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 Abstract - For the decoding of a binary linear block code of 

Hamming distance of d  over AWGN channels, a soft-decision 

decoder is said to be bounded-distance (BD) decoding if its squared 

error-correction radius is equal to d . A Chase-like algorithm outputs 

the best (most likely) codeword in a list of candidates generated by a 

conventional algebraic binary decoder whose input vectors are 

determined by the reliability order of the hard-decisions. Let )(d  

denote the smallest size of input vector sets of Chase-like algorithms 

which achieve BD decoding. When d  approaches to infinity, the 

best known upper bound on ( )d is 2/1))1(()( dd   , where 

2.414  . In this paper, we show 
2/1))1(()( dd   , where 2.218   . 

 Index Terms - Chase-like algorithm, algebraic binary decoder, 

bounded-distance decoding 

I .  Introduction 

 In this paper, we consider the decoding of binary linear 

block codes over additive white Gaussian noise (AWGN) 

channels. As the algorithms proposed by Chase in [1], a 

Chase-like algorithm outputs the best (most likely) codeword 

in a list of candidates generated by a conventional algebraic 

binary decoder whose input vectors are determined by the 

reliability order of the hard-decisions. A decoding algorithm is 

called a bounded-distance (BD) decoding if its error-

correction radius reaches the maximum. It is well-known that 

any BD decoding is asymptotically optimal. When applied to a 

binary linear block code of length n  and minimal Hamming 

distance d , the original Chase algorithms [1] achieve BD 

decoding while the numbers of input vectors are 
/ 2d

NC ,  2/
2

d  

and   12/ d , respectively. Since the decoding complexity of a 

Chase-like algorithm is by and large proportional to the 

number of the input vectors, it is of interest to design Chase-

like BD decoding algorithms with as least input vectors as 

possible. Let )(d  denote the smallest size of input vector sets 

of Chase-like BD decoding algorithms. In 2003,  4/)2()(  dd  

and   16/)(  dd  were proved in [2] and [3], respectively. 

When the minimal Hamming distance d approaches to infinity, 
)()( 3/2dd  , )()( 2/1  dd , )ln()( ddd   were shown in [4], 

[5], [6], respectively. The best known asymptotic upper bound 

on )(d  is shown in [7]: 
2/1))1(()( dd   , where 2.414  . In 

this paper, we will improve this upper bound further. 

II .  Preliminaries 

 Let NV  denote the set of binary vectors of lengthN. For 

N

N Vuuuu  ),,( 21 


, let  be the bipolar 

vector corresponding to u


. For two real vectors x , Ny R , 

their squared Euclidean distance is defined as 

, where ix  and iy are the i -th entry 

of x


 and y


, respectively. Suppose that a linear binary block 

code NVC   of Hamming distance d  is used for error control 

over the additive white Gaussian noise (AWGN) channel with 

BPSK signaling. When the transmitted codeword is 

1 2( , , )Nc c c c C  , the conditional density function of the 

received vector NRr 


is  

0( , ( )) /

/ 2

0

1
( | )

( )
Ed r s c N

N
p r c e

N


 .  

For given received vector r


, a vector NVu


is said to 

be better (or more likely) than another vector NVv


 if 
))(,())(,( vsrdusrd EE


 . Hence, a maximum-likelihood (ML) 

decoder always outputs the best codeword. 

Suppose that 
N

N Rrrrr  ),,( 21 


 is a received vector. Let 
N

N Vzzzz  ),,( 21 


denote the hard-decision vector defined by: 

0iz  for 0ir  and 1iz  for 0ir .For simplicity, without 

loss of generality, we assume further that the entries have been 

permuted according to the reliability order of the hard-

decisions such that  

|||||| 21 Nrrr  . 

Like in [4] to [9], we assume further that the Hamming 

distance d  of the code is odd for simplicity. Let . 

Assume that a conventional bounded-distance-   algebraic 

binary decoder, which outputs a codeword within Hamming 

distance   of the sum of the hard-decision vector z  and the 

input vector, if any, is available. For any set NVU  , let 

( )C U denote the Chase-like algorithm which outputs the best 

codewords in a list of candidates generated by the algebraic 

decoder with U as the input vector set. For a decoding 

algorithm A  of a binary block code, its squared error-

correction radius (SECR) is defined as the largest number, 

denoted )(A , such that A  decodes correctly whenever the 

received vector is within squared Euclidean distance )(A of 

the bipolar vector corresponding to the transmitted codeword. 
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Then, a decoding algorithm A  achieves BD decoding if and 

only if dA )( . 

For NVU   and positive integer l , let )(Ul denote the set 

of vectors in NV  which are beyond Hamming distance l  of 

each vector inU . )(Ul  is called the unchecked region of the 

Chase-like algorithm )(UC . The SECR of )(UC  can be 

computed ]8[  by 

)}(min,min{))((
)(

vdUC
Uv





              (1) 

where )(v


  is the minimal squared Euclidean distance 

(MSED) between the vector )(vs


 and the vectors in 

.  

Since the size of the unchecked region )(U  is very large, it is 

not easy to estimate the minimum of )(v


  over )(U  for a 

general input set U . 

For 0 'j j m    and a vector ),,( 21 muuuu 

 , let 

, '( )j j u denote the sub-vector 1 2 '( , , , )j j ju u u   of u
 . Let 

, '( )j jw u denote the Hamming weight of , '( )j j u . By 

convention, )(,0 uw m


 is also abbreviated as )(uw


. For two 

different vectors mVvu 


, , u


 is said to be smaller than v


 

if )()( ,, vwuw mimi


  for all mi 0 . For 

mVvu 


, , it is proved in 

[8,10,11] that the MSED of u  is not larger than that of v


 if u


 

is smaller than v


. When the nonzero entries of the input 

vectors are confined in the leftmost positions (the most 

unreliable positions), it is shown in [4,5,6,7] that there is a 

unique minimal vector in the unchecked region )(U . 

For any binary vector u


, let ju


denote the concatenation 

of j su’


. For Ni 0 , let
it


denotes the vector iNi 01 . To 

improve the upper bound on )(d , we will investigate the 

Chase-like algorithm whose input vector set U  is of form 

}:{}100,,,{ 1

10 JjttttU j

dNd

ddJ  




             (2) 

where J  is a set of odd integers between 1 and 2d . 

III . The Minimal Vector in )( JU  

If JU  is a set of form (2), the following theorem shows 

that there is a unique minimal vector in )( JU . 

Lemma 1 Let ),,( 121  kaaaJ   be a set of odd integers with 

1 2 11 k ka a a a d      .The set )( JU has a unique minimal sequence 

211
10010101 111100   dNcccccc

J
kkf 


           (3) 

where 2/)1( 10  ac  and 2/)( 1 jjj aac    for 1,,1  kj  . 

Proof: From )3( , we see 

 0 0

1

1

0, ( ) 1 0
c c

a Jf 
                                                 (4) 

1, ( ) 1 0 ,0j j

j j

c c

a a Jf j k


                             (5) 

 2

, ( ) 010N d

d N Jf                                                (6) 

Then, we have 







1

0

0 )(),(
k

j

jJJH cfwtfd


, 

22))((),(
1

0

,01  






k

j

jJddJH cfwdtfd


, 

 12)()100,(
1

0

,0

1  





k

j

jJd

dNd

JH cfwfd


, 

and, for kj 1 , 

1)())((),(
1

0

,,0  




k

j

jJNaJajaJH cfwfwatfd
jjj


. 

Therefore, from 12/)1(
1

0





k

k

j j ac , we see )( JJ Uf 


. 

Now we assume that u


 is an arbitrary vector in )( JU . 

For  kj 1 , from 1)()(),( ,,00  uwuwtud NaaH jj


 and 

1)())((),( ,,0  uwuwatud NaajaH jjj


, we see that 

)(2/)1(1)( ,, JNajNa fwauw
jj


 .            (7) 

Furthermore, we can conclude that 

   1)(,1  uw Nd


                                                     (8) 

Assume in contrary that 0)(,1  uw Nd


. Then, from 

1)()( ,,  uwuw NaNd k


, we see that the )1( d -th entry of u


 is 

equal to 1, from 1),( 0 tudH


 and 1),( 1  dH tud


, we see 

that 1)(10  uw d


， . Therefore,  

 1)()100,( 1,0

1 uwud d

dNd

H


, 

contradicts to )( JUu 


. 

Let i  be an arbitrary integer with Ni 1 . If 
11 ai  , from 

)4(  and )7( , we have 

)(})(),(max{

})(),(max{)(

,,0,

,0,,

1

1

JNiJNJNa

NNaNi

fwifwfw

iuwuwuw







. 

If 1 jj aia  for some j  with kj 1 ,from(5) and (7), we have 

1

1

, , ,

, , ,

( ) max{ ( ), ( ) ( )}

max{ ( ), ( ) ( )} ( ).

j j

j j

i N a N a N j

a N J a N J j i N J

w u w u w u i a

w f w f i a w f





  

   
 

If kai  , from )6( and )8( , we also have )()( ,, JNiNi fwuw


 . 

Hence, Jf


 is smaller than u


 if Jfu


 . 
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According to (1) and Lemma 1, the Chase-like algorithm 
)( JUC  achieves BD decoding if and only if df J )(


 . 

IV. Conditions for )( JUC Achieving BD Decoding 

 To give conditions for df J )(


 , we show some properties 

of the MSEDs at first. 

Lemma 2 For any vectors mVu
 and mVv


 and integers ,a b  

with 0 ba , 

 )010()101( vuvu baabbaba                        (9)  

Proof:Let )/()( babas  .Suppose that 1 2 2 2( , ,..., )m n a m n ax x x x H      

is a vector such that ).101()),101(( vuxvusd babababa

E

    Then, we have 

bammm xxx   ...1 and txxx ambambam   221 ... , where 

t  is the number defined by 





















.,

,,

,,

12

1212

amm

amam

mm

xsxifs

xsifx

xsifx

t  

Let ),...,,( 221 anmyyyy 


 be the vector defined by 

















 .2,

,,

,2,

12 amibamifx

bamimifx

amormiifx

y

am

m

i

i
 

Then,  

           (10) 

Let  be the right part of the equality (10). Then, if ,mxs   

we have 

.0))1()1)((( 22

12   mam xxba  

If ,12  amxs we also have 

2 2 2 2

2 1 2 1

2 2

2 1

((1 ) (1 ) (1 ) (1 ) )

2 ( ) 0

m m m a m a

m m a

b x x x x

b x x

    

 

       

    

If ,12  amm xsx we still have 

.0)1()1()1)(()1(2

)1()1()1)(()1(2

2222

222

12

2



 

sbsasbasb

sbsaxbaxb amm
 

Hence, (9) is valid. 

The following lemma can be found in [11]. 

Lemma 3 Let u


be an arbitrary vector in .mV  If 
 muwimuw mi /)(,2/1min)/()(,


  holds for all i with ,0 mi   the 

MSED )(u


  is given by 

2( 2 ( )) / , ( ) / 1/ 2,
( )

, .

m m w u m if w u m
u

m otherwise


   
 


 

To design Chase-like algorithms achieving BD decoding 

with a small set of input vectors, according to Lemma 2, we 

can only consider the Chase-like algorithms )( JUC  such that 

the numbers defined in Lemma 1 satisfy .... 110  kccc  

Furthermore, we assume that the set J  contains 2d  . Then, 
.11 kc  Assume that 

                                   (11) 

are the distinct integers in the list 110 ,...,, kccc  and, for each 

,0 pj 
jh  repeats jg  times in such list. Then, we have 

                                                  (12) 

and (3) can be rewritten further as 

                                   (13) 

where 
1 1

1 (0 1 )p p p ph h h g


 
 and 

.0,)10(10
11 piiiiii ghhhh

i 
  

Now we give a sufficient condition for the Chase-like 

algorithm )( JUC achieves BD decoding. 

Theorem 1 The Chase-like algorithm )( JUC achieves BD 

decoding if 

                                    (14) 

Proof: For any vector mVu
  and integer i  with ,0 mi   from 

the definition of MSED, one can show easily that 

                       (15) 

Since the vectors 001,  and i , pi 0  satisfy the condition 

of Lemma 3, respectively, according to (13), (15) and Lemma 

3, we have 

          (16) 

Hence, from (14), (16) and Lemma 1, the Chase-like 

algorithm )( JUC  achieves BD decoding. 

Let ,a b  be numbers with 0 1/ 2a   and 0b  . For ,0i  

let 1 ihi
 and 2( 1) ( 1)a a

if b i      . Let p  be the integer 

such that 
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             (17) 

Let  )1/())1(1(
1

0
 




pifg

p

i ip   and ).1()1(1
1

00  



pgifi p

p

i i  

For ,0 pi   let 

                          (18) 

Then pp ghghgh ,,...,,,, 1100  are positive integers satisfying (11) 

and (12). From the left inequality of (17), we see 

1
1 1 1 2 1 2 2 2

0
0

( 1) ( 1) /(2 2 ),
p

p
a a a a

i

b i x dx p a


    



        

and thus  

1/ 2 1/(2 2 )( 1) ((2 2 ) / ) . (19)ap a b     

Hence, 

21 1

1

0 01

1
2 1 2 1

1
0

2 1 2 1 /1

( ) 1

2 2 ( 1) 1

1 1
( 1) (1 )

2 ( 1) 2 ( 1)

1 ((2 2 ) )
(1 ) .

2 ( 1) 2 4 ( 1) 4

p p

i i

i ii i i i i

p
p

a a

a a
i

a a a a

a a

h h

g h h h g i

i x dx
b b

p p a b

b a ab ab

 

 

 



 


 



  




   

   
 


   

 

 

 

 

If we choose b  further as 

1 13 (20 ) (2 2 ) , (20)a a ab a a  
 

Then we have 

21

1

0 1

( )
5 / 3,

2

p

i i

i i i i i

h h

g h h h





 




 
  

and thus according to Theorem 1, the Chase-like algorithm 
)( JUC achieves BD decoding. 

From  ,1 pp fg  (19) and (20), we have 

.)1(
)21(20

3
1

3

)1(40
)1(21

)1()22(
21

1
)2(

)1(21

21

1
)1(1)1(1

)1(1)1(1

)1()1(1

2/1

2/122

1

22

21

22

1

22

1

21
2

1

22

0

2

0























































 








































aa

aa
a

ba
a

ba

b

a

p
pbp

dxxpbp

ibpg

a

aa

a

aa

a

a
aa

p
aaa

p

i

aa
p

i

i

 

Hence, we have proved the following theorem. 

Theorem 2 When the Hamming distance d  of the code 

approaches infinity, the Chase-like algorithms can achieve BD 

decoding with 
2/1))1(( do  input vectors, where 

.218.2
3

)1(20

)21(20

3
1min

2/10

















aa

aaa
  

V . Conclusions  

In literature, there are many works to estimate the smallest 

size, denoted by )(d  for binary block code of Hamming 

distance d , of input vector sets of Chase-like algorithms which 

achieve BD decoding. Unlike most of these works, we deal 

with in this paper some Chase-like algorithms with an 

additional input vector whose nonzero entries are not confined 

in the most unreliable positions. With a similar method used in 

[7], we show that such a Chase-like algorithm has also a 

unique minimal vector in its unchecked region and then 

improve the best known upper bound on )(d  to: 
2/1))1(()( dd   , where 218.2 . 
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