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Abstract

In this paper we study generalized classes of volume preserving multidimensional inte-
grable systems via Nambu–Poisson mechanics. These integrable systems belong to the
same class of dispersionless KP type equation. Hence they bear a close resemblance
to the self dual Einstein equation. All these dispersionless KP and dToda type equa-
tions can be studied via twistor geometry, by using the method of Gindikin’s pencil of
two forms. Following this approach we study the twistor construction of our volume
preserving systems.

Dedicated to the memory of Dr. B C Guha

1 Introduction

In this article we study volume preserving diffeomorphic integrable hierarchy of three
flows [1]. This is different from the usual two flows cases, and this can be studied via
Nambu-Poisson geometry. It is already known that a group of volume preserving diffeo-
morphisms in three dimension plays a key role in an Einstein–Maxwell theory where the
Weyl curvature is self-dual and the Maxwell tensor is algebraically anti self-dual. Later
Takasaki [2] explicitly showed how volume preserving diffeomorphisms arises in integrable
deformations of self-dual gravity.
Nambu mechanics is a generalization of classical Hamiltonian mechanics, introduced

by Yoichiro Nambu [3]. At the begining he wanted to formulate a statistical mechanics
on R

3, emphasizing that the only feature of Hamiltonian mechanics one should preserve
is the Liouville theorem. He considered the following equations of motion

dr
dt
= ∇u(r) ∧∇v(r), r = (x, y, z) ∈ R,

where x, y, z are dynamical variables and u, v are two functions of r. Then Liouville
theorem follows from the identity

∇ · (∇u(r) ∧∇v(r)) = 0.
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He further observed from above equation that the evolution of a function on R
3 is given

by

df

dt
=
∂(f, u, v)
∂(x, y, z)

,

where the right hand side is the Jacobian of the mapping R
3 −→ R

3 given by

(x, y, z) −→ (f, u, v).

The right hand side can be interpreted as a generalized Poisson bracket. Hence the binary
operation of Poisson bracket of Hamiltonian mechanics is generalized to n-ary operation
in Nambu mechanics. Recently Takhtajan [4, 5] has formulated its basic principles in an
invariant geometrical form similar to that of Hamiltonian mechanics.
In this paper, we shall use Nambu mechanics to study generalized volume preserving

diffeomorphic integrable hierarchy. These classes of integrable systems are closely related
to the self dual Einstein equation, dispersionless KP equations etc. In fact we obtain a
higher dimensional analogue of all these systems. It turns out that all these systems can
be written in the following form:

dΩ(n) = 0, Ω(n) ∧ Ω(n) = 0.

For n = 2 we obtain all the self dual Einstein and dKP type equations.
Hence we obtain a common structure behind all these integrable system, so there is

a consistent and coherent way to describe all these systems. Here we unify all these
classes of integrable systems by Gindikin’s pencil or bundle of forms and Riemann–Hilbert
problem (twistor description). Gindikin introduced these technique to study the geometry
of the solution of self dual Einstein equations. Later Takasaki–Takebe [6, 7] applied it to
dispersionless KP and Toda equations.
This paper is organized as follows. In Section 2 we present a tacit introduction of

Nambu–Poisson geometry. In Section 3 we construct our volume preserving integrable
systems via Nambu–Poisson geometry. If one carefully analyse these set of equations,
then one must admit that they bear a close resemblance with the volume preserving KP
equation, so far nobody knows about this equation. It is known that area preserving KP
hierarchy (= dispersionless KP hierarchy) plays an important role in topological minimal
models (Landau–Ginzburg description of the A-type minimal models). So we expect
volume preserving KP hierarchy may play a big role in low dimensional quantum field
theories. Section 4 is dedicated to the twistor construction of these systems.

Notations

1. M : Nambu-Poisson manifold.

2. η : Nambu-Poisson polyvector (tensor).

3. Jη : Bundle map associated to η.

4. Xf1···fn−1 : Hamiltonian vector field associated to η.

5. L, M , N : Formal Laurent series, Lax operators involving volume preserving sys-
tems.
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6. L : Lax operator for dispersionless KP hierarchy.
7. K : Orlov operator in dispersionless KP.

8. Ω : two form in dispersionless KP.

9. Ω(3) : three form in volume preserving integrable systems.

10. T : curved twistor space.

11. (P,Q) or (P ′, Q′) : Pair of Darboux coordinates.

12. eij : one forms or tetrad.

2 Nambu–Poisson manifolds

The modern concept of Nambu–Poisson structure was proposed by Takhtajan in 1994
in order to find an axiomatic formulation for the n-bracket operation. Let M denote a
smooth n-dimensional manifold and C∞(M) the algebra of infinitely differentiable real
valued functions on M. A manifold M is called a Nambu–Poisson manifold if there exits
a R-multi-linear map

{ , . . . , } : [C∞(M)]⊗n → C∞(M).

This is called Nambu–Poisson bracket of order n ∀ f1, f2, . . . , f2n−1 ∈ C∞(M). This
bracket satisfies

{f1, . . . , fn} = (−1)ε(σ){fσ(1), . . . , fσ(n)}, (2.1)

{f1f2, f3, . . . , fn+1} = f1{f2, f3, . . . , fn+1}+ {f1, f3, . . . , fn+1}f2, (2.2)

and

{{f1, . . . , fn−1, fn}, fn+1, . . . , f2n−1}
+ {fn, {f1, . . . , fn−1, fn+1}, fn+2, . . . , f2n−1}+ · · ·
+ {fn, . . . , f2n−2, {f1, . . . , fn−1, f2n−1}}
= {f1, . . . , fn−1, {fn, . . . , f2n−1}}, (2.3)

where σ ∈ Sn — the symmetric group of n elements — and ε(σ) is its parity. Equa-
tions (2.1) and (2.2) are the standard skew-symmetry and derivation properties found for
the ordinary (n = 2) Poisson bracket, whereas (2.3) is a generalization of the Jacobi iden-
tity and was called in [2] the fundamental identity. When n = 3 this fundamental identity
reduces to

{{f1, f2, f3}, f4, f5}+ {f3, {f1, f2, f4}, f5}
+ {f3, f4, {f1, f2, f5}} = {f1, f2, {f3, f4, f5}}.

2.1 Hamiltonian geometry

The Nambu–Poisson bracket is geometrically realized by the Nambu–Poisson polyvector
η ∈ Γ(∧nTM), a section of ∧nTM , such that

{f1, . . . , fn} = η(df1, . . . , dfn),
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in local coordinates (x1, . . . , xn) this is given by

η = ηi1...in(x)
∂

∂xi1

∧ · · · ∧ ∂

∂xin

,

where summation over repeated indices are assumed.
The structure is regular if η �= 0. The canonical example of a Nambu–Poisson structure

of order n ≥ 2 is the one induced by a volume form on an oriented manifold

{f1, . . . , fn} = η(df1, . . . , dfn).

The Nambu–Poisson polyvector defines a bundle map

Jη : T ∗M× · · ·T ∗M︸ ︷︷ ︸
n−1

−→ TM

given by

〈β, Jη(α1, . . . , αn−1)〉 = η(α1, . . . , αn−1, β),

where β, αi ∈ Ω1(M).
The Hamiltonian vector field is defined by

Xf1,... ,fn−1 = Jη(df1, . . . , dfn−1).

This is a Hamiltonian vector field of (n − 1) functions. Thus, we can express the funda-
mental identity as

LXf1···fn−1
η(dg1 · · · dgn) = 0,

where L is the Lie derivative. This shows that the Hamiltonian vector fields are the
infinitesimal automorphism of the Nambu–Poisson tensor.
The polyvector field η ∈ Γ(∧nTM) defines an n-ary Poisson bracket if and only if

either n is even and the Schouten bracket satisfies [η, η] = 0, or n is odd if η satisfies the
conditions (see for detail [8])

iα(η) ∧ iβ(η) = 0, ∀ α, β ∈ T ∗M,
n∑

j=1

(idxjη) ∧
(
L ∂

∂xj

η

)
= 0.

In this framework we can introduce the bihamiltonian structure also. A bihamiltonian
system is prescribed by specifying two sets of Hamiltonian function H = H1, . . . , Hn and
h = h1, . . . , hn, where Hi, hi ∈ C∞(M),

X = J0
η (dh1, . . . , dhn) = J1

η (dH1, . . . , dHn),

where J i
ηs are the bundle maps.
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One more interesting algebraic structure pops up in the Nambu–Poisson geometry —
this is called Leibniz algebra. The Nambu–Poisson polyvector η induces a homomorphism
of vector bundles

Jk
η : ∧k (T ∗M) −→ ∧n−k(TM),

such that Jk
η (β) = iβη for β ∈ ∧kT ∗

xM. All these higher covectors form Leibniz algebra.
It was shown by Ibanez et. al. [9] that the bracket of (n− 1) forms onM is the R-bilinear
operations

[·, ·]Leibniz : C∞(∧n−1T ∗M)× C∞(∧n−1T ∗M) −→ C∞(∧n−1T ∗M),

given by

[α, β] = LJαβ + (−1)n(i(dα)η)β,

for all α, β ∈ C∞(∧n−1T ∗M).
Any Leibniz algebra (A, ◦) satisfies

f ◦ (g ◦ h) = (f ◦ g) ◦ h+ g ◦ (f ◦ h), f, g, h ∈ C∞(M).

A morphism in the Nambu–Poisson category is a map

φ : M −→ N

between Nambu–Poisson manifolds preserving Nambu–Poisson brackets:

{f1, · · · , fn}N ◦ φ = {f1 ◦ φ, · · · , fn ◦ φ}M .

The fundamental difference between the Nambu–Poisson bracket and the classical Pois-
son case is that for n ≥ 3 the Nambu–Poisson polyvector η is decomposable, i.e. it has
rank n at points where it does not vanish.
The Nambu–Poisson polyvectors were charcterized by Takhtajan. The polyvector

field η is a Nambu–Poisson tensor if and only if the natural component of η satisfy certain
conditions. It was stated in [4] that the fundamental identity (2.3) is equivalent to the
following algebraic and differential constraints on the Nambu–Poisson tensor η:

(A) Sij + P (S)ij = 0,

for all multi-indices i = {i1, . . . , in} and j = {j1, . . . , jn} from the set {1, . . . , N}, where

Sij = ηi1...inηj1...jn + ηjni1i3...inηj1...jn−1i2 + · · ·
+ ηjni2...in−1i1ηj1...jn−1in − ηjni2...inηj1...jn−1i1 ;

(B) P is the permutation operator which interchanges the indices i1 and j1 of 2n-
tensor S, and

N∑
l=1

(
ηli2...in

∂ηj1...jn

∂xl
+ ηjnli3...in

∂ηj1...jn−1i2

∂xl
+ · · ·+ ηjni2...in−1l

∂ηj1...jn−1in

∂xl

)

=
N∑

l=1

ηj1j2...jn−1l
∂ηjni2...in

∂xl
,

for all i2, . . . , in, j1, . . . , jn = 1, . . . , N .
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It was conjectured in [2] that the equation Sij = 0 is equivalent to the condition that
n-tensor η is decomposable, recently this has been proved by Alekseevsky and author [10],
Since then several other proofs appeared this surprising result (see [11, 12] and references
therein).
The algebraic identity is the special feature for the Nambu–Poisson structure. It ap-

pears solely in the Nambu–Poisson geometry — there is no counterpart of this structure
in the usual Poisson geometry.
The following theorem describes the local structure of the Nambu–Poisson structure of

order n with n ≥ 3.

Theorem 2.1 (Local Triviality Theorem). Let η be a Nambu–Poisson polyvector of
order n ≥ 3. Near any point at which η does not vanish there are local coordinates
x1, . . . , xn such that

η =
∂

∂x1
∧ ∂

∂x2
∧ · · · ∧ ∂

∂xn
.

Let {h1, . . . , hn−1} be the set of Hamiltonian functions, and Xh1···hn−1 be corresponding
the Hamiltonian vector field. Then the equation for the integral curves of Xh1···hn−1 is

ẋ = Jη(dh1, . . . , dhn−1),

Hamilton’s equations of motion.

2.2 Nambu–Poisson dynamics

It is also shown in [2] that Nambu dynamics on a Nambu–Poisson phase space involves
n − 1 so-called Nambu–Hamiltonians H1, . . . , Hn−1 ∈ C∞(M) and is governed by the
following equations of motion

df

dt
= {f,H1, . . . , Hn−1}, ∀ f ∈ C∞(M).

A solution to the Nambu–Hamilton equations of motion produces an evolution operator
Ut which by virtue of the fundamental identity preserves the Nambu bracket structure on
C∞(M).

Definition 2.1. f ∈ C∞(M) is called an integral of motion for the system if it satisfies

{f,H1, H2, . . . , Hn−1} = 0.

Example. Let us illustrate how Nambu–Poisson mechanics works in practise. The exam-
ple is the motion of a rigid body with a torque about the major axis introduced by Bloch
and Marsden [13].
Euler’s equation for the rigid body with a single torque u about its major axis is given

by

ṁ1 = a1m2m3, ṁ2 = a2m1m3, ṁ3 = a3m1m2 + u,

where u = −km1m2 is the feedback, a1 = 1
I2

− 1
I3
, a2 = 1

I3
− 1

I1
and a3 = 1

I1
− 1

I2
. We

assume I1 < I2 < I3.
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These equations can be easily recast into generalized Nambu–Hamiltonian equations of
motion

dmi

dt
= {H1, H2,mi},

where the right hand side is given by

{H1, H2,mi} :=
∂(H1, H2,mi)
∂(m1,m2,m3)

.

These equations involve two Hamiltonians and these are

H1 =
1
2

(
a2m

2
1 − a1m

2
2

)
, H2 =

1
2

(
a3 − k

a1
m2

1 −m2
3

)
.

When a1 = a2 = a3 = 1 and u3 = 0, these set of equations reduce to a famous Euler
equation or Nahm’s equation

dTi

dt
= εijk[Tj , Tk], i, j, k = 1, 2, 3,

where Tis are SU(2) generators.
It is well known that the system of N vortices can be described by the following system

of differential equations [14]

żn = i

N∑
m�=n

Γm

z∗n − z∗m
,

where zn = xn + iyn are complex coordinate of the centre of n-th vortex.
The equation of motion of a system of three vortices can be put in the following form [15]

Ṁi = εijkΓiMi(Mj −Mk), i, j, k = 1, 2, 3

where M1 = |z2 − z3|2, M2 = |z3 − z1|2 and M3 = |z1 − z2|2. Again, these equations
can be described by Nambu–Poisson geometry. In fact, there is a large scope to apply
Nambu–Poisson formulation in fluid mechanics [16].

3 Volume preserving integrable systems

In this section we shall follow the approach of Takasaki–Takebe’s [6, 7] method of area
preserving diffeomorphic (or sDiff(2)) KP equation. In fact, they adopted their method
from self dual vacuum Einstein equation theory. In the case of self dual vacuum Einstein
equation, and hyperKähler geometry also area preserving diffeomorphism appear, where
the spectral variable is merely parameter. But in case of sDiff(2) K.P. equation the situa-
tion is different, where Takasaki–Takebe showed that one has to treat λ as a true variable
and it enters into the definition of the Poisson bracket. Our construction is closely related
to Takasaki-Takebe construction, only the Kähler like two form and the associated “Dar-
boux coordinates” is replaced by volume form and the Poisson bracket is replaced by its
higher order Poisson bracket called Nambu bracket.
Suppose we consider L = L(λ, p, q), M = M(λ, p, q) and N = N(λ, p, q) are some

Laurent series in λ with coefficients are functions of p and q.
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Definition 3.1. The volume preserving integrable hierarchy is defined by

∂L

∂tn
= {B1n, B2n, L}, (3.1)

∂M

∂tn
= {B1n, B2n,M}, (3.2)

∂N

∂tn
= {B1n, B2n, N}, (3.3)

and

{L,M,N} = 1, (3.4)

where B1n := (Ln)n≥0 and B2n := (Mn)n≥0. The first three equations are hierarchy
equations, and these generates the three flows of the system and the last one shows the
volume preservation condition. The Nambu–Poisson bracket in 3D “phase space” (λ, p, q)
is given by

{A(λ, p, q), B(λ, p, q), C(λ, p, q)} = ∂A

∂λ

(
∂B

∂p

∂C

∂q
− ∂B

∂q

∂C

∂p

)
+ cyclic terms.

Let us now compare our case with the area preserving KP hierarchy. The sdiff(2) KP
hierarchy is given by

∂L
∂tn

= {Bn,L},
∂K
∂tn

= {Bn,K}, {L,K} = 1,

where L is a Laurent series in an indeterminant λ of the form

L = λ+
∞∑

n=1

un+1(t)λ−n,

Bn = (L)≥0. The function K is called Orlov function and it is defined by

K =
∞∑

n=1

ntnLn−1 + x+
∞∑
i=1

viL−i−1,

where t1 = x.

Remark 3.1. Our hierarchy has a structure of volume preserving KP hierarchy and in-
stead of one Orlov function K, we need two Orlov functions M and N .

Any two equations of the hierarchy commute

∂tm∂tl = ∂tl∂tm ,

hence we obtain
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Proposition 3.1. The Lax equation for L, M , N are equivalent to the following equa-
tions:{

∂B1n

∂tm
, B2n

}
+

{
B1n,

∂B2n

∂tm

}
+

{
B̂1, B2m

}
−

{
∂B1m

∂tn
, B2m

}
−

{
B1m,

∂B2m

∂tn

}
+

{
B1m, Ĥ2

}
= 0,

where

Ĥ1 = {B1n, B2n, B1m}, Ĥ2 = {B1n, B2n, B2m}.

Proof. Result follows from the compatibility conditions of hierarchy equations and the
fundamental identity. �

Remark 3.2. In the case of sDiff(2) hierarchy the above expression boils down to zero
curvature equation.

Let Ω(3) be a three form given by

Definition 3.2.

Ω(3) :=
∞∑

n=1

dB1n ∧ dB2n ∧ dtn = dλ ∧ dp ∧ dq +
∞∑

n=2

dB1n ∧ dB2n ∧ dtn. (3.5)

From the definition it is clear Ω is closed 3 form. In fact sDiff(3) structure is clearly
exhibited from this structure and the theory is integrable in the sense of nonlinear graviton
construction [14]. This is a generalization of nonlinear graviton construction.

Theorem 3.1. The volume preserving hierarchy is equivalent to the exterior differential
equation

Ω(3) = dL ∧ dM ∧ dN. (3.6)

Proof. We have seen that Ω can be written in two ways. Expanding both sides of the
exterior differential equation as linear combinations of dλ∧dp∧dq, dλ∧dp∧dtn, dλ∧dq∧dtn
and dp ∧ dq ∧ dtn.
When we pick up the coefficients of dλ ∧ dp ∧ dq, we obtain the volume preserving

condition

{L,M,N} = 1.

When we equate the other coefficients, viz. dλ∧dp∧dtn, dλ∧dq∧dtn and dp∧dq∧dtn
we obtain the following identities:

∂(B1n, B2n)
∂(λ, p)

=
∂(L,M,N)
∂(λ, p, tn)

,
∂(B1n, B2n)
∂(λ, q)

=
∂(L,M,N)
∂(λ, q, tn)

,

and

∂(B1n, B2n)
∂(p, q)

=
∂(L,M,N)
∂(p, q, tn)
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respectively. We multiply the above three equations by ∂L
∂q ,

∂L
∂p and

∂L
∂λ respectively. If we

add first and third equations and substract the second one from them, then after using
the volume preserving identity we obtain

∂L

∂tn
= {B1n, B2n, L}.

Similarly we can obtain the other equations also, in that case we will multiply the equations
(3.1), (3.2) and (3.3) by ∂M

∂q ,
∂M
∂p and ∂M

∂λ respectively. �

Equation (3.5) and (3.6), we obtain

d

(
MdL ∧ dN +

∞∑
n=1

B1ndB2n ∧ dtn

)
= 0.

This implies the existence of one form Q such that

dQ =Md(LdN) +
∞∑

n=1

B1nd(B2ndtn).

This is an analogue of “Krichever potential” in the volume preserving case. Hence we
can say from (3.4)

M =
∂Q

∂(LdN)
|B2n,tn fixed, B1n =

∂Q

∂(B2ndtn)
|L,N,B2m,tm(m�=n) fixed.

4 Application to mulitidimesional integrable systems
and Riemann–Hilbert problem

We already stated that our situation is quite similar to nonlinear graviton construction
of Penrose [17] for the self dual Einstein equation. This is a generalization of nonlinear
graviton constructions.
To the geometer self dual gravity is nothing but Ricci flat Kähler geometry and it is

characterized by the underlying symmetry groups sDiff(2), this are called area preserving
diffeomorphism group on surfaces. These are the natural generalization of the groups
Diff(S1), diffeomorphism of circle.
It is well known how the area preserving diffeomorphism group appears in the self dual

gravity equation. Let us give a very rapid description of this.
Let us start from a complexified metric of the following form

ds2 = det
(

e11 e12

e21 e22

)
= e11e22 − e12e21,

where eij are independent one forms. Ricci flatness condition boils down to the closed-
ness of

dΩkl = 0 (4.1)
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of the exterior 2-forms

Ωkl =
1
2
Jije

ik ∧ ejl,

where J is the normalized symplectic form

J =
(

0 1
−1 0

)
.

Then above system of two forms can be recast to

Ω(λ) =
1
2
Jij

(
ei1 + ei2λ

)
∧

(
ej1 + ej2λ

)
.

This satisfies

Ω(λ) ∧ Ω(λ) = 0, dΩ(λ) = 0, (4.2)

where d stands for total differentiation. These suggest us to introduce a pair of Darboux
coordinates

Ω(λ) = dP ∧ dQ

and these are the sections of the twistor fibration

π : T −→ CP 1,

where T is the curved twistor space introduced by Penrose. Basically each fibre is endowed
with a symplectic form and as the base point moves this also deforms and here comes the
area preservation.
Two pairs of Darboux coordiantes are related by

f(λ, P (λ), Q(λ)) = P ′, g(λ, P (λ), Q(λ)) = Q′

and f and g satisfy {f, g} = 1. The pair (f, g) is called twistor data. Locally f and g
(after twisting with λ) yield patching function. Ricci flat Kähler metric is locally encoded
in this data. This set up is nothing but the Riemann–Hilbert problem in area preserving
diffeomorphism case.
The novelty of this approach is that this twistor construction will work in the higher

dimensions too, when there is no twistor projection. The most important example is
the electro-vacuum equation, volume preserving diffeomorphism groups in three dimen-
sion play a vital role here. This model was first introduced by Flaherty [18] and later
Takasaki [2] showed how this works explicitly.

4.1 Gindikin’s bundle of forms

We already stated that anti-self dual vacuum equations govern the behaviour of complex
4-metrics of signature (+,+,−,−) whose Ricci curvature is zero and whose Weyl curva-
ture is self dual. These two curvatures are independent of change of coordinates, so in
one particular of the equations these metric becomes autometically Kähler and can be
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expressed in terms of a single scalar function Ω, the Kähler potential. Then curvarure
conditions will lead you to Ist Plebenski’s Heavenly equation

∂2Ω̃
∂x∂x̃

∂2Ω̃
∂y∂ỹ

− ∂2Ω̃
∂x∂ỹ

∂2Ω̃
∂y∂x̃

= 1,

or using the Poisson bracket (w.r.t x and y)

{Ω̃x̃, Ω̃ỹ} = 1,

and the correspoding anti-self-dual Ricci flat metric is

g(Ω̃) =
∂2Ω̃

∂xi∂x̃j
dxidx̃j , x̃i = x̃, ỹ, xj = x, y.

This system is completely integrable and it is an example of a multidimensional inte-
grable system.
Let Ω be the 2-form, given by

Ω(x, x̃, y, ỹ) = dx ∧ dy

+ λ(Ω̃xx̃dx ∧ dx̃+ Ω̃xỹdx ∧ dỹ + Ω̃yx̃dy ∧ dx̃+ Ω̃yỹdy ∧ dỹ) + λ2dx̃ ∧ dỹ.

Lemma 4.1.

1) dΩ = 0,
2) Ω ∧ Ω = 0.

Proof. Since Ω satisfies Plebenski’s Heavenly Ist equation, hence 2) is true. �

A number of multidimensional integrable systems can be written in terms of a 2-form
Ω which satisfies the equations (4.1).

Example. The dispersionless KP hierarchy has a Lax representation with respect to a
series of independent (“time”) variables t = (t1, t2, . . . )

∂L
∂tn

= {Bn,L},

where Bn := (Ln)≥0, n = 1, 2, . . . , L is a Laurent series in an indeterminant λ of the form

L = λ+
∞∑

n=1

un+1(t)λ−n,

{ , } is a Poisson bracket in 2D phase space with respect to (λ, x).
Let us consider

Ω = dλ ∧ dx+
∞∑

n=2

dBn ∧ dtn

then Ω ∧ Ω is equivalent to the zero curvature condition
∂Bn

∂tm
− ∂Bm

∂tn
+ {Bn, Bm} = 0.

This is an alternative form of dispersionless KP hierarchy.
All these systems are related to area preserving diffeomorphism group sDiff(2).
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In this paper we are presenting an analogous picture for multidimensional integrable
systems related to volume preserving diffeomorphism group.

Proposition 4.1. The 3-form

Ω(3) = dλ ∧ dp ∧ dq +
∞∑

n=2

dB1n ∧ dB2n ∧ dtn,

satisfies

dΩ(3) = 0, Ω(3) ∧ Ω(3) = 0.

Proof. This is equivalent to Propostion 3.1, hence it is satisfied. �

The Gindikin’s method [19] of pencil of 2-forms is the most effective way to study these
systems. Consider the following system of Ist order equation depending on a parameter
τ = (τ1, τ2) ∈ C

2

e1(τ) = e11τk
1 + · · ·+ e1kτk

2 ,

e2(τ) = e21τk
1 + · · ·+ e2kτk

2 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
e2l(τ) = e2l1τk

1 + · · ·+ e2lkτk
2 ,

where eij are 1-forms. Let Ωk(τ) be the bundle of 2-forms

Ωk(τ) = e1(τ) ∧ e2(τ) + · · ·+ e2l−1(τ) ∧ e2l(τ)

satisfying the conditions(
Ωk

)l+1
= 0,

(
Ωk

)l
�= 0, dΩk = 0.

The bundle of forms actually encodes the integrability of the original system. In the special
case l = 1, k = 2, we recover the Ricci flat metric

g = e11e22 − e12e21.

4.2 Higher dimensional analogue of Gindikin’s Pencil

Let us consider the following system of Ist order equations depending on parameter τ =
(τ1, τ2, τ3) ∈ C

3,

e1(τ) = e11τ1 + e12τ2 + e13τ3,

e2(τ) = e21τ1 + e22τ2 + e23τ3,

e3(τ) = e31τ1 + e32τ2 + e33τ3.

Just like the previous situation these bundle of forms then encodes the integrability of
the original system. The metric defined here is the higher order analogue of Ricci metric
in two form case.
This metric is given by,

g = e11e22e33 − e11e32e23 + e12e31e23 − e12e21e33 + e13e21e32 − e13e31e22.
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Remark 4.1. Since 3-form Ω(3) satisfies

dΩ(3) = 0, Ω(3) ∧ Ω(3) = 0,

so it denotes the volume preserving multidimensional integrable systems. These systems
can be described by Gindikin’s bundle of multi forms, higher dimensional analogue of
nonlinear graviton.

4.3 Twistor description of volume preserving multidimensional
integrable systems

The natural question would be to find out the analogous Riemann–Hilbert problem in
the volume preserving case. Our situation is very similar to electro-vacuum equation.
Let us consider two sets of solutions of hierarchy (L,M,N) and (L̂, M̂ , N̂) with different
analysity. Then there exist an invertible functional relation between these two sets of
functions such that it satisfies

L̂ = f1(L,M,N), M̂ = f2(L,M,N), N̂ = f3(L,M,N),

where f1 = f1(λ, p, q), f2 = f2(λ, p, q) and f3 = f3(λ, p, q) are arbitrary holomorphic
functions defined in a neighbourhood of λ =∞ except at λ =∞.
We assume f1, f2, f3 satisfy the canonical Nambu Poisson relation

{f1, f2, f3} = 1.

This is a kind of Riemann–Hilbert problem related to three dimensional diffeomor-
phisms. In this case sDiff(3) symmetries is clear, in fact sDiff(3) group acts on (f1, f2, f3),
we can lift this action on (L,M,N) and (L̂, M̂ , N̂) via Riemann–Hilbert fatorization.

4.4 Application to hydrodynamic type systems

There are certain kind of integrable systems, called hydrodynamic type, naturally arise in
gas dynamics, hydrodynamics, chemical kinematics and may other situations, these are
given by

ui
t = vi

j(u)u
j
x,

where vi
j(u) is an arbitrary N ×N matrix function of

u =
(
u1, . . . , uN

)
, ui = ui(x, t), i = 1, . . . , N.

The Hamiltonian systems of hydrodynamic type systems considered above have the
form

ui
t = {ui, H},

where H =
∫
h(u)dx, is a functional of hydrodynamic type. The Poisson bracket of these

systems has the form

{ui(x), uj(y)} = gij(u)δx(x− y) + bijk (u)u
k
xδ(x− y),
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called Dubrovin–Novikov type Poisson bracket. Dubrovin–Novikov showed if the metric is
non degenerate i.e. det [gij ] �= 0 then the above bracket yields a Poisson bracket provided
gij(u) is a metric of zero Riemannian Curvature.
A large class of them can be described by the Lax form,

ψx = zAψ, ψt = zBψ.

From the compatibility condition we obtain,

At = Bx, AB = BA.

These set of equations can be easily recasted to

dΩ = 0, Ω ∧ Ω = 0,

where Ω is a closed one form.
Hence has also a twistorial description. The upshot of this section is that Gindikin

pencil of forms can be applied to large number of classes integrable systems, including the
volume preserving integrable systems we propose here.

5 Conclusion

In this paper we have shown that there are large class of integrable systems can be ob-
tained from Nambu–Poisson mechanics. They belong to the same family of self dual
Einstein or dispersionless KP type equations. In some sense these integrable systems are
higher dimensional generalization of self dual Einstein equation. Hence these systems are
describable via Gindikin’s bundle of forms, or twistor method. Our integrable systems are
volume preserving. We hope that eventually such construction will find their use in the
construction of volume preserving KP and Toda type equation.
We have also discussed in this paper that Nambu–Poisson manifold is an useful tool to

study volume preserving integrable systems. Recently in membrane theory physicists [20]
have found M-algebra from M-brane, these are related to Nambu–Poisson mechanics.
There are certain problems we have not discussed in this paper, viz. the quantization

of these volume preserving generalized multidimensional integrable systems. Presumably,
the method of star product quantization [21, 22, 23] would be the best way quantize these
systems and instead of binary star product we need triple star product [24].
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