A little push or bump starts its moving away. A spacecraft 

at one of these points has to use frequent, small rocket firings 

or other means to remain in the area
[3,4]

. 

Researches on gravity field of Earth-Moon system 

improve that an ―aisle‖ naming zone of metastability of weak 

stability is along the line of the Earth and Moon, including 

three Lagrange points L1, L2 and L3. A spacecraft positioning 

in this aisle would be neither disengaged from the system nor 

captured by Earth or Moon. A tiny push may force the 

spacecraft orbit around a metastable Lagrange point, which is 

called halo orbit, [5] as shown in figure 2-(a). 

An object at L4 or L5 is truly stable, like a ball in a bowl: 

when gently pushed away, it orbits the Lagrange point without 

drifting farther and farther, and without the need of frequent 

rocket firings. 

In Earth-Moon system, utilization of Lagrange points is 

being regarded with the re-entry of Moon. Continuous 
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communication is a task in lunar exploration and beyond. 

When lunar orbiter rotates around the Moon in polar orbit, 

almost in half of the orbit-period, the orbiter could not 

communicate with Earth in the shadow of Moon. Metastable 

point L2 and stable points L4 and L5 can be used as location of 

relay satellite for lunar orbiters as shown in figure 2 below. 

Table.1. Definition & Position of Lagrange Points and Their Utilization 

Name Definition & position 
Function, projects and plans 

Sun-Earth system Earth-Moon system 

Lagrange point 

L1 

on the line defined by the two large masses m1 and m2, 

and between them 

observations of the Sun: Solar and 

Heliospheric Observatory (SOHO), 

Advanced Composition Explorer (ACE) 

half-way manned space station 

intended to help transport cargo and 

personnel to the Moon and back 

Lagrange point 

L2 

on the line defined by the two large masses, beyond the 

smaller of the two 

space-based observatories: Wilkinson 

Microwave Anisotropy Probe, future 

Herschel Space Observatory , Gaia probe, 

and James Webb Space Telescope 

communications satellite covering 

the Moon's far side 

Lagrange point 

L3 

on the line defined by the two large masses, beyond the 

larger of the two 
Not yet Not yet 

Lagrange point 

L4 &L5 

at the third point of an equilateral triangle whose base 

is the line between the two masses, such that the point 

is ahead of (L4), or behind (L5), the smaller mass in its 

orbit around the larger mass 

Space habitats of future colonization communications and relay satellites 

 

 
(a) Relay satellite at L2 

 

(b) Relay satellite at L4 and L5 

    Fig.2. Relay satellite utilizing Lagrange points in Earth-Moon system 

3.  Calculation of Lagrange Points 

Suppose mass of two big celestial bodies P1 and P2 are 

m1 and m2 in a circular system. The movement of a small 

celestial body P in the system constituted by P1 and P2 is a 

circular restricted three-body problem (CR3BP). In the 

centroidal inertial coordinates system O-XYZ, the initial point 

is located on the center of mass—barycenter, and XY plane of 

coordinates is the relative movement plane of two bodies P1 

and P2. At the initial time t=t0, P1 and P2 are on the axis of 

coordinates OX as shown in figure 3. In this coordinates, 

vectors of coordinates of P, P1 and P2 are ,  and  , and 

                  2211 , RRRRRR 


                     (1) 

Table.2. Lagrange points L1, L2, and L3 in solar system 

System μ x1 x2 x3 

Sun-Mercury 0.00000017 -0.99618898 -1.00382039 1.00000007 

Sun-Venus 0.00000245 -0.99067832 -1.00937503 1.00000102 

Sun-Earth 0.00000304 -0.98999093 -1.01007019 1.00000126 

Sun-Mars 0.00000032 -0.99524867 -1.00476578 1.00000013 

Sun-Jupiter 0.00095388 -0.93236559 -1.06883052 1.00039745 

Sun-Saturn 0.00028550 -0.95476098 -1.04605727 1.00011896 

Sun-Uranus 0.00004373 -0.97572949 -1.02458081 1.00001822 

Sun-Neptune 0.00005177 -0.97433032 -1.02601130 1.00002157 

Sun-Pluto 0.00000278 -0.99028227 -1.00977551 1.00000116 

Earth-Moon 0.01215057 -0.83691521 -1.15568210 1.00506264 
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The two big celestial bodies are both in circular orbit 

around barycenter O, and 
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in which, vector of the small body in O-XYZ system is [X,Y, 

Z]. And in the centroidal revolution coordinates system O-

xyz, vectors of three celestial bodies are r


, 1r 


and 2r 


, and 
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in which )(tRT is the transforming matrix: 
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Utilizing equations above we can obtain the equation of 

small body’s movement in O-xyz is 
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From equation (17) we get 
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In CR3BP the only one Jacobi integration in O-xyz is 

Cv  22                              (22) 

in which C is a Jacobi constant. And the Jacobi 

integration in O-XYZ is 
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The equilibrium solution of equation (17) should fulfill 

the following restrictive qualification: 
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So the equilibrium points in space should fulfill 
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the equilibrium points are all in xy plane. From equations 

(26), we get two situations: 
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From equation (28), we obtain three equilibrium points 

alone the Ox axis as shown in figure 4, which are x1(μ)=-(1-

μ)+ξ
(1)

, x2(μ)=-(1-μ)-ξ
(2)

 and x3(μ)=μ+ξ
(3)

, in which 
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And from equation (29), we obtain two equilibrium 

points at the vertexes of equilateral triangles. 
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Then the three metastable equilibrium points L1, L2, and 

L3 in solar system are listed in table 2, and Jacobi constant in 

equation (22) is in table 3. More careful consideration should 

be in a state of elliptical restricted three bodies rather than 

the circular one. 

 

Fig.3. Centroidal inertial coordinates system O-XYZ and centroidal 

revolution coordinates system O-xyz 

 

Fig.4. Relative position of Lagrange points L1, L2, L3 and two celestial 

bodies P1 and P2 

Table.3. Jacobi constant of Lagrange points L1, L2, and L3 

System C1 C2 C3 

Sun-Mercury 3.00013043 3.00013065 3.00000033 

Sun-Venus 3.00077756 3.00078083 3.00000490 

Sun-Earth 3.00089604 3.00090009 3.00000607 

Sun-Mars 3.00020261 3.00020304 3.00000065 

Sun-Jupiter 3.03844172 3.03971380 3.00190682 

Sun-Saturn 3.01771636 3.01809709 3.00057092 

Sun-Uranus 3.00521010 3.00536840 3.00008745 

Sun-Neptune 3.00582087 3.00588991 3.00010354 

Sun-Pluto 3.00084481 3.00084851 3.00000556 

Earth-Moon 3.18416325 3.20034388 3.02415006 

 

4.  Missions and Projects Around Sun-Earth Lagrange 

Points 

Agency like ESA has some space missions and projects 

under consideration and studying around Lagrange points 

especially Sun-Earth L2 point as listed in table 4
[6]

. Formation 

flying spacecrafts locating Lagrange point is a big challenge 

not only for orbit-control
[7,8] 

and formation-maintenance, but 

also for cooperative interferometry and communication with 

earth
 [6]

. 
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NASA’s missions are mainly concerned with Sun-Earth 

Lagrange points 1 and 2. Their missions include: International 

Cometary Explorer (1982)
[9]

, SOHO (1995)
[10]

, Advanced 

Composition Explorer (1997)
[11,12]

, Genesis (2001)
[13]

 and 

Wilkinson Microwave Anisotropy Probe (2001)
[14]

 with the 

last one on L2 and other four on L1. 

5.  Conclusions 

Utilization of Lagrange points for continuous 

communication with lunar orbiter and far side stations is a 

bold and challenging image in Moon exploration and research. 

Missions before around Sun-Earth L1 and L2 provide human 

being a wider field of view of exploring universe, and Earth-

Moon L1, L2, L4and L5 will play an important role in future 

projects concerning with Moon. 

Satellites around a celestial body, its local network and 

the Lagrange points in a certain 3–body system are to 

construct a planetary network which is an ingredient in a 

supposed InterPlaNetary Internet. Moreover Lagrange points 

will play more importance role in future deep space 

exploration for continuous communication and navigation. 

These points will home future formation flying spacecrafts as 

Darwin project supposed to be and even served as habitats for 

space colonization. 

Table.4. ESA future mission at Sun-Earth Lagrange point 2 
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Missions Date Missions and goal Instrumentation onboard 

Herschel 2007 exploring formation of stars and galaxies 

3.5-metre diameter infrared telescope and three scientific instruments: 

Photodetector Array Camera and Spectrometer (PACS); Spectral and 

Photometric Imaging REceiver (SPIRE); Heterodyne Instrument for the Far 

Infrared (HIFI) 

Planck 2007 
study the cosmic microwave background radiation 

and the fabric of the Universe’s  birth and evolution. 

1.5-metre telescope; two highly sensitive detectors called the Low 

Frequency Instrument and the High Frequency Instrument 

James Webb 

Space Telescope 
2010 

study the very distant Universe, looking for the first 

stars and galaxies that ever emerged 

Visible/Near Infrared Camera; Near-Infrared Multi-Object Dispersive 

Spectrograph; Mid-Infrared Camera-Spectrograph 

Gaia 2011 

make the largest, most precise map of our Galaxy by 

surveying an unprecedented number of stars - more 

than a thousand million 

three optical telescopes, etc. 

Eddington _ 

mapping stellar evolution,  determine the size and 

precise chemical composition of the stars, and 

search for other Earth-sized worlds that harbour 

extraterrestrial life 

wide-field, high-accuracy optical photometer, etc. 

Darwin _ 
Finding Earth-like planets, survey 1000 of the 

closest stars, looking for small, rocky planets 

four (or possibly five) separate spacecraft. Three of the spacecraft will carry 

3-4 metre 'space telescopes', or more accurately light collectors, based on 

the Herschel design. These will redirect light to the central hub spacecraft. 
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