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 Abstract - This paper presents a low power and low-voltage 

analog switched-current (SI) filters implementation of wavelet 

transform (WT) for real-time requirements in signal processing. First, 

an adaptive genetic algorithm (AGA) is used to calculate the transfer 

function of the filters, whose impulse response is the required 

wavelet base. This approach improves the approximation 

performance than the previous traditional approaches and allows for 

the circuit implementation of any other wavelet base. Next, the 

approximation wavelet function is implemented using SI filters based 

on the cascade structure with SI differentiators as main building 

blocks. The Gaussian wavelet is selected as an example to illustrate 

the design procedure. Simulations demonstrate that the proposed 

method implements WT is an excellent way. 

 Index Terms - Wavelet transform, analog filters, analog 

implementation, switched-current differentiators, adaptive genetic 

algorithms. 

I .  Introduction 

 The WT has been a very promising mathematical tool for 
signal processing, due to its good estimation of time and 
frequency localizations [1]. The WT is traditionally 
implemented using digital circuits. However, for low-power, 
low-voltage and real-time applications, it is not suitable to 
implement the WT due to the high power consumption and 
large area associated with the required A/D (analog-digital) 
converter. Consequently, the analog WT implementations have 
been an attractive field in signal processing. 

Recently, some significant advances for implementing WT 
with analog filters have been introduced in the literatures [2-
11]. Among, the implementations using analogue sampled-data 
circuits have attracted much attention [2, 8-11]. A key feature 
of using these circuits for implementing WT is that dilation 
constant across different scales may be easily and precisely 
controlled by the clock frequencies. Typically, the switched-
capacitors (SC) circuit has been used to implement analog WT 
[2]. However, the SC circuits are not fully compatible with 
current trends in digital CMOS process and their performance 
suffers as supply voltages are scaled down. To resolve these 
problems, the SI circuit [8-11] is applied to implement WT. 
The SI WT circuits consist of analog filters whose impulse 
response is the approximated wavelet and its dilations. So the 
performance of the WT realization depends largely on the 
approximation accuracy of the wavelet function. In the 

proposed approximation methods, Padé approximation [3, 8] 
is employed to approximate the Laplace transform of the 
desired wavelet filter transfer function. However, (1) the stable 
transfer function of a wavelet filter does not automatically 
result from the Padé approximation, (2) the choice of the 
degrees for the numerator and denominator polynomials in the 
approximation transfer function is difficult, (3) the wavelet 
approximation is only obtained directly in the Laplace domain, 
but not in the time domain. L2 approximation [4, 5, 6, 9], in 
order to find a suitable wavelet base approximation and 
improves the approximation accuracy compared to Padé is 
proposed. However, because of the existence of local optima 
in this approximation, the performance greatly depends on the 
selection of the approximation starting point. Furthermore, in 
the WT circuit, as compared to SI integrators [8-11], litter 
attention has been paid to applying SI differentiators in analog 
WT systems. However, SI differentiators have many 
advantages such as good noise rejection and stability.  

In this paper, a new method of implementing WT using 

AGA and SI filters is presented. The universal approximation 

function of the wavelet base is constructed by a parameterized 

class of the filter impulse response function. The optimum 

parameters of the wavelet approximation function are obtained 

using AGA. The WT circuits are composed of analog SI filter 

banks whose impulse response is the wavelet approximation 

function and its dilations. The filter design employs the 

cascade structure with SI differentiators as main building 

blocks. The simulation results demonstrate the proposed 

method is effective for implement WT in analog way. 

II .  Analog wavelet transform implementation 

The WT is a linear operation that decomposes a signal into 
components that appear at different scales [1]. The WT of a 
function at scale a and position τ is given by 

1 1
( , ) ( ) ( ) ( ) ( )f

t t
WT a f t dt f t

a aa a


  

 
           (1) 

where ( )t is the wavelet base and * denotes convolution. It is 

well known that when a signal f(t) is passed through a linear 

filter, the filter output is the convolution of f(t) with the 

impulse response h(t) of the filter. Therefore, we can see that 
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the analog computation of ( , )fWT a   can be achieved through 

the implementation of an analog filter of which the impulse 

response satisfies ( ) (1/ ) ( / )h t a t a  . The first derivative of 

a Gaussian WT system has been selected to illustrate the 

design procedure in this paper. 

III .  Wavelet function approximation 

A. Approximation model Design 
A given wavelet function will usually be non-causal, in 

order to implement the wavelet filter, one must first use a 
suitable approximation method. In the work, the 
approximation of the first derivative of a Gaussian wavelet in 
time domain is presented. The first derivative of a Gaussian 
wavelet is given by 

2

( ) 1.7865 tt te                                           (2) 

This wavelet function is non-causal and it can not be directly 

implemented using the hardware circuit. Note that ( )h t will 

then be zero for negative t, so that the wavelet function 

( )t which does not have this property must be time-shifted to 

facilitate an accurate approximation of ( , )fWT a  . If it 

chooses the time-shift
0 2t  , this gives rise to the following 

time-reversed and time-shifted wavelet function 

       
2(2 )

0( ) (2 ) 1.7865(2 ) tt t t t e                (3) 

As stated before, if ( )h t is used to approximate a time-shifted 

and time-reversed wavelet function (2 )t  , the output of the 

filter is the approximate wavelet transform ( , )fWT a   of the 

input signal. The quality of such implementations depends on 
the accuracy of the corresponding wavelet approximations. For 
the generic situation of stable systems with distinct poles, the 

impulse response ( )h t may typically have the universal form. 

For instance, if a 8th order approximation is considered, this 

function ( )h t may be expressed by 
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where ,( 1,2, ,15)i i  is the real coefficient. Among, the 

parameters 2 , 6 , 10 and 14 must be strictly negative for 

reasons of stability. The error integral is defined as 

          
2 2

0
( ) (2 ) [ ( ) (2 )]h t t h t t dt 



                      (5) 

The sums of squares error of the discrete points are expressed 
by 

         
700

2

1

( ) [ ( ) (2 )]
m

E h m t m t 


                               (6) 

where t is the sampling time interval and m is the sampling 

points. In order to calculate the optimal parameters of the 

approximation ( )h t , the optimal model for approximating ( )h t  

is described as 

     

700
2

1

min ( ) [ ( ) (2 )]

. . 0, ( 2,6,10,14)

m

k

E h m T m T

s t k

 





  
      

  
  

              (7) 

From equation (7), it is easy to know that this is a typical 

nonlinear optimization problem with nonlinear constants. 

Hence, the global intelligent optimization algorithms are 

described and employed to calculate the optimal values of the 

model in the next section. 

B. Parameters optimization using AGA 
Genetic algorithms (GA) have been widely used in various 

fields such as pattern recognition, combination optimization, 
and machine learning due to their global optimization 
property. Especially in dealing with nonlinear problems, GA 
has the superior performances than other traditional 
optimization methods [12]. Assume that the population is P(g) 
of feasible solution space, where g is the evolution generation. 
Population size is N, so g generation population can be 

expressed as
1 2[ , , , ]g g g g T

NX x x x , whose ith individual can 

be described as
1 2 3 16[ , , , , ]g g g g g T

i i i i ix      associated with the 

coefficients of the approximation model. The basic framework 
of AGA is presented to calculate the coefficients as follows: 

1) Initialize a population of N individuals with random 
values generated according to a uniform probability 
distribution in the D dimensional problem space. Specify the 
population size N=10, the sampling time interval 0.01t  . Set 

the maximum evolution generation Gmax=9000 and the initial 
generation g=0. 

2) Calculate the fitness value of the chromosome 
according to the given objective function. The greater the 
fitness of a chromosome can be survived. The objective 
function is given by 

     
700

2

1

( ) [ (0.01 ) (2 0.01 )]
m

F h m m 


                      (8) 

3) Given the crossover probability, the crossover agnate 
generates the new offspring. To ensure that the algorithm can 
obtain the optimal solution, we give a reconfigurable strategy 
for the probability of the crossover. The probabilities of the 
crossover is described as [12] 

   1 2 1 max max

2

( ) ( ) /( ),

,

c c avg

c

c avg

C C C f f f f f f
P

C f f

     
 



         (9) 

where 1 2, (0,1)C C  . fc is the bigger fitness in two individuals 

of the crossover. fmax is the maximum fitness of the current 
population. favg is the average fitness of the current population. 

4) Given the mutation probability, the mutation occurs in a 
certain place of a chromosome and a new individual is born. 
The probabilities of the mutation is expressed as [12] 

3 4 3 max max

4

( ) ( ) /( ),

,

i avg i avg

m

i avg

M M M f f f f f f
P

M f f

     
 



      (10) 

where
3 4, (0,1)M M  . fi is the fitness of the ith individual in 

the population. 
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5) Choose pairs of individuals from the population in 
such a way that those with higher fitness will get more copies. 
In this paper, the roulette wheel selection is applied. 

6) If the termination condition is satisfied, the algorithm 
ends, otherwise return to Step 2. 

According to the above steps of AGA, the problem in 
equation (7) can be solved. The accurate globe optimal 

solutions
i of ( )h t are given in Table I. After transforming the 

time domain approximation function, the 8th Laplace transfer 
function of the first derivative of a Gaussian wavelet filter 
(scale a=1) is obtained as 

TABLE I    The Optimal Solutions of the Gaussian Wavelet Approximation 

i λi i λi i λi i λi 

1 -42.215 5 4.4321 9 0.5156 13 11.8121 

2 -1.5281 6 -1.1450 10 -0.9640 14 -1.2386 

3 -0.1712 7 2.6092 11 -3.9569 15 -1.4180 

4 1.1941 8 -0.5131 12 0.1789 16 -0.9251 

The other transfer function ( )aH s of the wavelet filters at 

scales a can be derived from equation (11) by the theory of 
Laplace transfer. Fig.1 shows the 8th approximation 
performance of the first derivative of a Gaussian wavelet using 
different methods. Obviously, the performance of AGA is 
better than L2 and Padé methods. 
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Fig. 1 The approximation of the Gaussian wavelet. 

IV.  Wavelet Filter Design using SI Circuit 

The SI technique presents, as the main advantages over SC 
filters, simple implementation on a digital CMOS process, less 
chip area and power, insensitivity to nonlinearities in 
capacitances and transconductances, and circuits that can 
operate at higher frequency [13]. According to the filters 
design theory, higher order filters can easily be realized using 
the biquads. In this paper, the SI WT filter design is based on 

the cascade architecture with SI differentiator as the main 
building blocks. 

The general SI biquad differentiator [14] is used, whose 
transfer function in z-domain is given by 

0

2

2 3 1 3 0 1 3 2 3 2 3

2

3 5 4 3 5 3 5 4

( ) ( ) / ( )

[( ) ( 2 ) ]

(1 2 ) ( )

iH z I z I z

z z

z z

          

       



     


    

         (12) 

Consider the continuous-time biquad described by 

2

2 1 0

2 2

0 0

( )
( / )

k s k s k
H s

s Q s 

 
 

 
                                   (13) 

Applying the bilinear z-transform gives  
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         (14) 

Comparing coefficients of equation (12) and (14) gives 
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         (15) 

Equation (11) are used to calculate the transistor aspect 

ratios (W/L) (α0-α5) to be used in the SI differentiators, giving 

the required the transfer function H1(s). For this example, the 

transistor aspect ratios of the SI differentiator realization are 

given in Table II. Four biquad sections in cascade structure are 

to be connected to realize the approximation transfer 

functions. The circuit of eighth order wavelet filters using SI 

differentiators in ASIZ software is given in Fig. 2. 

TABLE II    The Optimal Solutions of the Gaussian Wavelet Approximation 

αi 
First 

section 

Second 

section 

Third 

section 

Fourth 

section 

α0 9.736e-5 2.09458 11.20390 8.25130 

α1 0.03218 3.08509 3.15059 3.03778 

α2 0.01611 0.05437 5.73602 10.35077 

α3 1.00000 1.00000 1.00000 1.00000 

α4 1.12878 0.46486 2.79405 5.17070 

α5 2.78587 1.44697 6.15737 9.60440 
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Fig. 2 The Gaussian WT circuit with SI differentiator 
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V.  Simulation Results 

The whole circuit has been simulated using the ASIZ 
simulator [14]. Since the dilations of a given SI filter may be 
controlled by changing the clock frequency, so adjusting the 
various clock frequencies of the circuits with the same system 
architecture, one can obtain different scale wavelet functions. 
Defining Is=1A, R=1Ω and clock frequency is 100kHz, 50kHz, 
25kHz and 12.5kHz, respectively. Fig. 3 shows the impulse 
response of the wavelet filters with four scales. The simulated 
impulse response waveforms of the different scale filters 
achieve the negative peak value 0.1769A at 0.04ms, 0.08ms, 
0.16ms and 0.32ms, respectively, which are different from the 
normalized values of the original waveform. The 
approximation quality of the first derivative of a Gaussian 
wavelet is excellent to the ideal wavelet function, which 
confirms the performance of the SI wavelet filters. Only 
changing W/L of the output current mirror, the output gain of 
the waveform will be adjusted for the practice applications.  
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Fig. 3 Simulated impulse responses of the Gaussian filter with four scales. 

In order to analyse the effect of finite Gm/Gds ratios in the 
transistors and parasitic Cgd capacitances, another simulation is 
made. Assuming Gm/Gds and Cgs/Cgd ratios of 2000, with the 
biasing current sources assumed as ideal, the frequency 
response of the wavelet filter is shown in Fig. 4. The simulated 
frequency response is closed to the ideal frequency response, 
which indicates that the designed system has litter effect in the 
sensitivity to the imperfections. 

VI.  Conclusions 

A low voltage and low power analog circuit for 
implementing the WT using AGA and SI filters is presented. 
The wavelet base is approximated by AGA method in the time 
domain. This approximation approach performs well in the 
practice that it leads to relatively low order approximation. 
Then the approximating wavelet function is implemented in 
analog SI filter, based on SI differentiator as main building 
block. By changing the clock frequency, the SI filter obtains 
the various scales wavelet function to implement WT. 
Simulation results the proposed method is effective. 
Furthermore, from the results obtained, we may deduce this 
procedure could very well be used to implement other wavelet 
bases. 
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Fig. 4 Simulated frequency response of the Gaussian filter with the 

imperfections considered (a=1). 
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