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Abstract - For the decoding of a binary linear block code of
Hamming distance of d over AWGN channels, a soft-decision
decoder is said to be bounded-distance (BD) decoding if its squared
error-correction radius is equal to d . A Chase-like algorithm outputs
the best (most likely) codeword in a list of candidates generated by a
conventional algebraic binary decoder whose input vectors are
determined by the reliability order of the hard-decisions. Let A(d)
denote the smallest size of input vector sets of Chase-like algorithms
which achieve BD decoding. When d approaches to infinity, the
best known upper bound on A(d) is A(d)<(1+o0(1)d¥2 . Where
A~ 2.414. In this paper, we show A(d) <y +o®)d"* where ¥ ~2.218 |

Index Terms - Chase-like algorithm, algebraic binary decoder,
bounded-distance decoding

| . Introduction

In this paper, we consider the decoding of binary linear
block codes over additive white Gaussian noise (AWGN)
channels. As the algorithms proposed by Chase in [1], a
Chase-like algorithm outputs the best (most likely) codeword
in a list of candidates generated by a conventional algebraic
binary decoder whose input vectors are determined by the
reliability order of the hard-decisions. A decoding algorithm is
called a bounded-distance (BD) decoding if its error-
correction radius reaches the maximum. It is well-known that
any BD decoding is asymptotically optimal. When applied to a
binary linear block code of length N and minimal Hamming
distance d, the original Chase algorithms [1] achieve BD
decoding while the numbers of input vectors are cy*, olarz]

and Ld/2]+1  respectively. Since the decoding complexity of a

Chase-like algorithm is by and large proportional to the
number of the input vectors, it is of interest to design Chase-
like BD decoding algorithms with as least input vectors as
possible. Let A(d) denote the smallest size of input vector sets

of Chase-like BD decoding algorithms. In 2003, A@)<[(d+2)/4]
and A@)<[d/6]+1 were proved in [2] and [3], respectively.

When the minimal Hamming distance d approaches to infinity,
A(d)go(dm)’ A(d)SO(dUz*E)’ A(d)éo(\/dlnd) were Shown |n [4],

[5], [6], respectively. The best known asymptotic upper bound
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on A(d) is shown in [7]; Ad)<(2+oM)d™ "where 1~2414. In
this paper, we will improve this upper bound further.

I1. Preliminaries

Let v~ denote the set of binary vectors of lengthN. For

U=(uy,u;,uy) eV et s@)2 (-1, (-1*.-.(-1") be the bipolar

vector corresponding to o . For two real vectors X, yeR",
their  squared Euclidean distance is defined as
dp(%,5)% (x5 —p) +-+(xy =)’ where X and Yiare the i -th entry

of X and Y, respectively. Suppose that a linear binary block

code ¢ v of Hamming distanced is used for error control
over the additive white Gaussian noise (AWGN) channel with
BPSK signaling. When the transmitted codeword is
¢=(.¢6)€C | the conditional density function of the

received vector ¥ e RN is

2R 1 —d (F,5(€))/ Ny
p(F[C) N

For given received vector T, a vector G eV " is said to
be better (or more likely) than another vector vev™ if
de(F,s(@) <de(F,8(M) | Hence, a maximum-likelihood (ML)
decoder always outputs the best codeword.

Suppose that F=(n.r.-n)eR" js a received vector. Let

7=(z,,2,,--2y)€V " denote the hard-decision vector defined by:
z,=0 for r, >0 and z =1 for r, <0 .For simplicity, without
loss of generality, we assume further that the entries have been

permuted according to the reliability order of the hard-
decisions such that

Il < ny |-

Like in [4] to [9], we assume further that the Hamming
distance d of the code is odd for simplicity. Let r2(-1)/2.
Assume that a conventional bounded-distance- 7 algebraic
binary decoder, which outputs a codeword within Hamming
distance 7 of the sum of the hard-decision vectorz and the
input vector, if any, is available. For any set y v, let
c)denote the Chase-like algorithm which outputs the best
codewords in a list of candidates generated by the algebraic
decoder with U as the input vector set. For a decoding
algorithm A of a binary block code, its squared error-
correction radius (SECR) is defined as the largest number,
denoted 2(A) | such that A decodes correctly whenever the
received vector is within squared Euclidean distance P(A) of

the bipolar vector corresponding to the transmitted codeword.

" The work was supported by the Students' Practice and Innovation Training Program of Jiangsu Province (2012JSSPITP1342), the Natural Science Foundation
of China (No. 60971123), the Key Project of Chinese Ministry of Education (No. 208045) and the Open Foundation of NCRL of Southeast University

(W200819)

© 2013. The authors - Published by Atlantis Press


mailto:546278512@qq.com
mailto:791493827@qq.com
mailto:1017772146@qq.com
mailto:hfxu@yzu.edu.cn

Then, a decoding algorithm A achieves BD decoding if and
only if p(A) =d .
For u v and positive integer |, let €U)denote the set

of vectors in v™ which are beyond Hamming distance | of
each vector inU . o, u) is called the unchecked region of the

Chase-like algorithm c(u) . The SECR of cU) can be
computed [8] by

p(C)) = min{d,vergil(l)a(\?)} @

where o(v) is the minimal squared Euclidean distance
(MSED) between the vector s(v) and the vectors in

Hy2{(x,.x,)eR":0<x < <x <1}

N

Since the size of the unchecked region®.V) is very large, it is
not easy to estimate the minimum of 5(v) over V) for a

general input set U .
For 0<j<i'sm and a vector U=(Uy,UzUy) |

7;.7(@) denote the sub-vector (UpiUjz-U;) of

let
Let
W;;(0) denote the Hamming weight of 7;;(@ . By

u -

convention, Won(U) is also abbreviated as W(U) . For two

different vectors g, vev™, U is said to be smaller thanv
ifWin @ <W (V) for all 0<i<m. For %V<V" it is proved in

[8,10,11] that the MSED of g is not larger than that of V if U

is smaller than V . When the nonzero entries of the input
vectors are confined in the leftmost positions (the most
unreliable positions), it is shown in [4,5,6,7] that there is a
unique minimal vector in the unchecked region®.(V),

For any binary vector(, let G’ denote the concatenation
of j o’s. Foro<i<N, letf denotes the vector1'o™'. To
improve the upper bound on A(d), we will investigate the
Chase-like algorithm whose input vector set u is of form

U, ={t,.,.f,,,,0°10" "3 U{f; 1 je 3} )
where J is a set of odd integers between 1 and d —2.

111 . The Minimal Vector in 2.U,)

If U, is a set of form (2), the following theorem shows
that there is a unique minimal vector in 2.(U,),
Lemma 1 LetJ=(a,8,.-a.) be a set of odd integers with
1<a <a,<<a,<a =0 The set2.U,)has a unique minimal sequence

fj = 100—10(:0101 0%...1% Ock71+110N—d—2 3)
where S =@, +1)/2 gnd ¢; =(a;.,—a;)/2 for J =1 k-1,

Proof: From (3), we see
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Yoa (F) =1270% @
Vapa, (1) =1707,0< j <k (5)
Fan(F;)=010"2 6)

Then, we have

w(

k7
)= C;’
J

N

|

d f

—h

J’f()):W(

Il
o

o _ k—1
dH(fJ’td+1):(d_WO,d(fJ))_'_ZZZCj +2

j=0
— _ k-1

dy, (f,,0°00" ") =wy, (f))+2=> ¢, +1
j=0

and, forl< j<k,

. Lk
dy (f, 1faj)=(aj _Wo,aj(fa ))+Waj,N (fJ)ZZCj +1-
j=0

k-1 re
Therefore, from 2. ,¢; =(a +1)/2=7+1 we see f, €. U,),

Now we assume that i is an arbitrary vector in 2.U,).
For 1<i=k  from d.@@8)=w,, @+w, ,@=7r+1 and

dy (@5, ) =(@; ~Woq (@) +W, (@) 27+1 we see that

w, ([@27+1-(a; -/2=w, () U]
Furthermore, we can conclude that

Wy, (@) 21 8)
Assume in contrary that Waan (@) =0 _ Then, from

Wy (@) =W, (@21 we see that the (4+D -th entry of G is
equal to 1, fromdw(@5)=7+1 gngd dy (@ E..)27+1 e see
that Wo. . (0) =7+1  Therefore, d,(U,0°10" ") =w, ., (0)-1=7
contradicts to T, U;),

Let i be an arbitrary integer with 1<i<N. If 1<i<a,, from
(4) and (7), we have

Wi,N (U) 2 max{WaI,N (U)!WO,N (U) - i}

2 maX{Wal,N (fJ )’WO,N (FJ ) - i}: Wi,N (fJ)

If 3, <i<a;, for some | with 1= 1<k from(5) and (7), we have
Wi,N (U) 2 maX{WaM,N (U)YWaJ,N (U) _(i _aj )}
2 maX{WaM,N(fJ)lWai,N(fJ)_(i_aj)}ZWi,N(FJ)-

If i2a from (6) and (8) , we also have Wix (@ =W,y (f,) |

Hence, f, is smaller than gifl# fy



According to (1) and Lemma 1, the Chase-like algorithm
CWU,) achieves BD decoding if and only if o(f,)=d,

IV. Conditions for C(U,) Achieving BD Decoding

To give conditions for o(f,)>d we show some properties

of the MSEDs at first.
Lemma 2 For any vectors gev™and v ev™ and integers a,b

with a>b>0,

o(017°0%1°V) > o(10°1°0* °V) 9)
Proof:Let s=(@-b)(a+b) Suppose thatX = (%% Xn.r2a) € Hininiza
is a vector such that de(S(@L""0°1’V),X) =o(@1""0°"1’V). Then, we have
Xn =X == Xnapand Xmeabea = Xmabsz =+ = Xmiza =L where
t is the number defined by

Xis if s<x,,
t= Xm+2a+1' If S > Xm+2a+1’
S, if X, <S <Xy 0.1

Let Y= Y20 Ymine2a) be the vector defined by

X: if i<mor>m+2a,

1
Yi =19 X
X

if m<i<m+a+b,
if m+a+b<i<m+2a.

m+2a+1?

Then,
S(BFI07) - o(@01T)
2 (FEFT0T).F) - L (FET ), )
=Bl-x Y +Bl+x. ) +(a—Bl—x_.._. )
—al-8 —H1+4. (10)

Let #be the right part of the equality (10). Then, if $<Xu.
we have

¢ =(@-b)((1—Xy,20.1)* —(1=%;)*) <O0.

If S>X we also have

m-+2a+1?

¢ = b((l_ Xn )2 + (]'+ Xm)2 - (1_ Xm+2a+1)2 - (1+ Xm+2a+1)2)
=203 -2 0) <0

m+2a+l

If Xm =S = Xni2a:10 we still have

§=2b(1+ X2) +(@ =D)AL~ Xy50.1)* —A(—5)* ~b(I+5)?
<2b(1+s*) +(a-b)1-s)*—a(l-s)* —b(l+s)* =0.
Hence, (9) is valid.
The following lemma can be found in [11].

Lemma 3 Let U be an arbitrary vector in vy~ |If
W, (0)(m—i) = min{L/ 2,w(@)/m} holds for all i with 0<i<m, the

MSED @ (1) s given by

o [m=(m-2w(@))*/m, if w@)/m<1/2,
o(i)= .
m, otherwise.

To design Chase-like algorithms achieving BD decoding
with a small set of input vectors, according to Lemma 2, we
can only consider the Chase-like algorithms €U,) such that

the numbers defined in Lemma 1 satisfy c¢,>c >..>c,_,.

Furthermore, we assume that the set j contains 9=2. Then,
¢ =1. Assume that

h=l<h<h<_<h (1)

are the distinct integers in the list Co:C1:---» G« and, for each
0<j<p.h; repeats 9; times in such list. Then, we have

igf; =7+l
=)

(12)

and (3) can be rewritten further as

oo
fy={F _..£,0010 13)

where ¢ =1""(0"1"%)*"and

& =0"1"(0"1")* " 0<i<p.

Now we give a sufficient condition for the Chase-like
algorithm C(U,) achieves BD decoding.
Theorem 1 The Chase-like algorithm CWU,) achieves BD

decoding if

(14)

Proof: For any vector gev™ and integer 1 with 0<i<m from
the definition of MSED, one can show easily that

o) 2 (7, () + (7, () 15)

Since the vectors 001, ¢ and &, 0<i<Pp satisfy the condition

of Lemma 3, respectively, according to (13), (15) and Lemma
3, we have

F(F)2 o)+ 00D+ o (2)

1 (h., —AYF

=(d+D—S-F T TAT
S IS Py Sy

[FEY]

(16)
Hence, from (14), (16) and Lemma 1, the Chase-like
algorithm €WU,) achieves BD decoding.
Let a,b be numbers with 0<a<1/2 and b>0. For j >0,
let h =i+1and f,=[b(r+1)"(i+1)>"]. Let p be the integer
such that



E_,f‘__[.r‘ﬂ}ii r+l« i_,f:[Hl}.
imidl il (17)

Let 9, =|(r+1- Y2 1,G+D)(p+D)] and i, =7 +1- 3" f,(+D—g, (p+D.
For 0<i<p. |et

:-vﬂ_]':
Fomd

= L otherwioe. (18)

ri-i -1,

Then No: 90,1, 8115, 9, are positive integers satisfying (11)
and (12). From the left inequality of (17), we see

p-1
R G | b Y () s jo” X-2dx = p? 2 /(2-2a),
i=0

and thus
p<(r +1)“ 2 ((2-2a)/b) W(z-2a) 29
Hence,
& (h|+1 i &
§2gh +h,-h =2g (|+1)+1
1 =1 281 1 P 2a1
= 2b(r 1) ;(' ) S )y L+ [
B 1 ( N pZafl pZa - ((2_2a)bfl)a/lfa
2b(r+1)° 2a  dab(r+1)°* 4ab '
If we choose b further as
b =3"%(20a)*"'(2-2a)*, (20)

Then we have

(h|+1
gh+h.,

p-1 _)2
! <5/3,
—h,

|:0

and thus according to Theorem 1, the Chase-like algorithm
CWU,)achieves BD decoding.

From 9, <f, -1 (19) and (20), we have

p

+Y b(r+1)*(i+1)*

i=0

p
Z:giS

i=0

< p+1+b(z+1) (1+ (p+1n2 +Lp x’zadx)

=

1-2a

1-2a

= p+1+b(zr+1)? [1+(p +1)72 4

<1+2b(r+1)*
-1

1
[(2 a)Z 2ab2 2a 4+ —

1-2a 1

1 (2 Za)Z 2ab2 2a

. j(r +1?

=1+2a(c+1)* + 40a(l-2) (1+ 3 j(r+l)”2.
V3 20a(l-2a)
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Hence, we have proved the following theorem.
Theorem 2 When the Hamming distance d of the code
approaches infinity, the Chase-like algorithms can achieve BD
decoding with & +0@)d"* input vectors, where

w = min (1+ j [20ad-2) _, 518,
O<a<1/2 3

V. Conclusions
In literature, there are many works to estimate the smallest
size, denoted by A(d) for binary block code of Hamming

distance d , of input vector sets of Chase-like algorithms which
achieve BD decoding. Unlike most of these works, we deal
with in this paper some Chase-like algorithms with an
additional input vector whose nonzero entries are not confined
in the most unreliable positions. With a similar method used in
[7], we show that such a Chase-like algorithm has also a
unique minimal vector in its unchecked region and then
improve the best known upper bound on A(d) to:
A(d)g(u/+o(1))d“2’ where v ~2.218

3
20a(l—2a)
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