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Then No: 90,1, 8115, 9, are positive integers satisfying (11)
and (12). From the left inequality of (17), we see
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If we choose b further as
b =3"%(20a)*"'(2-2a)*, (20)

Then we have
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and thus according to Theorem 1, the Chase-like algorithm
CWU,)achieves BD decoding.

From 9, <f, -1 (19) and (20), we have
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Hence, we have proved the following theorem.
Theorem 2 When the Hamming distance d of the code
approaches infinity, the Chase-like algorithms can achieve BD
decoding with & +0@)d"* input vectors, where

w = min (1+ j [20ad-2) _, 518,
O<a<1/2 3

V. Conclusions
In literature, there are many works to estimate the smallest
size, denoted by A(d) for binary block code of Hamming

distance d , of input vector sets of Chase-like algorithms which
achieve BD decoding. Unlike most of these works, we deal
with in this paper some Chase-like algorithms with an
additional input vector whose nonzero entries are not confined
in the most unreliable positions. With a similar method used in
[7], we show that such a Chase-like algorithm has also a
unique minimal vector in its unchecked region and then
improve the best known upper bound on A(d) to:
A(d)g(u/+o(1))d“2’ where v ~2.218
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