
An Extensible Approach to Extracting Specification from

Device Driver Source Codes Using XSL*

Lei Xiao, Jianfeng Cui, Xiaozhu Xie, Lijuan Liu

School of Computer & Information Engineering, Xiamen University of Technology, Xiamen 361024, China

{lxiao & jfcui & 2011110703 & ljliu}@xmut.edu.cn

*
 Supported by the Natural Science Foundation of Fujian Province of China under Grant No.2011J05160 to Jianfeng Cui; the funding (type B) from the Fujian

Education Department under Grant No.JB12186 to Xiaozhu Xie

 Abstract - Generally, device drivers have various

implementations depending on the environments such as target

devices and operating systems. The concept of device driver

specification has been introduced to increase understand

ability of device drivers and their implementation. This paper

presents an XSL-based tool for extracting a device driver

specification from device driver source code. We focus on the

extensibility of specification extractions so that any changes to

the structures of source code and driver specification can be

accommodated without modifications to the tool. In this paper,

the architecture of the tool is described and the result of its

application to extract device driver specification on Linux

platform is provided.

Index Terms - Device drive, XSL, specification extraction.

I. Introduction

Most of today’s home appliances and mobile phones use

embedded system, which, in many cases, has taken over what

mechanical and dedicated electronic systems used to do
 [1]

.

Device drivers are essential components of operating system

kernel for interfacing software applications with hardware

devices. As part of complex operating system, device drivers

are considered extremely difficult to develop.

Specification of device driver source codes is an approach

to supporting the development of device drivers
[2]

. The

specification is a high-level description on the essential device

driver information at the level of design
 [3]

. The reason for

device driver specification is that a device engineer spends a

lot of time on searching information for related program

understanding and maintenance tasks
[4]

. An abstraction of

source code can help developers comprehend software by

uncovering relationships between classes, modules, units,

functions, etc. Specification extractor is an important tool for

reverse reengineering, maintenance of software systems.

Focusing on the extensibility, we have implemented a tool

for an extraction of device driver specification. The tool,

named XDDSE (eXtensible Device Driver Specification

Extractor), supports the evolution. That is, it supports various

changes in the structures of source code and specification, and

their mapping without any modification to the tool. To support

the extensibility, we adopted XSLT (eXtensible Stylesheet

Language Transformation) technologies. This paper presents

XDDSE and shows its usefulness by applying it for extracting

Linux device driver specification.

II . Extensible Device Driver Specification Extractor

Fig.1shows the architecture of XDDSE. XDDSE consists

of two components; C modeling language (CML) Generator

and Device Driver Specification (DDS) Generator.

Fig. 1 Architecture of XDDSE

CML Generator extracts semantic information from

device driver C source code and generates CML as an

intermediate file. CML Generator uses CDT Parser of eclipse

plug-in. CML is an XML scheme of C. Using CML, XDDSE

extracts device driver specifications from device driver source

codes.

DDS Generator generates a device driver specification

from CML using DDSER. DDSER (Device Driver

Specification Extraction Rule) include code patterns and

device driver specification information for extracting device

driver specification from device driver C source code.

A. C Modeling Language

C Modeling Language (CML) represents a device driver

source code as an XML file. The names of CML node element

follow the AST class names of eclipse CDT
[5]

. For example,

TABLE 1 shows a example of CML representation. The

second column is the XML representation of the C source code

in the first column.

B . Device Driver Specification Extraction Rule

Device Driver Specification Extraction Rule (DDSER)

defines rules for extracting specification based on code

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013)

© 2013. The authors - Published by Atlantis Press 296

mailto:ljliu%7D@xmut.edu.cn

patterns in device driver source codes. DDSER consists of

five device driver specification elements based on the same

structure of the device driver specification; basic, device,

bus, file-operations, and advanced. Fig. 2 shows DDSER

structure. Each extraction rule file follows W3C document

transformation standard XSLT. DDSER defines each

element of device driver specification as a module, so that

DDSER can be easily modified and extended to support

changes in device drivers.

TABLE 1 An Example of CML

#include <stdio.h>

void main(){

printf("Hello!\n");

return;

}

<C>

 <include>stdio.h</Include>

 <FunctionDefinition>

 <DeclSpecifier>int</DeclSpecifier>

 <FunctionDeclarator>

 <Name>main</Name>

 </FunctionDeclarator>

 <CompoundStatement>

 <FunctionCallExpression>

 <Name>printf</Name>

 <LiteralExpression>"Hello!\n"

</LiteralExpression>

 </FunctionCallExpression>

 <ReturnStatement />

 </CompoundStatement>

 </FunctionDefinition>

</C>

Fig. 2 DDSER Structure

ExtractionRule.xsl is the master extraction rule XSL file

of DDSER. It contains information about device driver

specification XML representation and rules for determining

which module will be used to extract specification elements

from a device driver source code.

TABLE 2 shows the modules in ExtractionRule.xsl. The

first column represents classification of each module and

second column shows its detailed implementation using XSL.

Include module shows included XSL files in Extraction

Rule.xsl.

TABLE 2 ExtractionRule.xsl

Include

<xsl:include href="platformBusOp.xsl"/>
<xsl:include href="pciBusOp.xsl"/>
<xsl:include href="charDeviceOp.xsl"/>
<xsl:include href="charFileOp.xsl"/>
<xsl:include href="advModuleParam.xsl"/>
<xsl:include href="advKernelTimer.xsl"/>
<xsl:include href="advTaskletFunction.xsl"/>
<xsl:include href="advInterrupt.xsl"/>
<xsl:include href="advKernelThread.xsl"/>

Basic

<basic>
<cpu> arm </cpu>
<version>2.6.15.7-gcov</version>
<xsl:if test="C/SimpleDeclaration

/FunctionDeclaration">
<xsl:apply-templates select=

"C/SimpleDeclaration/FunctionDeclaration"/>
</xsl:if>

</basic>

Device

<device>
 <xsl:if test="C/FunctionDefinition">

<xsl:apply-templates select=
"C/FunctionDefinition" mode="Device"/>

</xsl:if>
</device>

Bus

<bus>
<xsl:if test="C/FunctionDefinition">
<xsl:apply-templates

select="C/FunctionDefinition"
mode="Bus_operations"/>

</xsl:if>
</bus>

File-
operations

<file-operations>
<xsl:if test="C/FunctionDefinition">

<xsl:apply-templates
select="C/FunctionDefinition"
mode="File_operations"/>

</xsl:if>
</file-operations>

Advanced

<advanced>
<xsl:if test="C/SimpleDeclaration">

<module-param><xsl:apply-templates
select="C/SimpleDeclaration"
mode="advanced_module_param"/>

</module-param>
</xsl:if>
<xsl:if test="C/Macro">

<xsl:apply-templates select="C/Macro"
mode="advanced_kernel_timer"/>

</xsl:if>
<xsl:if test=

"C/FunctionDefinition/FunctionDeclarator">
<xsl:apply-templates select=
"C/FunctionDefinition/FunctionDeclarator"
mode="advanced_thread"/>

</xsl:if>
<xsl:if test=

"C/FunctionDefinition/FunctionDeclarator">
<xsl:apply-templates select=
"C/FunctionDefinition/FunctionDeclarator
" mode="advanced_taklet"/>

</xsl:if>
<xsl:if test="C/FunctionDefinition">

<xsl:apply-templates
select="C/FunctionDefinition"
mode="advanced_workqueue"/>

</xsl:if>
<xsl:if test="C/FunctionDefinition">

<xsl:apply-templates
select="C/FunctionDefinition"
mode="advanced_interrupt"/>

</xsl:if>
</advanced>

297

In XSL each module is regarded as a function. So, each

module and sub-module of DDSER is considered a function.

Basic module shows its extraction location of a device driver

source code. Device, Bus, and File-operations modules show

their sub modules Device, Bus_operations, and

File_operations. Advanced module consists of several sub-

modules.

TABLE 3 charFileOp.xsl

ExtractionRule.xsl: Caller part

<xsl:template
match="FunctionDefinition" mode="File_operations">

<xsl:choose>
<xsl:when test="contains(child::
CompoundStatement, 'register_chrdev')">
<xsl:apply-templates select="ancestor::C/SimpleDeclaration"
mode="CharPrefix"/>
<xsl:call-template name="CharFunctionName"/>
</xsl:when>

</xsl:choose>
</xsl:template>

charFileOp.xsl

<xsl:template match="SimpleDeclaration" mode="CharPrefix">
<xsl:choose>

<xsl:when test="contains
(child::DeclSpecifier, 'file_operations')">
<prefix>
<xsl:apply-templates select=
"descendant::ICASTDesignatedInitializer

/InitializerExpression" mode="PrefixDetail"/>
</prefix>

</xsl:when>
</xsl:choose>

</xsl:template>

<xsl:template match="InitializerExpression"
mode="PrefixDetail">

<xsl:if test="not(contains(.,'THIS'))">
<xsl:if test="contains(ancestor::

SimpleDeclaration, 'file_operations')">
<xsl:if test="position() = 2">

<xsl:value-of select="substring-before(.,'_')"/>
</xsl:if>

</xsl:if>
</xsl:if>

</xsl:template>

<xsl:template name="CharFunctionName">
<xsl:for-each select="ancestor::C/SimpleDeclaration/Declarator

/ICASTDesignatedInitializer/Name">
<xsl:if test="not(contains(.,'owner'))">

<xsl:if test="contains(ancestor::
SimpleDeclaration, 'file_operations')">
<xsl:element name="function">
<xsl:attribute name="name">

<xsl:value-of select="."/>
</xsl:attribute>

</xsl:element>
</xsl:if>

</xsl:if>
</xsl:for-each>

</xsl:template>

TABLE 3 represents charFileOp.xsl file. The

charFileOp.xsl is the module for character device file

operation extraction. The first row represents File-operations

module calling part. The ExtractionRule calls the module

CharPrefix that extracts prefix of character file-operations.

The other rows show an extracting module of the CharPrefix.

The CharPrefix module calls its sub-module PrefixDetail, and

extracts its detailed specifications.

A device uses a bus (e.g. PCI, USB, and platform).

Device driver specifications should provide a bus structure and

operations information for bus communication, and Bus

module should extract a bus structure and operations

specification. Because the bus structure and operations are

different depending on the bus type, their specifications are

classified by its bus type. Advanced module consists of a set of

independent modules. DDSER provides six Advanced

modules: module-parameter, kernel-timer, kernel-thread,

interrupt, tasklet and workqueue.

TABLE 4 provides an example of advanced module. The

first row shows the caller part in ExtractionRule.xsl. The

ExtractionRule.xsl calls advanced_module_param module and

advMouduleParam.xsl extracts specification from device

driver source code.

TABLE 4 advModuleParam.xsl

ExtractionRule.xsl: Caller part

<xsl:if test="C/SimpleDeclaration">
<module-param>
<xsl:apply-templates select="C/SimpleDeclaration"

mode="advanced_module_param"/>
</module-param>

</xsl:if>

advModuleParam.xsl

<xsl:template match="SimpleDeclaration"
mode="advanced_module_param">

<xsl:for-each select="FunctionDeclarator">
<xsl:if test=" contains(child::Name, 'module_param')">
<xsl:element name="param">
<xsl:for-each select="child::ParameterDeclaration">

<xsl:if test="position()=1">
<xsl:attribute name="name"> <xsl:value-of select="."/>
</xsl:attribute>

</xsl:if>
<xsl:if test="position()=2">

<xsl:attribute name="type"> <xsl:value-of select="."/>
</xsl:attribute>

</xsl:if>
<xsl:if test="position()=3">
<xsl:attribute name="perm"> <xsl:value-of select="."/>
</xsl:attribute>

</xsl:if>
</xsl:for-each>

</xsl:element>
</xsl:if>

</xsl:for-each>
</xsl:template>

III . A Case Study

We apply XDDSE to several Linux device driver source

codes. XDDSE supports three device types, including

character, block and network devices, and three bus-types,

including platform, PCI and PCMCIA. TABLE 5 represents

the supported devices, bus types and advanced features. We

have applied XDDSE to a simple device source code of

character device type, nobus bus type, and several advanced

features.

298

TABLE 5 Supported Linux Device Driver Types

Device Type Character, Block, Network

Bus Type Platform, PCI, PCMCIA, Nobus

Advanced

Feature

Module-parameter, Kernel-timer, Tasklet-

function, Interrupt, Kernel-thread,

Workqueue

In this section, we give a case study. Several changes can

be considered: change of kernel version, appending new

device, and change of device driver specification. We can

classify those changes into two categories: changes of code

pattern and addition of new device driver specification

elements.

Changes of code pattern. Changes of code pattern occur

when the kernel is changed or new device is appended. Device

driver specification is changed and device driver specification

requires new information, then extraction code pattern needs

to be changed. TABLE 6 represents an old pattern and its

modified pattern. To extract name of a device, in the case of

old pattern its location is the macro declaration KDSE_cdev,

but in modified pattern the device name location is changed to

function declaration KDSE_init.

TABLE 6 Changes of Code Pattern Configuration

Element Old Pattern Modified Pattern

Device / N

ame

static struct cdev

KDSE_cdev;

static int KDSE_init(void)

{…}

TABLE 7 gives an example of change of code pattern in

XSL files. In the first row, old code pattern is ‘_cdev’ in

variable declaration but in the second row, modified code

pattern is changed to ‘_init’ in function declaration. In the case

of the pattern ‘_cdev’, the code pattern can only be applied to

character device. The modified pattern, however, ‘_init’ is the

initializing function of a device driver, so the modified pattern

can be applied to various types of devices. Simply modifying

DDSER, that is, changes of code pattern can be easily

supported without changes in XDDSE tool.

TABLE 7 Result of Changes of Code Pattern

<xsl:template match="Macro" mode="CharDev">
….
<xsl:when test="contains(child::Name,'_cdev')">
 <name> <xsl:value-of select="substring-before(.,'_cdev')"/>
</name>
….

</xsl:when>
….
</xsl:template>
<xsl:template match= "FunctionDefinition" mode="Device">
<xsl:if test="contains(child::FunctionDeclarator,'_init')">
 <name> <xsl:value-of select="substring-before

(child::FunctionDeclarator,'_init')"/>
</name>
….

</xsl:if>
….
</xsl:template>

Addition of new device driver specification elements.

New device driver specification elements need to be added

when a new device is added to Linux system. Let us consider a

situation where new element of device driver specification is

appended. TABLE 8 shows old element and appended

element.

TABLE 8 Addition of New Specification Elements

Element Old Element Appended Element

Advanced

/module-

param

None module-parameter:

- name: param1

- name: param2

- name: param3

- name: param4

- name: param5

IV . Related Works

Source code generation and tools are studied in progress

actively. For example, WinDriver
[7]

, DriverStudio
[8]

, Driver

Development Kit
 [9]

 includes source code generation tools.

WinDriver offers functions for hardware and kernel

information extraction that is needed for driver frame code

generation. DriverStudio offers debugging, testing and

analyzing software performance tools. Windows Driver

Development Kit provides a build environment, tools, driver

samples, and documentation to support driver development.

V . Conclusion and Future Works

In this paper, we present a tool XDDSE for extracting

device driver specification. XDDSE is designed to support its

extensibility by using XSL. A case study is given for

illustrating the extensibility of XDDSE.

At present, DDSE mainly covers several kinds of device

and bus types. There are, however, other possible

classification such as sound and video. Each usage-domain

device driver has its own characteristics. They will be included

in the device driver specification and the DDSER. In addition,

we plan to develop source code generation tool for device

drivers based on the same technology, XSL.

Reference

[1] Lee. E. A. “What’s ahead for embedded software?,” Computer, Volume

33, Issue 9, Sep 2000, pp. 18-26

[2] Mattias O'Nils, Johnny Oberg, Axel Jantsch, “Grammar Based

Modelling and Synthesis of Device Drivers and Bus Interfaces,”

EUROMICRO'98, 1998, p. 10055

[3] Chikofsky.E.J, Cross.J.H “Reverse engineering and design recovery: a

taxonomy,” Software, IEEE, Volume 7, Issue 1, Jan 1990, pp. 13-17

[4] Laurent Reveillere, Gilles Muller, “Improving Driver Robustness : an

Evaluation of the Devil Approach,” Proceedings of the 2001

International Conference on Dependable Systems and Networks, 2001

[5] CDT Parser plug-in, http://www.eclipse.org/cdt/

[6] Yong Hoon Choi, Woo Il Kown, Heung Nam Kim, “Code generation for

Linux device driver,” 2006. ICACT 2006, pp. 4

[7] WinDriver(http://www.jungo.com/windriver_usb_pci_driver_developm

ent_software.html

[8] DriverStudio(compuware)

http://www.compuware.co.kr/products/driverstudio/ds/

[9] Windows Driver Development Kit

http://www.microsoft.com/whdc/devtools/ddk

299

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52

